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Art exact analysis of t h e  coverage obtained by  spacecraft using cross-track scanning 
and nadir-centered conical imaging, under  imposed viewing obliqueness a n d  resolution 
requirements,  is presented. I n  addition t o  exact expressions for t h e  area acquired a n d  t h e  
nrea acquisition ra te ,  envelope theory is in t roduced t o  obta in  t h e  boundary of t h e  imaged 
nrea. These expressions a re  relatively compact,  allowing rapid  machine computation. T h e  
tiri.cts of t h e  s u n  phase angle, a n d  of imaging system limitations a r e  also examined. T h e  
Galilco mission encounter wi th  Callisto is used as a numerical example, f rom which cer ta in  
gcnernl conclusions a re  d rawn regarding opt imal  imaging trajectories. 

1. I n t r o d u c t i o n  

One of the major goals in the exploration of the 
solar system is t o  map and image the surfaces of the 
planets and their satellites. In spite of this fact, there 
is a dearth of exact analytic methods for assessing the 
mapping coverage obtained by spacecraft during fly- 
bys or in closed orbits. This paper analyzes the cover- 
age problem for two common imaging techniques (see 
Pease1 and Slater2) and two different types of map- 
ping requirements. In all cases the mapped body is 
modelicd as a sphere, and the spacecraft is assumed 
to  be on a conic trajectory, with the equator of the 
sphere taken as the orbital plane. 

T h e  first technique considered is meridional cross- 
track scanning, where the optics continually scan a 
thin column of area perpendicular to  the spacecraft 
groundtrack. Cross-track scanning is usually accom- 
pIisiied by a pushbroom, whiskbroom or raster scan 
method. The second technique is nadir-centered con- 
ical scanning, in which the area acquired is a spheri- 
cal cap centered on the nadir. This type of imaging 
can be effected either by a simple camera and lens 
which would provide a viewing cone with vertex a t  
the spacecraft, or by panning the instrument instan- 
taneous field of view appropriately. For the purposes 
of this analysis, these scanning methods are idealized 
as providing instantaneous area acquisition, which in 
practice means that  the optics can operate sufficiently 
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quickly so that  the instrument footprint is not dis- 
torted by the spacecraft motion. The  footprint ge- 
ometries are shown in Figure l. 
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Fig.  1. Conica l  and cross - t rack  s c a n n i n g  ge- 
omet r i es .  

Viewing obliqueness and resolution will be exam- 
ined individually as mapping requirements. As de- 
scribed by Longuski and ~ ~ e r s , ~  the Galileo mission 
eliminated highly oblique images from consideration, 
since they were of no scientific value. However, if 
the resolution is sufficiently good (for example, due 
t o  high resolution optics, or due to  proximity), even 
oblique images can be considered. Thus, each of the 
mapping requirements will impose a latitude limit, 
or A-curve, beyond which the requirements will no 
longer be met; i . e . ,  the images will be too oblique, 
or,  for the resolution limited case, the resolution will 
be too poor. It will be assumed that  the optical sys- 
tem is capable of imaging a t  least up t o  the latitude 
limit. 

In Longuski and Myers13 where only obliqueness 
constrained viewing is considered, an integral is pre- 
sented for the area seen by cross-track imaging (that 
is, the area under the obliqueness limited A-curve), 



which is then accurately approximated by consider- 
ing only the first eight terms of the integrand's series 
expansion. The following section of the present paper 
shall provide a general infinite series representation of 
this integral. A similar integral for resolution limited 
viewing is provided in terms of a quadrature based on 
the resolution limited A-curve computed in the fourth 
section of the paper. The third section will develop 
a theory of envelopes generalized from B~l tyanski i ,~  
which is then applied in the fourth section to deter- 
mine parametrically the boundary (or "envelope") of 
area imaged by conical viewing under both types of 
mapping requirements. The fifth section will provide 
a compact, explicit expression for the rate a t  which 
new area is acquired in conical scanning, which can 
be numerically integrated to obtain the total area im- 
aged. Both the envelope and area rate analyses are 
general and can be applied to conical scanning with 
any sort of mapping requirement. The sixth section 
deals with sun illumination requirements for viewing 
and with camera losses. A numerical example based 
on the Galileo project is then considered in the last 
section. 

2. Cross-Track Emission Angle  Limi ted  
Imaging  
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Fig. 2. The emission angle  constraint .  

