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When attitude maneuvers are performed with thrusters, the ensuing spacecraft motion 
may involve both rotational and translational behavior. Using a complex formulation, 
analytic solutions are  derived for the translational velocity of a near-symmetric rigid 
body subject to constant body-fixed torques and forces. For the case of an axisymmetric 
body, the solution of Euler's equations of motion is exact. Due to a small angle 
assumption, the analytic solutions for the Euierian angles and the inertial velocities are 
approximate, but these apply to a wide variety of practical problems. Numerical solutions 
for a typical problem involving constant body-fixed torques and forces provide an 
indication of the accuracy. 

In t roduc t ion  
The thrusting, spinning rocket problem (see Fig. 1 and 

[I]) represents a new challenge in the analysis of rigid 
body motion. This problem was unknown to early 
dynamicists such as Euler, Lagrange, Poinsot and others. 
Classical analysis of rigid body motion has provided 
closed-form solutions for torque-free motion and the 
motion of a top. The thrusting, spinning rocket problem 
is the next logical step in the analytic solution of rigid 
body behavior. This practical modem day problem is 
more difficult to solve analytically than the known 
classical problems, where integrals of the motion exist. It 
involves forced motion where forces iind torques operate 
along all three body axes, and is governed by highly 
nonlinear differential equations. 

Fig. 1 Thrust ing / Spinning-up maneuver [I]. 
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Analytic solutions for this type of problem extend our 
knowledge of the fundamental behavior of a rigid body 
subject to body-fixed forces and torques. Analytic models 
can be of great help in obtaining a qualitative 
understanding of the complex dynamic behavior; even a 
simple heuristic analytic result may provide a quick and 
relatively accurate solution for maneuver analysis. 
Analytic solutions for the attitude motion of a rigid body 
have been obtained recently for the constant body-fixed 
torque problem by Longuski [2,3] and Tsiotras and 
Longuski [4]. An analytic solution for the transverse 
velocity components accumulated during the spin-up 
maneuver (corresponding to the right figure of Fig. 1) is 
obtained by Hintz and Longuski [5] in tenns of a simple 
Fresnel integral. Integration of the transverse equations is 
significantly facilitated by neglecting the axial force. In 
Klumpe and Longuski [6] an attempt is made to include 
the axial force (corresponding to the combination of both 
figures in Fig. 1) and after cumbersome analysis, a 
solution is found for the secular terms. 

In this paper we briefly review the solution of Tsiotras 
and Longuski [41 and use it for the foundation of the 
analytic solution for the velocity problem. The resulting 
solution provides the translational velocity components of 
the thrusting, spinning rocket problem in a much more 
complete form. It incorporates the previously known 
results, but in addition includes periodic behavior that was 
not addressed in earlier investigations. 

Euler's Equations of Motion 
The motion of a rigid body with respect to the center of 

mass is governed by Euler's equations of motion 



where M, ,My and M, are torque components, wx.oy 
and a, are the angular velocity components, and I,, I, 
and I, are the principal moments of inertia. As usual, a 
dot represents differentiatian with respect to time. We 
will assume that I, > I, > I, and the body is spinning 
about its z axis. No explicit analytic solutions of this 
system of nonlinear differential equations are known to 
exist for arbitrary functions of the external torques 
Mx,My and M,. In fact, no exact solutions are known, 
without the need of some simplifying assumptions, even 
for the case of Mx,My and M, being constant. 
Assuming that only M, is constant and that the last term 
of equation (lc) is small (either because of near symmetry 
or because of the product of oxoy being small) we 

obtain 

Of course, equation (2) is the exact solution for o,, for 
an axisymmetric rigid body. This approximation has been 
very useful in previous developments [2-41. This 
approximation is very accurate also for the case of a spin- 
stabilized spacecraft, when both ox and oy tend to 

remain small, even when no symmetry assumption can be 
made. The approximation in the solution of equation (lc) 
allows us to decouple the third order system of nonlinear 
differential equations (1). Therefore, assuming the validity 
of equation (2). we can merely concentrate on equations 
(la) and (lb), which now become a set of two coupled, 
but linear time-varying differential equations. 

