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V, leveraging can significantly reduce the launch energy requirements for interplanetary 
missions. The objective of this study is to analytically examine this technique and to expand its 
application. AV-EGA (AV Earth Gravity Assist) trajectories are used as the first example of V, 
leveraging. The equations are solved using an iterative algorithm, and the trade-off between V, 
and turn angle at the Earth gravity assist is examined. Simplifying assumptions reduce the 
equations to a single function. The AV-EGA concept can be extended to other planets, such as 
Venus, which is used as a second example. 

Introduction 

Gravity assist is a proven technique in 
interplanetary exploration, as exemplified by the 
missions of the Voyager and Galileo spacecraft. The 
technique can be used to reduce the launch energy 
requirements for a given mission or to increase the 
science return by enabling more planetary, satellite, or 
asteroid encounters. V, leveraging is a method used 
in conjunction with gravity assists to further reduce 
the launch energy requirements and total AV for a 
mission. The term V ,  leveraging (coined by 
Longuski) refers to the use of a relatively small deep 
space maneuver in order to modify (increase or 
decrease) the V, at a flyby planet. A typical example 
of V, leveraging is the AV-EGA trajectory (see Fig. 
1) introduced by ~ollenbeck.' ~ i l l i a rn s~  applied the 
term when describing AV-EGA type trajectories using 
Venus instead of Earth; however, the above definition 
is much more general. 

In this paper we first analyze AV-EGA 
trajectories because they represent a straightforward 
application of V, leveraging and are frequently 
considered for use in interplanetary missions. Even 
though the "exact" equations are relatively simple, 
solving them requires an iterative algorithm because 
of their transcendental nature. A simplifying 
assumption allows the energy gain to be computed 
without iteration but does not allow for the calculation 
of the AV. Further analysis (using variations) results 
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in an estimate for the AV. We compare this estimate 
to one developed by Sweet~er,~ who demonstrates 
how the AV calculation can be made through use of 
Jacobi's integral. The first method is based on the 
theory of patched-conic orbits, while Jacobi's integral 
is associated with the circular restricted three-body 
problem. 

This analysis also provides insight into the 
trade-off between the magnitude of the relative 
velocity (V,) and the turn angle (of the V, vector) 
which can be effected by a Hyby body for the purpose 
of optimizing the heliocentric trajectory (e.g., 
maximum energy or maximum aphelion radius). We 
also examine aerogravity assists in which the turn 
angle is not constrained. 

Maneuver 

/ 

AVlaunch 
Launch from Earth 

Fig. 1. AV-ECA Trajectory. 



An extension of the AV-EGA concept is to use 
other planets instead of Earth. Venus is the most 
likely candidate. The first step is to consider "launch" 
from Venus analogous to the AV-EGA. The analysis 
and trajectory types in this case are similar to those 
with launch from Earth. The next step is to consider 
launch from Earth to Venus followed by one or more 
Venus flybys. We then include a V, leveraging 
maneuver between Venus flybys. This type of 
trajectory has been considered for the Cassini mission 
to Saturn. Acceptable candidate trajectories of this 
type initially took weeks to discover. Using recently 
enhanced automated design software, Pate1 and 
~ o n ~ u s k i ~  generated estimates for launch dates for 
certain categories of these trajectories. The present 
analysis leads to the development of a more 
methodical procedure to find the most efficient of 
these trajectories. 

We close this paper by discussing more general 
types of V, leveraging, including non-ideal AV- 
EGAs, interior "AV-EGA," and reverse "AV-EGA," 
and drawing some conclusions. 

AV-EGA 

In a AV-EGA trajectory as examined by 
Hollenbeck, a spacecraft is launched from Earth into a 
heliocentric orbit with a period slightly greater than an 
integer number @) of years and perihelion radius 
equal to 1 AU (assuming circular Earth orbit). At 
aphelion a (tangential) retrograde AV is applied to 
lower the perihelion in order to intercept the Earth 
non-tangentially. This maneuver enables the Earth to 
be used as a gravity-assist body to increase the 
heliocentric energy. As shown in Fig. 1, the re- 
encounter with Earth can occur either before @-) or 
after @+) perihelion of the new orbit. 