The emission angle, E, at a point on the planet is 
defined as the angle between the line of sight to the 
spacecraft and the local vertical, as shown in Figure 2. 
To prevent extremely oblique viewing, the maximum 
value of the emission angle is constrained, for exam- 
ple to E = 60' (the limit accepted by the Galileo mis- 
sion, Longuski and Myers3), which then determines 
the latitude limit, 

ro sin(E - A) = R, sin E 
A = E - sin-'[(& ~ ) / r ] .  (1) 

Since the width of the scanned column can be consid- 
ered infinitesimal compared to its height, the imaged 
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Fig. 3. Spherical  geome t ry  of the observable 
area. 

area can be obtained by direct integration under the 
A-curve. Using the spherical geometry of Figure 3 
and assuming that viewing is symmetrical about the 
equator, the area imaged, expressed as a fraction of 
the total planet area, is given by the integral 

A =  ~-~~*cos~dOdBo= 
Substituting for X from Equation (I), 

(2) 

c o s ~  sin E + sin E/-) d00. 

Two integrals result from Equation (3), 
(3) 

'3 1 + e cos Bo 1 .1=6. dB0 = - [ lo  + e(sin Of - sin Bi)] 
P 

where the conic equation r = p/ ( l  +e cos 00) has been 
used in the first integral with 

The remainder of this section presents an eval- 
uation of the second integral in series form. Al- 
though several changes of integration variable were 
considered, it was found easiest to use Bo. Since 
[(sin E)/rI2 < 1, the square root term can be written 
in a binomial expansion which has the general form, 



for 1x1 < 1, 

where 

Equation (5) thus takes on the series form 

where 

where 

(8) (10) ( 2n2i ) 22n-2-2a ((n - 1)!)~(2s)! 
c1(k, n, s) = (2n - l ) ! ( ~ ! ) ~  

(11) 

Ik is now evaluated by expanding the integrand into a Thus, the integral I of Equation (5) has been repre- 
sum of 2k+ 1 terms and integrating each individually. sented as an infinite sum of integrals, I k ,  as shown 

in Equation (8). In Equation (9), the I k  have in 
I. = ( )" 1; % ( :: ) en corn 80 dB0 turn been evaluated as a finite double sum. These 

series, together with the trivially evaluated integral 

2k 2k J of Equation (4), and the definitions of the four co- 

= ( )  x ( ) en 1;' cosn b doo efficients in Equations (7) and (10) - (12), allow us to 

n=O evaluate the area in Equation (3): 

(Si ;~)2k I. + (sinpE) 2k 2k - - - - ( ) en sin go 
n = l  

where the standard definition of the binomial coeffi- 
cient has been used, 

( T ) =  (2k)! 
n!(2k - n)! ' 

As it is unwieldy having the distinction between n 
odd and n even, n is allowed to run from 1 to k in 
the outer sum, and is therefore replaced by 2n - 1 in 
the odd case and 2n in the even case. In addition, 
the relationship p = rp( l  + e) is used, resulting in 

A = ( 2 ~ ) - ' ( I  - J cos E )  sin E. 

The rate of convergence of the series is determined 
primarily by the quantity [(sin ~ ) / r ~ ] ' ~ ,  which mul- 
tiplies the double sum of Equation (9) and decreases 
rapidly with k (as long as the trajectory is not sub- 
surface), thereby off-setting the increase with k in the 
number of terms in the sum. Various numerical evalu- 
ations of the series expression for A have been made, 
all showing convergence. The value of k where the 
contribution of 4 to the series form of I, in Equation 
(8), dropped below was found to range between 
20 and 4, for rp = 1019 to 10, e = 1 to 10, and 
E = 60'. Computation of the area by direct numeri- 
cal integration for a number of sample cases demon- 
strates agreement within the tolerance limits of the 
integration with the area computed using the series 
above. 

3. Envelope Theory 

In cross-track imaging, successive footprints do 
not overlap, allowing them to be added up directly 



by integration to  give the total imaged area. How- 
ever, in the case of conical imaging the overlap area 
is non-zero and this necessitates some other method 
of determining the imaged area and its envelope. This 
section presents a general method by which envelopes 
can be computed. 
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Fig. 4. Generation of the envelope and geom- 
etry of the differential area segment. 

Conical scanning provides a good vehicle for ex- 
plaining the envelope concept. The boundary of the 
footprint is a small circle on the sphere. As the space- 
craft moves, the size and location of the circle both 
change (see Figure 4) and may be considered as pa- 
rameters. If these parameters vary smoothly, and 
in such a way as to avoid engulfing of one circle by 
another, then it will be possible to  find a curve, the 
envelope curve, which is tangent to  all of the small cir- 
cles. Clearly this tangent curve provides a boundary 
for all area that has been passed over by the circles. 
It is not without merit, then, that the tangent curve 
be named the envelope, while the small circle, whose 
size and location vary, is called the generating curve. 
As for the determination of this envelope, one need 
only note that the closer together two circles are, the 
closer is their intersection point to the points of tan- 
gency of the envelope with each of the two circles. In 
the limit, these three points coalesce into one. Thus 
the task of finding the envelope is reduced to find- 
ing the set of all intersection points of infinitesimally 
close circles. 

