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Abs t r ac t  
Earlier work has demonstrated the feasibility of using aerobraking tethers for solar system exploration. 

Numerical optimization techniques have been used to determine the minimum tether mass required for 
aerobraking maneuvers at all atmosphere-bearing bodies in the solar system. The results indicate that in 
all cases, the mass of the tether is significantly lower that the propellant mass required for the maneuver. 
However, the nonlinear programming techniques used to solve the optimization problem cannot be used 
to prove that the solution obtained is a global minimum for the problem; it is only guaranteed to be a 
local minimum. In this paper, techniques are developed to determine if, in fact, a given solution is a global 
minimum. The minimum tether mass maneuvers obtained previously are shown to be global minima. 

1 In t roduc t ion  

Previous work by Puig-Suari and Longuski [I] 
demonstrates the physical feasibility of the aerobrak- 
ing tether concept. This system consists of an or- 
biter and a probe connected by a thin tether (see 
Fig.1). When the spacecraft arrives a t  a planet, the 
probe travels through the atmosphere and aerody- 
namic forces provide the change in velocity required 
to  capture the vehicle into orbit around the planet, 
thus, eliminating the need for chemical rockets. Dur- 
ing the maneuver, the orbiter remains outside the 
sensible atmosphere and requires no aerodynamic 
shielding. In order to  maximize the orbiter's altitude 
(clearance) above the probe, a vertical dumbbell ma- 
neuver is used in which the tether achieves a vertical 
orientation a t  closest approach ( a  = a,i, = 0). The 
fly-through orientation of the tether in this maneuver - 

produces large aerodynamic torques on the vehicle 
which tend t o  spin the tether and plunge the orbiter 
into the atmosphere, but this effect can be eliminated 
by spinning the tether in the opposite direction dur- 
ing approach. In [2] this maneuver is used to  compare 
the performance of the aerobraking tether to  that of 
traditional propulsion systems in missions t o  all the 
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Fig. 1. Aerobraking  Tether 

atmosphere-bearing bodies in the solar system. The 
study assumes Hohmann transfers from Earth and 
capture into near parabolic orbit (e < 1) at the des- 
tination planet. The tether material is assumed to 
be Hercules AS4 graphite with an ultimate strength, 
a, of 3.6 GN/m2 and a density, p, of 1800 kg/m3. A 
propellant with an Isp of 300 s is used for comparison 
to chemical rockets. The relative performance of the 
two systems is determined by comparing the mass of 
the tether and the mass of the propellant required 
to capture the orbiter. The results indicate that,  in 
all cases, the aerobraking tether is superior t o  chem- 
ical rockets. The maneuvers and tethered systems 
developed in [2] are used as baselines for subsequent 
studies. For example, the system designed for Mars 
has the following characteristics: 

Tether length (It): 14.5 km 
Tether diameter (d): 2.34 mm 
Tether mass (mt): 112 kg (1) 

Probe area (Sp): 605 m2 



and will be referred to as the design tether in this 
paper. 

analysis in [2] proves the mass advantage of the 
aclrobraking tether, but studies only vertical dumb- 
bell maneuvprs. The work in [3] focuses on deter- 
mining the maneuver which provides the minimum 
tether mass. No explicit formula for the cost function 
is available for the aerobraking tether and, so, non- 
iinear programming techniques are required to solve 
[,lie problem. The use of these techniques on the aer- 
obraking tether problern is very demanding computa- 
tionally, since every function evaluation requires the 
nr::rlerical simulation of a complete aerobraking ma- 
rleuver. For this reason the analysis in [3] as well as in 
this paper models the tether as a rigid rod with dis- 
tributed gravitational and aerodynamic forces. Note, 
however, that the rigid rod model provides very accu- 
rate rt:sults when compared with more realistic flexi- 
ble tether models developed in [4,5]. In general, any 
tether aerobraking maneuver can be defined by the 
orientation and angular velocity of the system out- 
side the atmosphere, a.  and cia respectively, and the 
radius of the orbit a t  periapsis, rper In addition, 
the dimensions of the tether may vary during the 
optimization. However, the minimum mass is found 
by making the tether just thick enough to withstand 
the forces encountered during a particular maneuver. 
Therefore, only the length of the tether is required as 
a search variable. In addition, some constraints must 
be included to guarantee that the resulting optimum 
maneuver is acceptable. First, the final eccentricity 
after the maneuver, eJ ,  must be equal to  the eccen- 
tricity of the target orbit, e , ,  which is included as an 
equality constraint. Next, aR inequality constraint 
is introduced to ensure that the orbiter's clearance 
above the probe, Ah,  is greater than a set minimum, 
Ah,. Finally, a second inequality constraint elimi- 
nates any maneuver in which compressive forces oc- 
cur by requiring the minimum tension on the tether, 
Tmi,, to  be positive. Note that compressive forces 
(negative tension) can be present since the tether is 
modeled as a rigid rod. Mathematically the problem 
can be written as: 