Figures 2 and 3 show the aphelion radius of the 
orbit after the Earth flyby as a function of total AV. 
Total AV includes launch from an Earth parking orbit 
(circular, 185 km altitude) and all post-launch AVs: at 
aphelion and, when appropriate, after the Earth flyby. 
The minimum flyby altitude is 200 km; however, near 
the low end of the curves, maximum aphelion radius is 
attained with higher flyby altitudes. Figure 3 shows 
that N+ trajectories have a larger maximum final 
aphelion radius and better performance near the 
maximum. We note, however, that N- trajectories 
require less total AV for smaller final aphelion radii. 
This observation, which could be important in some 
applications, is not apparent in the work by 
Hollenbeck. 

The direct launch curve is shown for 
comparison. As the figures show, AV-EGAs can 
significantly reduce the total AV required to reach a 
given aphelion radius. This reduction in total AV 
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Fig. 2. AV-EGA Performance. 
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Fig. 3. Comparison between N+ and N- AV-EGAs. 

comes with the cost of a longer flight time and larger 
post-launch AV. 

The effectiveness of V, leveraging is shown in 
Fig. 4, where the increase in V, at Earth is plotted 
versus the aphelion delta-V, AV,,. The launch V, 
ranges from about 5.1 to 5.5 km/s for N=2 and 6.9 to 
7.2 km/s for N=3. (See Fig. 5.) To achieve a given 
aphelion radius, an N+ trajectory requires a slightly 
higher launch V, and a slightly smaller AV than an Y N- trajectory. In many applications, minimizing the 
magnitude of the deep space maneuver may be a more 
important consideration than minimizing launch 
energy or total AV, which includes launch AV. 

We see from Fig. 4 that the V, at Earth return 
increases continuously as AV,, is increased, but from 
Figs. 2 and 3 we see that the final aphelion radius 



Fig. 4. Effectiveness of V, Leveraging for AV-EGA 
Trajectories. 
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Fig. 5. Launch V, Requirements for AV-EGA 
Trajectories. 

Vz Earth 

reaches a maximum and then decreases if no AV is 
applied after the flyby. The reason for this 
phenomenon is that the amount the V, vector can be 
turned by the gravity of a flyby body decreases as the 
V, increases. 

Geocentric and heliocentric views of a typical 
Earth gravity assist are shown in Fig. 6. The 

"_ (1 

superscripts and "+' indicate quantities before and 
after the flyby, respectively. The turn angle, 6, is 
determined from 

sin (612) = 11% (1) 

where efb = 1 + r v?/pE is the eccentricity relative 
to the Earth, r p z t  the perigee radius, and is the 
gravitational parameter of the Earth. As equation (1) 
indicates, a larger V, gives a larger efb and, hence, a 
smaller 6. 

The velocity vector diagram of the Earth gravity 
assist is presented in Fig. 7 for the 2' AV-EGA with 
three different launch energies. A higher launch 
energy results in a larger y- and therefore a larger V, 
at the re-encounter with Earth. In Fig. 7a, the launch 
energy is relatively small, and so the V, is relatively 
small. If the flyby altitude were 200 km, the V, 
vector would be "over turned (i.e., turned beyond 
parallel to VE). In Figs. 2 and 3 we assume that the 
V, is turned parallel to VE when it can be, since this 
produces the largest aphelion radius and the largest 
V+. Figure 7b shows a case in which the launch 
energy is relatively large. The resulting V, is large, 
and so the turn angle and gravity-assist delta-V, AV,,, 
are small. Figure 7c shows the case which provides 
the V+ with the largest magnitude. (Maximum V+ is 
equivalent to maximum heliocentric energy. For a 
given V,, the largest V+ and aphelion radius occur 
when V, is turned as close to parallel to VE as 
possible. In general, however, the aphelion radius 
depends not only on V+ but also on y+, so the overall 
maximum V+ for a given type of AV-EGA is not 

Fig. 6. Earth Gravity Assist: a) Geocentric View and b) Heliocentric View. 