To generalize, let us move into R n ,  where the gen- 
erating curve will, in general, be a surface, as will be 
the envelope. Let the generating surface depend on 
m parameters, which, for convenience, shall be con- 
sidered as the components of a parameter vector, G. 

Let the generating surface equation be 

Since we wish the envelope to  be a surface and not 
a volume, there must be m - 1 constraint equations 
on the parameters. This effectively means that the 
generating surface varies with only one parameter, al- 
though this parameter is not necessarily expressible 
explicitly in terms of the known components of the 
parameter vector. Were this not the case, the move- 
ment of the generating surface would not be suffi- 
ciently constrained and the set of intersection points 
would occupy a volume. This is easily exemplified 
by slightly altering the scanning circles, above, and 
considering them to lie on a two-dimensional plane 
instead of on a sphere. If the size and location of 
the circles could vary independently, then the circles 
(and the intersection points of infinitesimally close 
pairs) would cover the whole plane. Thus, the enve- 
lope, which is the set of these intersection points, is 
the whole plane. In 72" this plane would be a volume. 
Therefore we apply the following constraint equations 

These equations describe surfaces in the paramet- 
ric space, R m .  Turning now to the generating sur- 
face, the envelope is given by the intersection points 
of the surface f(i, G) = 0 and the neighboring surface 
f ( i ,  G+ dG) = 0, where dG is an infinitesimal change 
in the parameter vector. With this perspective, the 
generating surface can be considered a surface in the 
parametric space, dependent on 5. The infinitesimal 
vector, dG, must be tangential to this surface, since 
the points G and G + dG both lie on it. In other 
words, dG must be orthogonal to  the gradient of f 
with respect to  G, denoted V, f .  The same must be 
true for the constraining surfaces g;(G) = 0. With 
the definition 

the orthogonality conditions can be expressed as 

Since da' # 0 (it is infinitesimal, but not zero), the 
matrix whose rows are taken as the above gradients 
must be singular. In other words, there is a determi-  



nant equation 

Equations (13)-(15) are m + 1 equations in m un- 
knowns, namely the parameters ai. The envelope is 
then the solution set in i of these equations. The ai 

cannot always be entirely eliminated, in which case 
the envelope must remain implicitly defined. In the 
next section, the envelope will be determined for the 
general nadir-centered conical scanning case, in which 
the size of the imaged circle has an arbitrary func- 
tional dependence on the location of the circle. 

4. Gene ra l  Nadi r -Centered  Conical  Envelope  
and Resolu t ion  L imi t ed  Imag ing  

Let the size of the imaged circle be given by the 
half-angle, denoted 40, subtended a t  the center of 
the sphere by two diametrically opposed points on 
the circle. The location of the circle will be given 
by the longitude of its center point. Assuming nadir- 
centered viewing, this longitude is equal to the true 
anomaly, do, of the spacecraft. The latitude of the 
nadir point is of course zero, by our definition of the 
equatorial plane. To apply the envelope theory, it is 
necessary to  find one constraint equation relating 
and 00. 

Fortunately, for both the emission angle limited 
and the resolution limited viewing cases, can be 
found as an explicit function of 60. In effect, this 
makes the surface equation dependent on only one 
parameter, thereby eliminating the need for any con- 
straint equation. It is convenient, however, to  retain 

as an auxiliary parameter. In the E-limited view- 
ing case, the circle size is given by A in Equation ( I ) ,  
which, in conjunction with the conic equation, yields 

1 + ecosBo 
40(Bo) = E - sin-' sin E . (16) I 

4.1. Resolu t ion  L imi t ed  Imag ing  

Before applying the envelope theory, let us also 
determine the resolution limited circle size. In Fig- 
ure 5, let D be the required linear mapping resolution. 
That is, the physical separation of any two barely dis- 
tinguishable points on the map must be a t  most equal 

(r is nondimensional) 
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Fig. 5. The reso lu t ion  constraint .  

to D. This permits the definition of the required an- 
gular mapping resolution as y = DIR,.  The angular 
resolution of the optical system, denoted 6, shall be 
taken to be the angular separation a t  the viewing ap- 
paratus of two barely distinguishable points. Given 
y and 6, we must now determine how the imaged cir- 
cle size depends on r .  Clearly the resolution obtained 
deteriorates as one moves away from the nadir. More- 
over, at  any non-nadir point, the resolution is poor- 
est when moving directly away from the nadir on a 
great circle through the nadir point. Thus, in Fig- 
ure 5 we look a t  the resolution along a meridian, and 
determine the latitude where the resolution becomes 
worse than y. In practice, the two barely distinguish- 
able points always lie in the same hemisphere, which 
means that 0 < y + 6 < r /2 .  Thus, although this 
constraint is not theoretically imposed, it is assumed 
nevertheless. 