Minimize: mt(x)  
x = [lt,  YO, rper] T (2) 

subject to: eJ - e, = 0 
A h -  Ah, > O  (3) 
Tmin > 0 

This problem is very complex, but we can obtain 
some insight into the behavior of the system by solv- 
ing a simpler, related case: the minimum force prob- 
lem. In this case the tether dimensions are fixed and 

the optimization algorithm searches for the maneu- 
ver which provides the lowest maximum force on the 
tether, F,,,, for the given constraints. Mathemati- 
cally: 

subject to  constraints (3). 
In [3] the minimum force problem is solved at Mars 

using the design tether, a zero clearance constraint, 
and several target eccentricities (i.e., AV's). The 
zero clearance constraint allows for the possibility 
of widely varying fly-through maneuvers (including a 
horizontal maneuver known as a drag-chute maneu- 
ver [6]) The results are shown in Table 1 and indi- 
cate that the vertical dumbbell is the minimum force 
maneuver only when low AV's are required (which 
corresponds to  high final eccentricity). In all other 
cases the tethered system has some inclination dur- 
ing fly through (a,,, > O), and these are referred to 
as inclined maneuvers. The characteristics of these 
maneuvers are very different from those of the origi- 
nal vertical dumbbell maneuver. Figure 2 shows the 
tether forces on the probe for the near parabolic cap- 
ture (ef = 0.9999) in Table 1, an inclined solution 
with amin = 55'. Initially, outside the atmosphere, 
small tension forces are present due to  the spin of the 
system. Once the spacecraft enters the atmosphere, 
aerodynamic effects produce large tension forces, and 
the maximum forces occur in this portion of the tra- 
jectory. Finally, the system exits the atmosphere and 
only small spin tension remains. This behavior is 
completely different from that of a vertical dumbbell 
maneuver. Figure 3 shows the tether forces for the 
ef = 1.5 maneuver in Table 1, a vertical dumbbell. 
Here the maximum forces on the system occur out- 
side the atmosphere and are due to  the spin of the 
system. During fly through, the spin rate goes to 
zero and so does the tension on the tether, since, due 
to  the vertical orientation of the system, aerodynamic 
forces act in a direction normal t o  the tether and pro- 
duce no tension. Although this case does not result 
in aerocapture at Mars, we know that similar behav- 
ior is exhibited during aerocapture at other planets 
(e.g., Jupiter, Table 2). 

Next, the analysis in [3] uses a nonlinear program- 
ming algorithm to solve the optimal mass maneuver 
for all atmosphere-bearing bodies in the solar sys- 
tem. The assumptions made in [2] and mentioned 
above are also applied in this case. The final results 
are shown in Table 2. Note that both types of ma- 
neuvers, vertical and inclined, are represented. The 
inclined maneuvers achieve a significant reduction in 
tether mass with respect to  the vertical dumbbell ma- 



Table 1. M a r s  M i n i m u m  Force Resul t s  (11  = 14.5 km, Ah, = Okm) 
ef AV(km/s) Ah(km) F,,,,,(N) a,i,(deg) Maneuver Type 

0.9999 0.676 8.21 6990 55.3 I (Inclined) 
1.2000 0.422 11.2 3950 39.2 I (Inclined) 
1.5000 0.0819 14.5 249 -0.660 V (Vertical) 

Table 2. Aerocap tu re  Resu l t s  fo r  Solar  Sys t em Explora t ion  (Op t ima l  Mass)  

Values Venus Earth Mars Jupiter Saturn Uranus Neptune Titan 
AV(km/s) 0.35 0.39 0.67 0.27 0.41 0.50 0.34 1.31 
Propellant Mass (kg) 126 142 256 96 149 185 122 559 
Tether Mass (kg) 25.9 30.5 66.4 18.8 44.1 67.2 32.6 282 
Savings (%) 79% 79% 74% 80% 70% 64% 73% 50% 
Savings (kg) 99.1 112 190 77.2 105 118 89 277 
Length (km) 12.4 10.5 20.7 36.1 54.4 72.7 72.8 112 - . ,  
Diameter (mm) 1.22 1.43 1.51 0.607 0.757 0.809 0.563 1.33 