Fig. 7. 2' AV-EGA Earth Gravity Assist: a) Low 
Launch Energy (Maximum AV,,), b) High Launch 
Energy, and c) Medium Launch Energy (Maximum 
w 
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Fig. 8. Locus of V+ for 2+ AV-EGAs. 

equivalent to the overall maximum aphelion radius. 
Nevertheless, in our applications the conditions 
resulting in the overall maximum aphelion radius are 
extremely close to those resulting in the overall 
maximum V+.) The locus of V+ is plotted in Fig. 8. 
Figures 7 and 8 illustrate the trade-off between V, 
and turn angle resulting in the maximum energy orbit 
and the maximum aphelion radius. 

The problem of maximizing V+ (or aphelion 
radius) is not the same as the simpler problem of 
maximizing AV, for a flyby at a given radius. From 
Fig. 6b we see that 

AV, = 277, sin (612) (2) 

Substituting equation (1) into (2), differentiating with 
respect to V,, and setting the resulting expression 
equal to zero leads to the following conclusion: the 
V, that maximizes AV,, is equal to ( ~ ~ l r , ~ ) ~ ,  which 
is the local circular speed. (This result is presented in 
Ref. 5 also.) Substituting this value of V, into 
equations (1) and (2) gives 

At Earth with rpfi = 185 km we have 
(AV,,),,, = 7.79 kmls = V,. This case is shown in 
Fig. 7a for the 2' AV-EGA. For AV-EGAs with 
N > 3, this situation does not occur because the launch 
V, is greater than 7.9 kmls. Obviously, maximizing 
AVga does not maximize heliocentric energy. 

One method of circumventing the turn angle 
limitation is to use aerogravity assist (AGA).~ In this 
method, a lifting body flies through the atmosphere of 

Fig. 9. AV-EAGA (Aerogravity Assist) Performance 
Compared to Gravity Assist Only (Figs. 2 and 3). 



the planet (Earth in this case) to turn the V, in any 
desired direction. Figure 9 shows the tremendous 
advantage possible using aerogravity assist. (For this 
analysis we have assumed an infinite lift-to-drag 
ratio.) Even 1'AV-EAGAs provide an advantage over 
direct launch for total AV beyond about 5.4 krnls. 
Although a 2 AV-EAGA requires a lower total AV to 
reach a particular aphelion radius than a 3 AV-EAGA, 
the post-launch (aphelion) AV is larger. 

After launching from Earth with a given launch 
energy, an iterative algorithm is used to determine the 
AV required to re-encounter the Earth. We want to be 
able to quickly analyze the potential of other AV-EGA 
type trajectories. Specifically, we would like analytic 
expressions for r, and V+. A critical observation that 
leads to approximate analytic results is that the speed 
before the flyby, V-, is nearly constant for all AV- 
EGAs with the same N. An equation for this speed is 

where ps and rE are constant and a, (semi-major axis 
of the return orbit) varies only slightly, particularly for 
N+ AV-EGAs. Assuming that V- is a constant (taking 
a, = h, for a nominal N-year period orbit), we are 
able to write the final aphelion radius, r,, and V+ as 
functions of a single variable, y- in this case. We 
could write an expression for r, in terms of y- and 
known constants (including V-) only, but the resulting 
equation is very cumbersome and reveals little 
information on the interdependence of the various 
parameters involved. Instead, we choose to show 
more explicitly how each variable is determined. 

Assuming V- is a known value, for a given y- 
we have, from Fig. 6, 

where VE is the speed of the Earth (assuming circular 
Earth orbit). Once V, is determined, we can calculate 
p from 

sin (p) = (V-/v,) sin (y-) (7) 

and 6 from equation (1). The heliocentric velocity and 
flight path angle after the flyby are computed from 

For the new heliocentric orbit we have 

a = 1/[2/rE - ~ + ~ / p s  I (10) 

e = [(rE~+2/ps - 112 cos2 (y+) + sin2 (y+)lM (11) 

and finally 

Equations (1) and (5) - (12) result in approximate 
values for r, and V+. The values are approximate only 

because we use an approximate value for V-; the 
equations themselves are exact for two-body orbits. 