With reference to  Figure 5, one finds 

After some trigonometric manipulation, the following 
unexpectedly compact result is obtained for the size 
of the imaged circle: 

r 2 t a n 6 + ( s i n y + c o s y t a n 6 )  
2r(sin $ + cos $ tan 6) 1 

(17) 
or 

1 rp ( l  + e) tan 6 + cos-I { 
2(sin $ + cos $ tan 6) 

(1 + e cos Bo)(sin y + cosy tan 6) + 
r p ( l +  e) 

(18) 
Clearly, Equation (17) cannot apply for all values of r .  
For r larger than some final distance, rf , the quantity 



whose inverse cosine is taken becomes greater than 
unity, making the equation invalid, meaning that no 
area can be imaged a t  the required resolution beyond 
this distance. After some algebra and trigonometry, 
and a certain amount of luck, one obtains the follow- 
ing result for r j  by setting do = 712 

1 1 Y 
r j  = cos I + (- + -) sin I .  (19) 2 t a n 6  sin5 

This is just one of two solutions for r f .  The  sec- 
ond solution is of no concern, however, since it is less 
than unity. For completeness, this solution is given 
as rfz  = cos(y/2) + (11 tan 6 - 1/ sin 6) sin(y/2).  

Correspondingly, there is a lower limit for which 
Equation (17) is valid. Although this rarely would oc- 
cur in practice (unless the resolution requirement is 
very poor) it is examined for purposes of thorough- 
ness. Given y and 6, the distance r can always be 
made sufficiently small, but still greater than unity 
(i.e. we remain outside the planet surface), such that 
the resolution achieved a t  the horizon, where the line 
of sight is tangential t o  the planet, is better than the 
required resolution y. The  distance, r t ,  where these 
two resolutions are equal is found by geometry as fol- 
lows 

For r < rt, imaging a t ,  or better than, the required 
resolution is possible all the way out t o  the horizon. 
It should be not.ed, however, that  r t  is exceedingly 
close to unity for all but the poorest of resolution 
requirements, unless the optics have superb angular 
resolution. The  latitude of the horizon is simply given 
as 

do = cos-I r-I (21) 

while the actual resolution obtained a t  the horizon is 
given by 

This resolution a t  the horizon is defined so long as 
half or less of the planet falls within the an ular res- 
olution of the optics, i.e. up to  r = s"-- 1/ tan2 6 + 1 
( a  large number, even for mediocre optics). 

In summary, the pertinent equations that  define 
the size of the imaged circle as a function of distance 
(and hence, true anomaly) are presented below, for 
the various ranges of r .  

1 < P < rt + resolution requirement exceeded (21). 

r t  < r 5 rf + resolution requirement met (17). 

r j  < r < OC, 3 no area imaged a t  required resolution. 

We shall be concerned only with the middle range of r 
in this paper. Note that  Equation (18) provides the 
resolution limited A-curve, which can he used with 
Equation (2) to  obtain by quadrature the cross-track 
area imaged in the resolution limited case. 

4.2. The Envelope 

North 

Periapsis Spacecraft 

Fig. 6. Geometry for the conical imaging sus- 
face equation. 

The circle size has now been established as n func- 
tion of true anomaly for both the E-limited and thc 
reso!ution limited viewing cases, enabling attention 
t o  be focussed on the envelope. The  remaining nec- 
essary component for applying the envelope theory is 
the determination of the surface equation, which in 
this case is the equation of the small circle centered 
a t  Bo.  From the geometry of Figure 6, the surface 
equation is seen to  be 

Differentiating with respect to  the parameter 00 to 
obtain the determinant equation, 

These last two equations are then solved to  give para- 
metric expressions, in terms of the true anomaly, for 
B and 4, the longitude and latitude coordinates, re- 
spectively, of the envelope. The  two equations yield 
the solutions 



where the asterisk denotes envelope values for longi- 
tude and latitude. The functions c$o(Bo) have already 
been established for both the E-limited and the res- 
olution limited case. Their derivatives are computed 
as follows. For the E-limited case, 

e sin Bo 
'('o) = rp( l  + e) COS(E - 40) 

sin E (26) 

and for the resolution limited case 

e sin B0 
4b(60) = 2sin(mo - $) cos $ (tan $ + tan 6) 

cosy (tan y + tan 6) rp( l  + e) tan 6 - 
(1 + e cos 6'0)2 

With the proviso that engulfing does not occur 
(no circle is contained entirely within previous or sub- 
sequent circles), Equations (24) and (25) establish 
the envelope for both types of mapping requirements 
with conical nadir-centered imaging. The envelope is 
useful in that it demarcates the area mapped. How- 
ever, to actually calculate the area it is necessary 
to integrate under the envelope, which results in an 
intractable problem. Instead, spherical geometry is 
used to obtain a much simpler, albeit also analyti- 
cally intractable, expression for the rate a t  which the 
conical scan acquires new area. This expression may 
then be easily integrated numerically to obtain the 
total area imaged. 