\ ,  

Probe Area (m2) 999 818 605 2370 1910 1810 2670 747 
Maximum Force (N)  4180 5820 6420 1050 1630 1850 899 5030 
Minimum a(deg) 27.7 28.4 45.4 0.46 0.18 0.27 0.75 41.0 
Maneuver Type I 1 I V V V V I 

Fig. 2. Tether Forces: Incl ined Maneuve r  
(ef = 0.9999) 

Fig. 3. Tether Forces: Vert ical-Dumbbell  Ma- 
neuver  (e = 1.5) 



neuvers in [2]. These maneuvers are known to be lo- 
cal minima for the tether mass. However, since they 
are obtained numerically there is no guarantee that 
they are global minima. The purpose of the work pre- 
sented in this paper is to  determine if the previously 
found solutions are global minima or if even better 
aerobraking tether maneuvers are possible. 

2 Minimum Force Problem 

As a preliminary step in investigating whether the 
minimum mass solutions are global, we investigate 
the simpler problem of minimizing the maximum 
force on the tether, F,,,. As mentioned previously, 
this is a three-parameter system (ao, ire, rper). 

The number of variables of this system can be de- 
creased from three to two by enforcing the eccentric- 
ity constraint in (3): 

Thus, all maneuvers that achieve a desired eccen- 
tricity can be graphically illustrated in two dimen- 
sions. This is accomplished by fixing two of the state 
variables so that f(x) in Equation (5) becomes a 
scalar-valued function which can then be solved for 
the third (free) variable. We use a root finder to  solve 
constraint (5) for rpe, for sets of values of a 0  and luo. 
For instance, (in the case of Mars), if we choose an ini- 
tial orientation of 180' and an initial angular velocity 
of 0.005 rad ls ,  then solving for the target periapsis 
yields an altitude of 83.41 km for e j  = 0.9999. Intu- 
itively, we know f ( x )  has a unique solution because 
flying through lower altitudes for a given orientation 
and spin rate will always lower final eccentricity while 
flying higher will decrease the braking effect. Thus, 
the solution for rper is unique for given a 0  and cia. 

Once the state resulting in the desired final eccen- 
tricity is found, information about the maneuver such 
as the maximum and minimum forces on the tether, 
the minimum orientation angle, a,,,, and the differ- 
ence in minimum altitude of the orbiter and probe 
(the clearance), Ah,  can be determined. Fig. 4 shows 
the force contours of aerobraking maneuvers a t  Mars 
which achieve a final eccentricity of e j  = 0.9999. We 
note that there are several local minima and that 
there are large variations in the force gradient. In 
order to eliminate unacceptable maneuvers, we en- 
fore the inequality constraints in (3) for clearance and 
tether compression. 

Violating either of these two constraints yields an 
infeasible maneuver. (Low clearance causes signifi- 
cant aerodynamic forces on the orbiter; compression 
produces catastrophic bending in the tether.) In or- 

der to study a wide range of maneuvers, including the 
drag chute as the limiting case, we set Ah, to  zero. 

The shaded areas in Fig. 4 correspond to  maneu- 
vers which violate the inequality constraints. We can 
now make two important observations about the so- 
lution space. First of all, there is an enclosed area 
that contains all the acceptable solutions (Region I). 
Solutions for values of dro that are not shown all vi- 
olate one or both of the constraints or are deemed 
unacceptable because of very high tension. Clearly, 
initial spin rates much greater than that of the ver- 
tical dumbbell maneuver will never outperform the 
vertical dumbbell (where maximum force is governed 
by spin rate). Thus, lower upper and upper lower 
bounds can be established based on the f dro corre- 
sponding to a vertical dumbbell. Also, if a given ini- 
tial state vector is a solution, then changing the ini- 
tial orientation by multiples of 360' will not change 
the maneuver. Second, there is only one min ima in 
this area of possible solutions (denoted "Optimum 
Force" on the plot and located a t  the minimum con- 
tour point of 7kN).  Therefore, this point i s  the global 
m i n i m u m  force for aerocapture at M a r s  wi th the de- 
sign te ther .  Note that this point corresponds to  the 
solution given in Table 1 where F,,,,, = 6990 N. Also 
note that the vertical dumbbell solution [2] is nonop- 
timal (F,,,,, = 12.7 kN)  and is located a t  the edge of 
the compression constraint. 