Table 1 presents the maximum values of V+ and 
r, for 2+ AV-EGAs from the exact analysis (iterative 
procedure) and from equations (8) and (12) using the 
nominal value for V-. 

Table 1 Comparison of Maximum V+ and r, 

Exact Approx. % Diff. 

7 at max V+ (deg) 21.7 22.2 2.30 
Max ra (AU) 7.90 8.18 3.54 
y- at max r, (deg) 21.9 22.4 2.28 

The simplification of constant V- removes the 
connection to the initial orbit and the AV,, necessary 
to achieve the return orbit. So we need to find a 
means to estimate the total AV associated with a 
particular y-. We are able to do this by taking a 
variation of the nominal values for an N-year period 
orbit with perihelion at 1 AU. The eccentricity of the 
return orbit is determined from equation (1 1 )  with V+ 
and $ replaced by V- and y', and we compute 

6e=e-%, 

Starting with the equations 

r, = a(l + e) 

V: = p(21ra - lla) 

the variation with constant r, provides 

6a = - [a/(l + e)]& 

8V, = (p/2v,a2)6a 

We can now compute the total AV by 

Fig. 10. AV-EGA Analytic Solution Using Equation 
17. 



AVM = AVlaunch + 6Va (18) 

where AVlaunch is computed for the nominal orbit. The 
results of this analysis are presented in Fig. 10 where 
the approximate curves are plotted with the exact 
curves. The approximations are quite reasonable and 
may be used for an initial estimate of the potential of 
other V, leveraging trajectories. 

So far we have been using the theory of 
patched-conic orbits. In some cases we can get a 
better approximation for AV,, by following sweetse13 
and considering AV-EGA trajectories as a three-body 
problem. For the circular restricted three-body 
problem Jacobi's integral is a constant given by 

c = - v2 m2p2  + 2 p E h  + 2pS/rs (19) 

where v is the relative speed in the coordinate frame 
rotating at the angular rate w, and p, r ~ ,  and rs are 
distances from the spacecraft to the Earth-Sun 
barycenter, Earth, and Sun, respectively. Sweetser 
substitutes v + Av for v in equation (19) to obtain 

- AC = 2vAv + (AV)~ (20) 

Writing equation (20) at aphelion and perigee and 
equating, we have 

Using nominal values for v, and v,, for a given y- we 
can determine V, (and hence Av,) from equation (6) 
and then solve for Av, . 

In Fig. 1 1, results from both approximations of 
AV,, are plotted along with the exact solutions. 
Sweetser's approximation predicts the V, for a given 
AV, very well, especially for small values of AV,,. 
Unfortunately, his analysis cannot predict the V+ or 
final aphelion radius because it has no direct 
connection with the flyby geometry. But we can 
incorporate his approximation for AV,, into our 
previous analysis which assumed constant V- to 
obtain the results shown in Fig. 12. The approximate 
curves are now much closer to the exact curves for the 
lower total AVs. We can infer from Sweetser's 
analysis that the most efficient deep space maneuver is 
at aphelion and parallel to the velocity at that point, 
which is how we have been applying our deep space 
maneuver. 

Returning to Figs. 2 and 3, an important point 
on the AV-EGA curve is where it becomes more 
efficient to apply AV after the Earth flyby. 
Mathematically, we want to know at what point the 
initial slope of the extended curve (with AV after the 
flyby) equals the slope of the curve with no AV after 
the flyby. Since y+ is relatively small at this point 
(c 15' from numerical results), we have 

r, = r$V2/(2ps - rEV2) (22) 

0.5 1 1.5 2 
Aphelion Delta-V (knv's) 

Fig. 11. Comparison between Analytic and Exact 
Solutions of AV-EGAs. 

Analytic rdu(ion using oq+iion (17) i 
Analytic sddon  using q*iion (21) i 

Fig. 12. AV-EGA Analytic Solutions Using Equations 
17 and 21. 

The post-encounter AV is added tangentially to V+, so 
the initial slope can be approximated by differentiating 
equation (22) 

For the 2+ AV-EGA trajectory, equation (23) gives 
3.033 AU/(km/s) for the initial slope, while the curve 
has a slope of about 3.036 AU/(km/s) at the point 
where it becomes more efficient to apply AV after the 
flyby. So equation (23) provides a good estimate for 
this point. 