5. A r e a  Acquisi t ion Rate for  Conical  
Scanning  

This section is devoted to the determination of 
the derivative of the area imaged with respect to the 
spacecraft true anomaly. The problem of engulfing is 
also examined. As seen in Figure 4, in the absence of 
engulfing, a small change, dBo, in the true anomaly 
of the nadir point yields a crescent-shaped patch of 
area, dA, that has not been previously imaged, either 
in whole or in part (see Figure 9 and the associated 
analysis of the recounting problem). 

The first step in determining the crescent-shaped 
area is the introduction of the appropriate great cir- 
cles, namely the equator, the meridian through P and 
Q, the great circle through N and P, and the great 
circle through N' and P .  This allows the differential 
area to be expressed as 

dA = 2[Sector N'PU - Sector N P T  + ANPN'] ,  

(28) 
where A N P N '  is a spherical triangle since its sides 
are all great circles. Once again, all areas shall be 

expressed as fractions of the total surface area of the 
sphere. The area of a spherical triangle is determined 
by its spherical excess, X = (N + N'+ P-T), in other 
words the amount by which the sum of the angles a t  
the vertices exceeds T. The (non-dimensional) area 
is then given by A N P N '  = X/(4a). The area of 
the sectors, meanwhile, is determined by the angles 
/3 and a. For convenience we define dl = ~o(Bo)  = 
L N P  and 4 2  = do(&, + dBo) = LN'P, where L N P  
denotes the angle subtended by the great arc N P .  By 
applying formulas from the mensuration of spheres to  
ANPN' ,  one obtains 

cos dl - cos 4 2  cos dBo 
COS(T - Q) = 

sin 4 2  sin dBo Q E (0, T) 

, , 
cos 4 2  - cos cos dB0 

cos p = 
sin 41 sin dBo B E (0, x) (30) 

X 
tan - = 

4 

1 1 
/tan tan i ( s  - 41) tan - (s  2 - 42) tan -(s 2 - d ~ ~ ) ,  

(31) 
where 

1 
s = + m2 + deo) 

Then, from Equation (28), 

1 
dA = - [ a ( l  - cos 42) - P( l  - cos d l )  + X] . (32) 271. 

Next, the Taylor expansion of 42 = 40(60 + dBo) 
is taken about 00. The result is inserted into Equa- 
tions (29) - (31), and then the series expansions of 
a, P and X about Bo are computed: 

x = - cOsmO Jz doo + O ( ~ B O  2, . 
sin do 

These results are inserted into Equation (32) to ob- 
tain 



In obtaining the O(d00) terms (terms of order ddo) 
for (Y and p, it was necessary to  take the Taylor ex- 
pansion of 1#9 up to  the O(ddo 2, term, as witnessed 
by the presence of a 4; term. However, this term 
conveniently drops out of the O(ddo) expression of 
dA. In the limit ddo --+ 0, Equation (33) yields 

This derivative represents the rate with respect to  
true anomaly a t  which new area is imaged. The 
functions cbo(Oo) and &,(do) have already been com- 
puted for both the E-limited and the resolution lim- 
ited cases in Equations (16), (18), (26) and (27). Con- 
sidering the complicated expressions involved, Equa- 
tion (34) does not appear to  be analytically integrable 
in closed form. Thus, in order to find the total area 
imaged, one must integrate Equation (34) numeri- 
cally, remembering to  take into account the fact that 
the imaged circle a t  the integration starting point is 
not included in the integral, while the circle at the 
end-point is included. 