Analytic Solution for the Angular Velocities 
Although we assume that I, = 1, in order to uncouple 

equation (lc) from equations (fa) and (lb), we will retain 
the distinction between 1, and I, in the latter two 

equations. Therefore in essence, we have replaced the 
system of equations (1) by the following system 

Defining the new independent variable 

and the transformation of the dependent variables 

allows us to combine equations (3a) and (3b) into the 
following linear first order scalar, but complex differential 
equation with time-varying coefficient 

where 

Note that the prime in (6) denotes differentiation with 
respect to the new independent variable z . As shown in 
[4] the solution for the transverse angular velocities can be 
written immediately as follows: 

The first term in the above expression is the solution due 
to the initial conditions, also called the homogeneous 
solution. The second term describes the forced response 
due to the forcing function F, also called the 
nonhomogeneous solution. The only difficulty that arises 
in the computation of the solution for the transverse 
angular velocities ox and wy comes from the integral of 

the nonhomogeneous solution. We are therefore, merely 
interested in computing the integral appearing in (9) where 

and 

I ~ ( X : ~ )  = jexp (-i pu2/2) du. (1 1) 
0 

Integrals of the form 

can be easily evaluated by means of the recurrence 
formula 



To obtain all the integrals from (12) we must find the first 
two terms of the sequence. This can be done as follows: 

where s(x) is defined as the signum function, given by 

and E(x) represents the complex Fresnel integral function 
of the fmt kind defined by 

We have assumed in equation (14) that p is positive. 
In the event that p is negative we merely take the 
complex conjugate of equation (14). that is, 

where the asterisk denotes complex conjugation. Both 
cases can be handled at the same time by defining the 
function 

Then we find that, for both cases, the integral l0(x;p) 
can be evaluated by 

Analytic Solution for the Eulerian Angles 
Using a 3-1-2 Euler angle sequence to describe the 

orientation of the body-fued reference frame, with respect 
to an inertially fixed reference frame, the following 
kinematic equations hold: 

(bx = ox cos cpy + 0, sin cpy 

A small angle approximation for cp, and cpy and a further 

assumption that the product qymX is small compared to 

o,, allows us to solve directly for cp, and reduces 
equations (21) to equations (22). 

Introducing the new independent variable c as was done in 
(4) the solution for cp,(r) is given by 

where h is defined by 

Using the solution of o, from equation (2), we can 
combine the first two equations of (22) into the following 
single complex equation 

where the complex variables ~ ( z )  and o (r) are defined as 

( r )  = c p X  i ( c ) ,  o r )  = oX( )+ i  o y .  (26) 

The differential equation (25) has the solution 

where cpo = cp(ro) is the initial condition for the 
transverse angles cpx and cpy in the new independent 

variable. The nonhomogeneous solution involves the 
integral ~~(r~,z;X,p) which is defined as follows: 



Z 

1, (TO. z; A. p) = j exp (i A u2 / 2) o (u) du. (28 
7 0  

Therefore, in order to solve for the Eulerian angles, we 
need to evaluate the integral l,(zo ,z; A, p). The solution 

to (28) involves an expression for w(s) instead of R(z) 
which has been already found in equation (9). However, it 
is easy to see that o(z) can be expressed in terms of the 
already known solution of R(z) by using the 
relationships in equations (Sa), (7) and (26) to obtain 

The method for the evaluating I, (so, z; A, p) is outlined 

as follows. We rewrite Iq(sO, z; A,p) as the sum of two 
independent integrals 

where kl and k2 correspond to the symmetric and 
nonsymmetric portions of the solution respectively. The 
terms kl and k2 are defined as follows: 

Therefore in order to evaluate I, (TO, z; A, p) we need to 

consider the two independent integrals of equation (30) 
defined as 

Substituting equation (9) into (32) and (33), and carrying 
out the algebra, we obtain the compact forms of the 
integrals Iq,(zo ,z;h,p) and I , ~ ( T ~ . T ;  h,p) given below: 

The first two integrals in equations (34) and (35) are of the 
form Io(x;p) as defined in equation (11). The third 

integrals in these equations, ~ ~ ( z ~ , ~ ; p , p )  and 

J ~ ( Z ~ , O ; - K , ~ ) ,  respectively, are defined as 

7 0  

J ~ ( T O , ~ ; - K , ~ )  = 

 UP(^ 
'F 0 

We have again assumed tha t in equations (37) and (38) 
that p, p &d K are positive. We see in (39) that for p 
and p negative we merely take the complex conjugate of 
equations (37) and (38). that is. 