The task of numerically optimizing the tether 
forces is not only computationally intensive, but also 
very prone to problems with robustness. Often, the 
algorithm becomes trapped in a region in which a 
constraint is active and, thus, never converges on an 
acceptable solution. Region I1 in Fig. 4 is an example 
of one such region of "no return." The search direc- 
tion of the algorithm will be towards Region I1 for 
initial guesses in the vicinity of Region 11, since it con- 
tains a local minimum force and the exterior penalty 
method is initially driven by the unconstrained prob- 
lem. Since there are local minima within this region 
for the constraint functions as well, it is possible to 
become trapped a t  some state in which nearby solu- 
tions have an increased force and an increased cost 
due to  the constraints. 

The planets with vertical dumbbell optimum solu- 
tions are most vulnerable to this problem since the 
vertical dumbbell always borders a region of com- 
pressive forces. The problem can be minimized by 
guessing an initial solution that is near the optimum 
and increasing the penalty on the constraints. 

Region I, on the other hand, is an area in which it is 
comparatively easy to converge on a minimum. The 
constraints in this region are inactive and changes 
in forces are much less sensitive to  initial conditions 
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Fig. 4. 

than in Region 11. This robustness is a characteristic 
of the inclined maneuver which may provide advan- 
tages in the guidance and control problem. 

Next, we investigate the conjecture that AV is the 
primary factor in determining whether the optimum 
force maneuver is an inclined or vertical dumbbell 
maneuver. As before, we are interested in showing 
that there is a unique local minimum in the accept- 
able region and, thus, it corresponds to the global 
minimum. 

To study the effect of changing the AV, we look a t  
cases for Mars with the identical design tether that 
was used above, but vary the final eccentricity. Fig. 5 
shows the case where e j  = 1.2. The shape of the 
force contours is similar to the e j  = 0.9999 case, but 
the magnitudes have dropped due to the decrease in 
AV. The region of feasible solutions (solutions which 
do not violate the constraints, indicated by the un- 
shaded portion of the plot) is not enclosed in this 
case. However, solutions for t ro  that are not shown 
are rejected because of unacceptably high forces, as 
before. Therefore, the local minimum shown in Fig. 
5 is unique (within the acceptable region) and it is 
the global minimum for e j  = 1.2. Again, the global 
minimum found in the plot corresponds to the numer- 
ical solution in Table 1. For this case, the optimum 

solution is still an inclined maneuver but its initial 
conditions and maximum force are much closer to 
that of the vertical dumbbell than the previous case. 
Also, the minimum orientation angle is much smaller. 

For the e j  = 1.5 case, shown in Fig. 6, the mini- 
mum force is located just inside the region in which 
the initial conditions result in compressive forces on 
the tether. Thus, the unique local minimumin the ac- 
ceptable region for this case is located on the edge of 
the infeasible (shaded) area. The resulting optimum 
force maneuver is then a vertical dumbbell, where the 
minimum tension on the tether goes to zero. This 
provides the minimum force in the acceptable region 
(see Table 1). 

These solution space maps clearly indicate that the 
solutions presented in Table 1 are global. Further- 
more, for the range of AV's analyzed, there exists 
only one local minimum in the region containing the 
acceptable solutions. Note that these AV's represent 
a broad spectrum of maneuver types from a strongly 
inclined maneuver to a vertical dumbbell, where de- 
creasing the AV causes the solution to migrate to- 
wards a vertical dumbbell. Since these maneuver 
types (inclined and vertical dumbbell) have similar 
characteristics at all the planets, it seems likely that 
solution space maps a t  other planets will yield only 
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Fig. 6. Mars Forces and Constraints ( e j  = 1.5). I.C.'s at 3654km. Force Contours in kN. 



one local minimum in the acceptable region. Thus, 
we conjecture that a local minimum in the acceptable 
solution space is the global minimum. 

3 Extension to Minimum Mass Problem 

Several difficulties are encountered when trying t o  
minimize tether mass using the techniques developed 
to minimize force. Recall that the minimum mass 
problem is a four-parameter system (lt ,  cro, cia, rper). 
Therefore, fixed values must be independently chosen 
for three variables now (instead of two for the force 
analysis) in order to  reduce the eccentricity constraint 
in Equation 5 t o  a scalar-valued function. A difficulty 
arises when trying to  visually represent the data. A 
third axis would have to  be added to the solution 
space plots shown above, causing the force contours 
to  become surfaces and the infeasible regions to  be- 
come solids. Another consequence of this added pa- 
rameter is a large increase in computational demands 
which increase with n3 (as opposed to n2) where n is 
the number of points along an axis. For example, gen- 
erating the minimum force data  for Fig. 5 (n = 35) 
takes about 3 hours of CPU time on a sparc 10. Main- 
taining the same resolution would require more than 
four days for the minimum mass problem. 