5.1. Engulf ing 

It is clear that if the imaged circles are enlarg- 
ing (or diminishing) rapidly enough, then a condi- 
tion may arise where the circle imaged from the cur- 
rent spacecraft position contains (or is contained by) 
the circle obtained from the spacecraft's infinitesi- 
mally close prior position. The term engulfing shall 
be used to describe this condition, both for the en- 
larging and for the diminishing cases. This may also 
be depicted graphically. In Figure 4, we have, to 
first order, that N'U = dz = + q5bddo. Thus, 
T U  = N'U - N T  + ddo = &dd0 + ddo. When T U  
becomes negative, the circle a t  N' is entirely engulfed 
in the circle a t  N .  This means that 4; < -1. Sim- 
ilarly the circle a t  N' will engulf the circle a t  N if 
&, > +l. In brief, we have the engulfing condition: 

As expected, the area derivative of Equation (34) 
is undefined when engulfing occurs. Is the engulfing 
condition ever met? For E-limited viewing, the an- 
swer can be proved to be in the negative (at least 
for non-subsurface trajectories.) However, it is found 
numerically that engulfing does occur in resolution 
limited imaging. As the spacecraft approaches the 
planet, initially no area is visible at the required res- 
olution. Then a tiny circle is imaged, from distance 
r = rf . The circle grows very rapidly, engulfing the 
previously imaged circles (4; > 1). Then engulfing 

Fig. 7. Igloo plot:  Imaged  circles, envelope, 
and A-curve for reso lu t ion  l im i t ed  imaging. 

typically ceases until the post encounter phase, where 
the reverse occurs - the circle contracts so rapidly that 
it is engulfed in previous circles (4: < -I), until it 
finally vanishes at r = rf. This sequence of imaged 
circles is conveniently depicted by an igloo plot (Fig- 
ure 7), which shows the Northern hemisphere portion 
of the post-encounter imaged circles, along with the 
A-curve and the envelope. There is, of course, North- 
South and East-West symmetry in the imaged area 
so that the total area is four times that depicted in 
Figure 7 (between Bo = 0' and Bo R 151'). A similar 
tunnel plot, which never displays engulfing, is shown 
for the E-limited viewing case, Figure 8. Both plots 
conveniently depict the fact that the envelope, where 

is tangent to  the imaged circles. 

Final imaged circle 
Final envebpe poiR 

Fig. 8. Tunne l  plot:  Imaged  circles, envelope, 
a n d  A-curve fo r  emission ang l e  l im i t ed  imag- 
ing. 

As there is no engulfing in the E-limited case, the 



area can be directly obtained by integrating Equa- 
tion (34). The  question arises as to  the computation 
of the area when engulfing occurs. Using the reso- 
lution limited case as an example, the area is com- 
puted by integrating Equation (34) from the largest 
engulfing circle to  periapsis, and then adding on the 
area of the engulfing circle. The  total area (for the 
entire flyby) is then double this quantity minus the 
imaged circle a t  periapsis, since the integral includes 
half of the periapsis circle. The  difficulty lies in deter- 
mining the value, goeng, of 90 a t  which the engulfing 
condition, Equation (35), is met. An analytical solu- 
tion has not been found for this quantity, necessitat- 
ing a numerical solution. Two options are available 
for this, namely Equation (35) and Equation (25). 
The  latitude q!~ of the envelope, given by the latter 
equation, is undefined when engulfing occurs, mean- 
ing that  cos4 > 1. Due to  gentler gradients, it is 
easier to  solve cos q!~ = 1, than it is t o  solve Equa- 
tion (35). A good initial guess for goeng has been 
found to  be the easily computed value of 90 when r is 
just less than r j .  Once goens has been found, +oeng 
can be easily found from Equation (18), and the area 
of the engulfing circle computed. 

5.2. Veri f icat ion o f  N o  R e c o u n t i n g  

Small Circles on Sphere of rad~us R , 

Fig. 9. A r e c o u n t i n g  scenar io .  

It has been assumed up to now that the crescent- 
shaped differential area segment was composed only 
of area previously unimaged. To see what conditions 
give rise to  recounting, a hypothetical sequence of cir- 
cles is shown in Figure 9, where the tips of the last 
crescent overlap with the second from the last cres- 
cent. Upon closer inspection, it is seen that  the over- 
lap shown will not occur if the value of P(0o + dBo) 
is less than the value of &(do). This is a sufficient 

condition, but not a necessary one, as overlap is also 
prevented by sufficiently increasing the size of only 
the leftmost circle, even though the stated condition 
is still met. Let dq = a ( & )  - /3(O0 + doo), and define 
a recount parameter, p = dq/dBo. Then, p > 0 is a 
sufficient condition for no recounting. Taylor expan- 
sions similar to  those performed earlier in this section 
yield 

(1 - 4b2) cos 40 - &,'sin do 
P = JC-@ sin qjo 

Although not shown here, the same condition 
holds for the q5Io > 0 case. As expected, this is not 
amenable. t o  analytical integration. Numerically, all 
of the many examined cases of both E-limited and 
resolution limited viewing were found t o  give p > 0 
for all true anomalies. This is not an unexpected re- 
sult, however, since the instance of recounting shown 
in Figure 9 is highly contrived, in that  is not chang- 
ing smoothly with 90. Thus, i t  is the belief of the au- 
thors that  recounting will not pose a concern for these 
types of mapping. Moreover, numerical results using 
the area derivative equation agreed entirely with the 
results from direct integration under the envelope. 