It is noted for the reader's convenience that when p is 
positive, p , K , and A are also positive, while the case of 
p negative corresponds to negative values for p , K , and 
A .  The integrals (37) and (38) are specific cases of the 
more general form of integral given below (see [7-91) 

Z 

I , ( T ~  .r;p.p) = jexp(i p u2/2) ~.(u:p) du 
To (40) 

n=0,1,2 ,..., m. 

From the recurrence formula for I,(x;p) given in 
equation (13). the following recurrence formula for 
J, (zo, 1;p.p) can be easily verified. 

The use of the above recurrence formula, allows us to 
reduce the evaluation of the integral (40) to the evaluation 
of the first two unknown terms of the sequence, given by where 



r 

~ , ( y . r ; ( l , p ) ~  jexp(i (lu2/2) Il(u:p) du. (43) 
To 

Using equation (20). the first integral (42) takes the 
form 

The evaluation of this integral will be discussed in the 
next section. The second integral (43) can easily be 
computed using equation (15) 

Thus we have completed the analytic solution for the 
attitude motion and we can proceed with the velocity 
solution. 

Analytic Solution for the Inertial Velocities 
When body-fixed forces (fx, f y ,  f ,) are present, the 

rigid body accelerates according to 

where ax, ay , a, are acceleration components in inertial 

When cpx and cpy are small, (47) becomes 

Invoducing the complex variables 

we can combine the transverse portion of equation (48) 
into the following complex equation for the transverse 
velocity in inertial space. 

T 
v(r ) = vo + (f/m) h j exp [i cpz (u) ] du 

=o (50) 

with the initial condition defined as 

where, recalling (23) and (27), we have 

cp (r) = cpo exp (-i h r 2 /  2) 

The first integral in (50) is due to the transverse forces 
acting on the body. The solution to this integral is easily 
solved for in terms of Fresnel integral functions by 
substituting the expression for cp, (r) given above. The 
resulting solution is given as follows: 

recalling that the solution for Io(x;p) was given in (20). 
The solution to the second integral in (50). resulting from 
axial forces acting on the body, is more involved and the 
details are outlined below. Substituting the expressions 
for cp (7) and cp, (r ) , the integral becomes 



Now, in order to solve for the transverse inertial velocity, 
we need to evaluate the integral of the integral 
I ~ ( T o . ~ ~ , P ) :  

Recalling the compact forms of the two integrals 
Ilpr (20 ,2;X,p) and IP2 (zO,~;X,p) given in (34) and 

(35). we need to consider the integration of the terms: 

The first integral we consider is the integral of 
li(zo,z;p). Rewriting 1 i ( 7 ~ , 2 ; ~ ) ,  in terms of 
10 (x; p), as given in (20), we have 

The integration of (55) is reduced to the integral of the 
Fresnel integral function a*(x) given below. 

Similarly, the integral I:(T~,'I;K) from the 

I (zo ,z; h, p) expression is 
92  

The evaluation of the Fresnel integral as well as the 
evaluation and integration of J0 (20 ,~;p,p)  are presented 
in the following three subsections. 