AV-VGA 

The AV-EGA concept is not limited to 
heliocentric orbits with Earth launch and gravity 
assist. It can be applied using other planets orbiting 



the Sun or even in systems with a different primary 
body (e.g., the Earth-Moon system). Whether or not a 
particular N AV-EGA type trajectory provides any 
advantage depends on the size of the orbit of the 
secondary about the primary and the relative masses 
of the two bodies. The orbit and mass of Venus are 
similar to those of Earth, indicating that AV-VGA 
trajectories may be useful. 

The potential of AV-VGA trajectories 
(corresponding to launch from Venus) is shown in Fig. 
13. Since launch AV is not as relevant, we also show 
final aphelion radius versus aphelion AV in Fig. 14. 
The integer N in this case refers to Venus years. One 
Venus year lasts 0.615 Earth years, so, for example, 
the Venus-Venus leg of a 6 AV-VGA would take 
about 3.7 Earth years, less than a 4 AV-EGA. From 
these figures we see that a 3 AV-VGA can reach 
Jupiter and a 5 AV-VGA can reach Saturn with no 
post-encounter AV. The V,s at Venus necessary to 
initiate these trajectories are presented in Table 2. 

Table 2 V, at Venus for N AV-VGA 

N v, 

VGA 

We now step back and consider trajectories 
launched from Earth to Venus. Figure 15 shows the 
V, at Venus versus the Earth launch V, directed 
opposite to Earth's velocity (assuming circular 
coplanar orbits for Earth and Venus). Figure 16 
shows the potential of one or more Venus gravity 
assists (250 km minimum flyby altitude) after launch 
from Earth. (Multiple Venus encounters in Fig. 16 are 
not phased, i.e., the time of flight problem has not 
been solved.) As the Earth launch energy increases, 
the V, at Venus increases. The solid line in Fig. 16 
represents the final aphelion radius if the V, can be 
turned parallel to the velocity of Venus, VV. This can 
be accomplished with a single aerogravity assist for 
any V, at Venus. However, if we consider gravity 
assist only, then each flyby can turn the V, a limited 
amount. This turn angle decreases as the V, 
increases, as previously described. The shapes of the 
curves are similar to those for AV-EGAs. As the 
launch energy increases and the corresponding V, at 
Venus increases, a point is reached at which a single 
flyby can no longer turn the V, parallel to VV, and the 
single flyby curve in Fig. 16 leaves the solid curve. 

Fig. 13. AV-VGA Performance. 
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Fig. 14. AV-VGA Performance Versus Aphelion AV. 

Fig. 15. V, at Venus Versus Earth Launch V,. 



Venus Flybys 

Total Delt%V (km"r) 

Fig. 16. Venus Gravity Assist Potential. (Multiple 
Venus Encounters without V, Leveraging.) 

The final aphelion radius then reaches a maximum and 
decreases. The trade-off between V, and turn angle 
causes this phenomenon as it does for AV-EGAs. 
Multiple (n) Venus flybys increase the effective turn 
angle by a factor of n, and the curve shapes are similar 
to those for a single Venus flyby. 

EV-AV-VGA 

We are now prepared to consider launch from 
Earth to Venus followed by one or more AV-VGAs. 
Since we assumed earlier that the AV-VGA 
trajectories have "launch" perihelion at Venus, this 
initial analysis is limited to small Earth launch 
energies. A single Venus flyby can turn the V, 
parallel to VV for Earth launch C3 up to 10 (kml~)~.  
The V, at Venus for this launch energy is 6.0 k d s ,  
and so a 2- AV-VGA can be flown. After the second 
Venus flyby, we use a 3- AV-VGA and then a 5+ AV- 
VGA. We have constrained the Earth launch and the 
2- and 3- AV-VGAs so that the resulting V, at Venus 
can be turned parallel to VV. Although the AV-VGAs 
in this case are not used to their fullest potential in 
maximizing heliocentric energy, this method allows us 
to use the previous analysis for each AV-VGA and 
quickly estimate the potential of multiple Venus flyby 
trajectories. 