6 .  I m p o s i t i o n  o f  a T e r m i n a t o r  C o n d i t i o n  a n d  
C a m e r a  Losses  

Up to  this point, no regard has been given as to  
whether the imaged area is illuminated by sunlight 
or not. Since most mapping instruments operate in 
the visible spectrum, this issue is an important one. 
A methodology is given below for computing the illu- 
minated imaged area when the terminator lies along 
a meridian (otherwise the task is considerably more 
difficult). We first note that a meridional termina- 
tor condition in the cross-track case is trivially dealt 
with, since the terminator is parallel to  the footprint. 

As shown in Figure 10, 9t denotes the longitude of 
a terminator, which crosses the envelope a t  point P . 
Opting t o  use the area derivative equation, we must 
first compute the true anomaly, 190, of the imaged cir- 
cle which contributes the point P to  the envelope. 
This must be done numerically from Equation (24). 
.4 good initial guess for 90, in the sense that  the solu- 
tion will most often converge, is found to be a value 
just below Ooeng (to avoid the region where engulfing 
occurs), even though this may be far removed from 
the actual solution. Then the circle size is computed 
from Equation (18). Next Equation (34) is integrated 
from this circle to  periapsis. Assuming westerly illu- 
mination, we compute 

Half-segment P Q S  = Sector P N S  - A P N Q ,  



7. The Gal i l eo  Mission: A N u m e r i c a l  
E x a m p l e  

Fig. 10. Terminator geomet ry .  

where the areas on the right can be easily computed 
from spherical geometry formulas, in a similar way t o  
that  shown in the derivation of Equation (34). 

Camera losses will arise when the optics cannot 
adequately compensate for the spacecraft motion, a 
problem likely t o  occur near periapsis. A conservative 
estimate of the area imaged is found by discarding 
any scraps of area collected during camera loss time. 
The  longitude a t  which camera losses commence can 
be treated exactly as a terminator, and the appropri- 
a te  areas computed as above. 

In the cross-track imaging case, the exact longi- 
tude a t  which camera losses commence is easily com- 
puted. Let the column width E be defined as the 
difference in longitude between the easternmost and 
westernmost equatorial points of the scan column. 
Let r, be the time taken to  scan one column. If conti- 
guity of successive columns is required, then t.he time 
available for imaging one column is the time it takes 
for the nadir point of the spacecraft to move through 
a longitude equal to  the column width. The space- 
craft angular velocity is given by the conservation of 
angular momentum equation 

Letting w denote the angular rotation rate of the 
imaged body, and assuming the axis of rotation to  
be perpendicular t o  the orbital plane, then the time 
available is 

Contiguous imaging is possible when 

The  true anomaly a t  which contiguity ceases is ob- 
tained when equality holds in the above equation. 

By way of numerical example, the illuminated 
area mapped with conical imaging during one of 
Galileo's upcoming encounters with Callisto is com- 
puted as a function of flyby distance ( rp)  for l k m  and 
80m resolution, and for various sun phase angles. In 
this example, the resolution limited theory is applied 
(and the Galileo project emission angle constraint of 
E 5 60' is ignored). The  sun phase angle is defined 
as the longitude of the sun-pointing vector a t  closest 
approach, and it is assumed that  the terminator is 
meridional and does not change position during the 
encounter. (Since Callisto rotates once every 17 days, 
this is a reasonable assumption for an encounter last- 
ing only a few hours.) The  following parameters were 
assumed for the encounter 

The trajectory in the vicinity of Callisto is approxi- 
mated by a hyperbola. The asymptotic velocity, v,, 
of 8kms-' is approximately the velocity Galileo will 
have in most of its encounters with Callisto. Through 
the conic and energy equations, the eccentricity is 
then given by e = 1 + rp R,vL/p, ,  where p, is the 
gravitational constant of Callisto. According t o  Wolf 
and Byrnes,5 the periapsis radius of the closest en- 
counter is planned to  be 1.17 (2865km). 

The  imaged area is shown as a function of peri- 
apsis radius for various sun phase angles in Figures 
11 and 12. As an aid in understanding the shapes of 
these graphs, Figures 13 and 14 show the correspond- 
ing envelopes obtained for selected values of periapsis 
radius. Certain features are apparent. 

1. The  envelopes shown in Figures 13 and 14 
change from an igloo shape to  a quarter-oval shape 
with increasing rp.  

2. Because of symmetry, the areas imaged a t  com- 
plementary sun phase angles will always add up to  the 
total (light and dark) area that  could be imaged. 