Evaluation of the Fresnel Integral 
The Fresnel integral is difficult to approximate over a 

large range of its argument. An excellent approximation 
based on the 2-method of Lanczos [lo], given by 
Boersma [l 11, is suitable for this purpose and is reviewed 
here. There exists a complex Fresnel integral function of 
the second kind defined by 

where E2 (x) is related to E(x) by 

According to this method, two approximations are used, 
the first, valid for small arguments, is given as 

and the second, valid for large arguments, is 

11 
+ exp (-ix) C(cn +id,) ( 4 1 ~ )  n+lP  (61) 

n=O 

The numerical values of the coefficients a,, b,, c, and 
dn are given by Boersma [ll], and for the reader's 
convenience, are reproduced here in Table 1. The 
maximum error for the first approximation is 1.6 x lo4 
while the maximum error for the second approximation is 
only 0.5 x Other approximations for the Fresnel 
integral and for integrals of the Fresnel integral, using 
asymptotic and/or series expansions or rational functions 
can be found in Abramowitz and Stegun [12]. 



Table  1 Numerical  va lues  o f  c o e f f i c i e n t s  f o r  tbe  Fresnel  integral  c o m p u t a t i o n s  
(Boersma [ I  11) 

Evaluation of the ~ ~ ( x ; p ,  p) Integral 

The Jo (so. s; p, p) integral defined in (44) can also be 
written as 

JO(~O,~:P.P)  = JO(T;CL,P)- JO(~O;CL.P) (62) 

where the general form of the JO (x; p, p) integral is 

The s -method of Lanczos, described above, is used for the 

evaluation of B ( J ~  u) . Approximations for small 

and large arguments yield the following expressions: 

Substituting (64) and (65) into (63) gives us two cases for 
the J ~ ( X ; ~ ,  p) integral. For clarity they will be referred 

to as JO ( ~ : p . p ) _ ~  and Jo(x:P. P ) ~ ~ ~ ~ .  'IIR small and 

large (argument) cases of Jo (x; p, p) are defined as 

where 



To evaluate (67) we are interested in integrals of the 
general form: 

It is noted that this integral is the complex conjugate of 
the integral given in (12). The subscript u, in the 
notation I,,(x;h), is used to signify that the term un is 

'upstairs' in the integral. Integrals of this form are 
evaluated using the recurrence formula 

i (n-1) +- 
Ill 

Iun-2(x;h). 

This relationship holds for n=2,3,4, ... and therefore it is 
necessary to compute the fust two terms corresponding to 
n=O and n=l by other means. These fust two terms are 
given by 

Similarly, to evaluate (68) we are interested in integrals of 
the general form: 

The subscript d, in the notation Id,(x;h), is used to 

signify that the term un is 'downstairs' in the integral. 
Integrals of this form are evaluated with the recurrence 
formula 

This relationship holds for n=2,3,4, ... and therefore it is 
again necessary to compute the first two terms 
corresponding to n=O and n=l by other means. These first 
two terms are given by 

where Ei(x) denotes the Exponential integral function 
def~ned by 

00 

E ~ ( x )  = [exp(i u) /u] du. (76) 
X 

Approximations and tabulated values of this function can 
be found in 1121. 

It is noted that for negative values of 5 the integrals 
merely become the conjugate of the given integrals. 

Integration of the ~ ~ ( x ; p , p )  Integral 
To complete the solution for the transverse inertial 

velocity, the integration of the Jo(x;p,p) integral is 
presented next. We will first consider the case of 
~ ~ ( x ; p , p ) ~ , ~ .  It follows from equations (67) and (68) 

that the integral of Jo (x; p, P)~,,,, can be reduced to the 

computation of the integral of I,, (x; X) . The integral of 

I,, (x; h) is given by the following recurrence formula: 



This relationship holds for n=2.3,4, ... . The remaining 
cases, corresponding to n=O and n=l, can be computed 
using 

where the integral of 8* (x) is given in (56). 

Now consider the evaluation of ~ ~ ( x ; p , p ) ~ ~ ~ ~  . It 

follows from equations (68) and (73) that the integral of 
lo (x; p. p)lulle can be reduced to the computation of the 

integral of Idn(x; h) . The integral of Id, (x;X) is given 
by the following recurrence formula: 

This relationship holds for n=2,3,4. ... The case n=l is 
given by the expression: 

The last case, corresponding to n d ,  requires a form of the 
integral of E* (x) given in (56). 

This completes the analytic solution for the transverse 
velocity. 