These difficulties can be circumvented by changing 
the clearance constraint in Equations (3) to  an equal- 
ity which reduces the number of variables to two. If 
we fix the values of a 0  and cia as before, solutions are 
found by simultaneously solving: 

f l (2)  = e j  - e ,  = 0 
f2(2) = Ah - Ah, = 0 (6) 

Unfortunately, this is still computationally inten- 
sive, so we employ an approximate method which uses 
the data from the minimum force analysis to  gener- 
ate a derived mass map which includes the clearance 
constraint. 

With this in mind, for a given point (cro, luo) in the 
force plot, the tether length that achieves the desired 
clearance is approximated by 

It  = Ahc 
COS amin 

Note that if Ah, = 0, this implies zero length for all 
tethers. However, we must emphasize that our goal 
is to  find maneuvers in which the orbiter maintains 
significant clearance above the probe. For example, 
in [2], a constant clearance of about 1.8 scale heights 
(14.5 km for Mars) is assumed. The diameter of the 

tether can be determined from the maximun~ force as 
follows: 

Finally, the mass of the tether is 

Since amin and F,,, have already been found in the 
force analysis, no further simulations are required of 
the tether equations of motion in order to  calculate 
this approximate mass. 

Clearly, the new tether will no longer achieve the 
prior constraints, and, furthermore, will not be sub- 
jected to  the same forces. However, all of these objec- 
tions can be dealt with. First of all, the eccentricity 
constraint can easily be met by adjusting rPer. Sec- 
ondly, F,,, and amin are only moderately perturbed. 
Thus, the first generation derived map represents a 
first-order approximate solution. It is clear that a 
second generation (or higher) derived map could be 
computed, in principle, using a similar procedure, but 
this leads to  further computations. Fortunately, the 
first generation map achieves the goals of our analy- 
sis. 

Employing Equations (8) - (10) yields the derived 
mass map shown in Figures 7-9 which correspond to 
the minimum force maps shown in Figures 4-6. Note 
that the unacceptable areas on the plot are shaded. 
In all three cases, there is only one local minimum 
in the acceptable region which is denoted as the "de- 
rived solution." We have conjectured that the fun- 
damental behavior of the system is retained in the 
derived mass map. Therefore, the actual system is 
Iikely to  have only one local (acceptable) minimum. 
The local minima found numerically in Tables 2 and 
3 are then likely candidates for the global optima. 

We can now compare the derived solutions with 
the numerical (local minima) solutions. In Figures 7 
and 8, we see a significant difference in and a o ,  
which is not surprising, because large changes in the 
tether length are necessary for these inclined cases to 
achieve clearance. Since no length change is necessary 
for the vertical dumbbell case, Fig. 9 shows very close 
agreement between the derived and numerical solu- 
tions. The fundamental tether characteristics (mass 
and length) are summarized in Table 3, where we see 
reasonable agreement in the inclined cases and very 
close agreement for the vertical dumbbell. 

Note that the derived mass map could be improved 
by using the new tether lengths to calculate the ac 
tual forces for the target eccentricity as in the min- 
imum force analysis. The F,,, and amin from this 
analysis can then be used to estimate a new tether 



Fig. 7. Derived Masses and Constraints ( e f  = .9999). I.C.'s at 3654 km. Mass Contours in kg. 
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Derived  Masses and Cons t r a in t s  (ej  = 1.5). I.C.'s at 3654 km. Mass  C o n  t o u r s  in kg. 

length that would achieve the desired clearance. It- 
erating over the length and target periapsis in this 
fashion will eventually yield a solution that satisfies 
constraints (6), but it is computationally intensive. 

Table 3. M a r s  M i n i m u m  Mass  Resul t s  
(Ah, = 14.5 km) 

1.2 34 (20) 3.6 (4.9) 18 (15) 33 (36) 
1.5 3.8 (-1) .25 (.25) 15 (15) 1.8 (2.0) 

a Parentheses denote derived map results. 

4 Conclusion 

The local minimum force and mass solutions ob- 
tained previously for the aerobraking tether appear 
to be global optima. An exhaustive search reveals no 
new type of tether aerobraking maneuver; therefore, 
the optima consist of vertical dumbbell maneuvers 
and inclined maneuvers. 
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