3. For sun phase angles less than about 90°, 
the area first increases then decreases with rp;  while 
above about 90' the area decreases monotonically 
with rp. This is because a t  appropriately small rp 
(where the envelope a t  periapsis is close t o  the equa- 
tor), a small increment in rp sufficiently increases the 
area imaged a t  periapsis to  overcome the area lost 
a t  the end of the envelope. Above a phase angle of 
about 90' this effect is negated because the area near 
periapsis is in darkness, and hence not imaged. The 
~ x a c t  cut-off value of the phase angle depends on the 
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Fig. 13. Envelope  curves on Call is to for  vari- 
o u s  periapsis  radi i ,  lkm resolution. 

Fig. 14. Envelope curves on Call is to fo r  vari- 
o u s  periapsis  radi i ,  80m resolution. 

imaging parameters chosen, but is expected to always 
lie somewhat above 90'. 

4. For 80m resolution (Figure 12) the optimum 
rp first increases and then decreases as the phase an- 
gle increases from zero. At phase zero, the optimum 
rp is about 1.17; while a t  30' the optimum is about 
1.28. This is because the area gained at periapsis 
by the rp = 1.28 envelope offsets the area it loses a t  
the envelope ends, especially since the pre-periapsis 
end is in darkness and hence not imaged anyway (the 
terminator is at -60' longitude). When the phase 
angle increases too much, however, the area lost (as 
rp increases) a t  the illuminated envelope end is no 
longer offset by the area gained near periapsis. In 
contrast, for lkm resolution (Figure 11) the optimum 
rp decreases monotonically with increasing phase an- 
gle. Around phase zero, the envelope ends are both in 
darkness, and at periapsis the envelope is a t  a higher 
latitude, thus disallowing the effects described above 
for the 80m resolution case. 

5. In the l km resolution case, the area curve for 
phase zero (Figure 11) shows a sudden change in slope 
just after rp = 10 because the corresponding envelope 
(see Figure 13) meets the equator a t  f 90° longitude, 
exactly coinciding with the terminator. Similarly, a 
kink is seen in the 30' and 150' phase curves just 
after rp = 4. However, since only one end of the 
envelope coincides with the terminator, the kink is 
not as sharp. 

6. At lkm resolution the optimum rp (at zero 
phase angle) is around 3.3 (8069km). For the 80m 
resolution case, the optimum rp (at zero phase angle) 
is around 1.17 (2861km). 

It is reemphasized here that items (I) ,  (2)) and 
(3) above are applicable to resolution limited coni- 
cal viewing in general, and not just to the illustra- 



tive case described here. Other mission scenarios can 
be analyzed and understood in a similar manner as 
above, providing mission designers a powerful tool in 
optimizing the mission's science return. 

8. Conclusions 

This paper provides an exact analysis of the 
coverage obtained under two imaging techniques- 
meridional cross-track scanning, and nadir-centered 
conical imaging-with two types of mapping require- 
ments, namely viewing obliqueness (defined in terms 
of the emission angle) and resolution, applied to each. 
Not only does the analysis examine the actual magni- 
tude of the imaged area, but also introduces envelope 
theory to obtain the boundary of the area imaged. 

The magnitude of the imaged area is found ex- 
actly for the emission angle limited, cross-track scan- 
ning case. For the two conical imaging cases, an exact 
expression is found for the area acquisition rate with 
respect to  the spacecraft true anomaly. This expres 
sion may be easily integrated numerically to obtain 
the total area. The cross-track, resolution limited 
area is also provided in terms of an integral that can 
be easily computed by quadrature. These should be 
invaluable aids to  mission designers. 

Several points relevant to the mission designer are 
illuminated by a numerical example. In the reso- 
lution limited, conical imaging case it is first noted 
that a closer flyby does not guarantee more area. 
Second, the optimum periapsis distance tends to de- 
crease with stiffer resolution requirements (for a given 
optical system). Third, the optimum periapsis radius 
changes with sun phase angles less than slightly above 

90°, while above this angle, the optimum is always 
unity (an impractical zero altitude periapsis). This 
paper also presents a simple and exact means for the 
designer to  visualize the envelope of the imaged area. 

Future work may include an analysis of the ef- 
fects of the imaging parameters on the area, area- 
rate, and envelope equations, which could lead to the 
development of optimal solutions. It  may also be 
feasible to develop approximations to the area-rate 
equation, possibly allowing an analytic integration to 
obtain the area. Additional work is also needed for 
an analytic understanding of the area graph charac- 
teristics. Lastly, and perhaps most importantly, the 
methods developed here could be applied to  other 
imaging techniques, such as non-nadir centered coni- 
cal imaging, in the hope of obtaining compact, easily 
computable expressions for the coverage obtained. 
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