D i s c u s s i o n  of Axia l  Ve loc i ty  S o l u t i o n  
The equation for the axial acceleration can be written in 

complex notation as 

where the corresponding axial velocity expression is 
representedby 

Since the integrals in (84) are small (even though f is not) 
and the f, term dominates for large spin-up durations, 
vZ(z) can be approximated [51 by 

The integration of the small terms in (84) involves 
integrating (p(7) directly, which we recall from (27) as 

The direct integration of q(z) follows a similar 
development to the transverse velocity solution. The 
details involve the integration of I~ (TO, Z; X, p), as in the 
transverse case, and include the addition of an exponential 
term. This, however, presents no further difficulty in the 
derivation of the solution, since the resulting expression 
consists of terms found in the previous formulation. 

Numer ica l  R e s u l t s  
Numerical examples are used to demonstrate the 

accuracy of the analytic solution. Tsioaas and Longuski 
[4] have verified the accuracy of the analytic solutions for 
q,, qy  , qz  and w,, wy , a,, where they used numerical 
values corresponding to a spin-up maneuver of the Galilea 
spacecraft, as an example. As in [4], we consider the 
following inertia parameters to be representative of the 
Galilea space& (in all-spin mode). 

I, =2985kg.m2,1, =2729kg.m2,1, =4183kg.m 2 

(86) 
The following initial conditions are assumed 

The torques generated about the body axes, are given by 

M, = -1.253N.m,My = -1.494N.m,Mz = l3.5N.m. 

(88) 
The constant body-futed forces are given by 
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Fig. 2 Exact and analytic solutions for v(z). 
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Fig. 4 Exact and analytic solutions for v(z). 
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Fig. 6 Exact and analytic solutions for vz(.r). 
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Fig. 3 Exact minus analytic solutions for v(z). 
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Fig. 5 Exact minus analytic solutions for ~(7). 
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Fig. 7 Exact minus analytic solutions for vz(r). 



For the purpose of illustration, we consider a spin-up 
maneuverfrom 0,(z0)=3.15rpm to o,(z)=lO.Orpm. 
Since the transverse velocity solution is a linear 
combination of the transverse body-fixed forces and the 
axial body-fixed force, numerical studies for these cases 
will be demonstrated independently. The analytic solution 
for the inertial velocity is compared to the "exact" 
solution which is found by numerical integration of 
equations (I), (21). and (46) using equation (47) for the 
"exact" A matrix. 

Figures 2 and 3 compare the exact solution of v(z) 
with the analytic solution for the case of transverse body- 
futed forces. (Here we use the values of f, and f given 

in (89), but set f, = 0.) In Fig. 2 both exact and analytic 
solutions are represented, but they are indistinguishable 
from one another. Their difference is given in Fig. 3. 

Figures 4 and 5 compare the exact solution of v(z) 
with the analytic solution for the case of an axial body- 
fixed force. (Here we assume that f, = f y  = 0 and 

f, = 10.ON.) In Fig. 4 both exact and analytic solutions 
are displayed, but they too are indistinguishable. Their 
difference is presented in Fig. 5. For the same case. Figs. 
6 and 7 compare the exact solution of v,(z) with the 
analytic solution (85). In Fig. 6 both exact and analytic 
solutions are presented with their difference given in Fig. 
7. 

C o n c l u s i o n s  
An analytic solution has been derived for the inertial 

velocities of a thrusting, spinning rocket. The complex 
representation enables the solution to take a compact 
form. The solution assumes exact axial symmetry in 
order to write the solution for the angular velocity about 
the spinning axis in a linear form, but keeps the 
distinction of the moments of inertia in the other two 
equations for the angular velocities. A small angle 
approximation allows the Euler angles to be given as a 
solution of a linear, time-varying system with the 
expression for the angular velocities acting as the forcing 
function. The solution for the transverse velocity is given 
in terms of Fresnel integrals and other integrals that can 
be solved for in terms of simple recurrence formulas. 
Current and previous research indicates that such analytic 
solutions are extremely helpful in capturing the 
fundamental behavior of the motion, which cannot be 
deduced from numerical simulations. 
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