The trajectory described above flies by Venus 
four times and can reach the orbit of Saturn in 9.8 
years with Earth launch C3 = 10 (krnl~)~ and post- 
launch AV c 1.0 krnls. An additional AV of 0.7 kmls 
after the final Venus flyby decreases the total flight 
time to 9.1 years. References 2 and 4 each present a 
triple Venus flyby trajectory to Saturn. The trajectory 
in Ref. 2 includes a 2- AV-VGA followed by a 4' 
AV-VGA. This trajectory, which has not been 

optimized, reaches Saturn in 8.2 years with Earth 
launch C3 = 19.4 ( k m ~ s ) ~  and post-launch AV = 1.7 
km/s. The optimized trajectory in Ref. 4 includes 2 
Venus flybys followed by a 4- AV-VGA. The 
trajectory reaches Saturn in 9.1 years with Earth 
launch C3 = 25.0 ( k m ~ s ) ~  and post-launch AV = 0.92 
kmls. Both of these trajectories include a maneuver 
after the final Venus flyby. 

More General Types of V, Leveraging 

The AV-EGA and AV-VGA trajectories 
analyzed in this paper are a special case of V, 
leveraging. The trajectory initiates at perihelion, and 
the leveraging maneuver is performed at aphelion and 
is applied along the velocity vector. These conditions 
allow a quick analysis of the potential and 
characteristics of these types of trajectories. They can 
be relaxed for a more general, and complex, analysis. 

If the AV-EGA type trajectory is run backward 
(recall Fig. I), the heliocentric energy and V, can be 
decreased. yen7 proposes this type of trajectory, 
which she calls the "reverse AV-EGA process, to 
reduce the AV required for capture into orbit around 
Mercury. The analysis and numerical values 
(including AVs) are the same whether the trajectory is 
run forward or backward. 

Instead of using orbits larger than the Earth (or 
other secondary body), we can use smaller orbits. For 
example, a spacecraft is launched from Earth into a 
heliocentric orbit with a period slightly less than 112 
year and aphelion radius equal to 1 AU. At perihelion 
a AV is applied to raise the aphelion in order to 
intercept the Earth non-tangentially. This enables the 
Earth to be used as a gravity-assist body. Referring to 
this type of trajectory as an "interior" AV-EGA, 
~weetse? analyzes a reverse interior AV-EGA type 
trajectory in the Earth-Moon system which can reduce 
the total AV required to transfer from low Earth orbit 
to Lunar orbit. 

The nominal orbil period does not have to be an 
integer multiple of the orbit period of the secondary 
body, as long as interception occurs in an integer 
number of periods. For example, the nominal orbit for 
a AV-EGA trajectory can have a period of 1.5 years, 
in which case the interception will take place after 3 
years. Some trajectories in Ref. 7 include reverse 
AV-M(ercury)GAs in which the ratio of spacecraft 
orbit period to Mercury orbit period is 312,413, or 615. 
The flight times in this case are reasonable because the 
orbit period of Mercury is short (88 days). These 
ratios would result in extremely long flight times for 
trajectories of this type involving other planets. For 
interior AV-EGAs the increased flight time is not 
significant. 



V, leveraging trajectories can reduce the total 
AV even more if the deep space AV is obtained 
without propellant expenditure by using a gravity 
assist with another body. A Venus-Earth gravity- 
assist (VEGA) trajectory is one example; this 
trajectory can be considered an interior AV-EGA with 
the Venus gravity assist providing the AV. 

V, leveraging trajectories can be used to 
modify not only the energy of the orbit but also the 
inclination. ~ende r '  analyzes AV-EGAs which 
provide the high V,s necessary to achieve high 
inclinations with respect to the solar equator. 

Conclusions 

V, leveraging is a powerful technique that can 
be used to reduce the launch energy requirements and 
total AV for interplanetary missions. AV-EGA, and 
the analogous AV-VGA, trajectories represent a 
straightforward application of V, leveraging. An 
analytic procedure has been developed which can be 
applied to other types of V, leveraging trajectories. 
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