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Abstract 
In this paper we consider the problem of attitude stabi- 
lization of an axially symmetric spacecraft using two pairs 
of gas jet actuators to  generate control torques about two 
axes spanning the two-dimensional plane orthogonal to 
the axis of symmetry. Under the assumption that the 
initial spin rate about the symmetry axis is zero, and us- 
ing a new kinematic formulation, we construct an invari- 
ant manifold for the closed loop system with a specific 
feedback law. Using this manifold we derive a stabilizing 
control law which achieves arbitrary reorient,ation of the 
spacecraft. 

1 Introduction 
The problem of attitude stabilization of a rotating rigid 
body has recently been the subject of active research 
[I, 2, 3, 4, 5, 6, 91. A complete mathematical description 
of the problem was first given by Crouch [l], where he 
provided necessary and suficient conditions for the con- 
trollability of a rigid body in the cases of one, two, or three 
independent control torques. Recently Byrnes and Isidori 
[4] established that a ngid spacecraft controlled by two 
pairs of gas jet actuators cannot be asymptotically stabi- 
lized to an equilibrium using a continuously differentiable, 
i.e., smooth or C', feedback control law. The attitude sta- 
bization problem of a symmetric rigid spacecraft using 
only two control torques spanning the two-dimensional 
plane orthogonal to  the symmetry axis was considered in 
[5]. The complete dynamics fail to be controllable or even 
accessible in this case; thus, the methodologies of [I] and 
[4] are not applicable. However, the spacecraft dynamics 
are strongly accessible and small time locally controllable 
in a restricted sense, namely when the spin rate remains 
zero; however any stabilizing control has to be nonsmooth. 
In [5] such a nonsmooth control strategy was developed, 
which achieves arbitrary reorientation of the spacecraft, 
for the restricted case of zero spin rate. This nonsmooth 
control law is based on previous results on the stabiliza- 
tion of nonholonomic mechanical systems [7]. 

In this paper we consider again the problem treated in 
[5].. Without loss of generality, we assume that the two 
acting control torques are along principal axes. In addi- 
tion to its theoretical interest., this problem has consider- 
able practical importance, since it corresponds to space- 
craft control when one of the actuators fail. 

First, we simplify the kinematics of the problem using 
the complex kinematic Riccati equation developed in [8] 
and 191. When written in terms of the new kinematic pa- 
rameter in the complex plane, the kinematic equations 
have a very simple and compact form. Using this fonnu- 
lation of the kinematics, we obtaiii a stabilidiiig control 
law for the restrictcd problem of zero spin rate, which 
allows arbitrary reorientation of the spacecraft. The con- 
trol law thus derived is especially simple and clcgant. and 

0191-2216/93/$3.00 Q 1993 IEEE 

avoids the successive switchings of [5]. Although we only 
consider a specific control problem of practical interest, 
the main purpose of the paper is more general, namely, 
to  expose the new formulation of the kinematics and to 
illustrate how it can facilitate the design of stabilizing con- 
trol laws for attitude control problems. Other results on 
spin-axis s tabhat ion  of a symmetric spacecraft subject 
to  two control torques using this kinematic formulation 
are reported in [9]. 

2 Dynamics and Kinematics 
Euler's equations of motion, for a symmetric body with no 
external torques about the symmetry axis, can be written 
as follows 

w1 = awzw3+ul ( 1 4  
w2 = -0WJw1 + U 2  (1b) 
5, = 0 ( 1 4  

A A A where a = (I2 - &)/I19 UI = Ml/Zl and u2 = M2/;'2. 
Here MI, Ma are the external torques due to control in- 
puts u1 and u2, respectively. The positive scalars ZI, Z2,13 
are the principal moments of inertia of the body with re- 
spect to its mass center; Z3 corresponds to  the axis of 
symmetry and Z1 = Z2. The scalars W I , W Z , W J  denote the 
components of the body angular velocity vector w.r.t. the 
body principal axes. 

It should be clear from equation (IC) that, for a sym- 
metric body, the value of the component of the angular 
velocity w3 along the symmetry axis cannot be affected 
by the control. In fact, the value of w3 remains constant 
for all times. Clearly, as already mentioned, system (1) is 
not controljable. 

Introducing the complex variables 

(2) 

b = -iawsoW + (3) 

A A w = w 1 + i w z ,  u = u 1 + i u 2  

one can rewrite (la)-(lb) in the compact form 

A where w30 = W3(0). 
Equations (1) describe the dynamics of a rotating body 

in space. A complete description of the attitude motion 
also requires a description of the kinematics. Using a 
3-2-1 Eulerian angle sequence for the description of the 
orientation one has the associated kinematic equations 
P O I  

i = wi + (w sin 6 + w3 cos 6) tan 0 (4a) 

i = w2cos~-w3sin4  (4b) 
4 = ( w 2 s i n # + w 3 c o s ~ ) s e c ~  ( 4 4  
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Figure 1: Eulerian angle sequence 3-2-1. 

The Eulerian angles provide a local coordinate system for 
the rotation group SO(3) which is the configuration space 
of the attitude motion, when SO(3) is taken with its man- 
ifold structure. The equations (4) exhibit a singularity a t  
B = h / 2 .  We therefore restrict the subsequent discus- 
sion to the set M defined by M = {(d, 6, $) E R3 : 4, + E 
(-r, .],e E (-s/3, ~ / 2 ) ) ,  Using this parameterization of 
SO(3), the orientation of the local body-fixed reference 
frame with respect to the inertial reference frame is found 
by first rotating the body about its 3-axis through an an- 
i le  d, then rotating about its 2-axis by an angle B and 

nally rotating about its 1-axis by an angle 4; see Fig. 1. 
In [8] an alternative formulation of the kinematics is 

presented, which simplifies equations (4) and which is 
used in [9] to derive asymptotically stabilizing control 
laws for the reduced system of equations (3) and (4a)- 
(4b). Consideration of this reduced system is possible 
because $ is an ignorable variable for the system of equa- 
tions (4). For this reduced system, stabilization about the 
origin corresponds to  stabilization of the symmetry axis, 
with the body orientation about this axis (described by 
11,) being indeterminate. 

Following [8, 91, we introduce the complex kinematic 
variable, w = wl  + iw2, defined by 

A sin (bcos8 + isin 0 
( 5 )  W =  

1 + c o s ~ c o s e  

One can readily sliow ~Iiat. L L ~  satisfies tlie following coin- 
plex differential equation 

where w is defined in (2)  and the bar deltotes complex con- 
jugate. This is a scalar Riccati equation with time-varyiiig 
coefficients. More about transformation ( 5 ) ,  wliich, inci- 
dently, is not restricted to tlie particular Eulerian angle 
set used here, can be found ill [8,9]. In fact, since equation 
(6) can be derived directly from Poisson's equations using 
the method of stereographic projection of the unit sphere 
S Z = { ( ~ ~ , z 2 , z 3 )  E R3 : z f+z$+z%=l}  on tlie complex 
plane, it is independent of the particular parametrization 
of SO(3).  The different.iii1 equation for 4) in the (w,  YV) 
space is given by 

(7) 

In the next section we will introduce .another variab e 
s, such that (wl,wz,s) are local coordinates of SO(35, 
and are locally diffeomorphic to +,6, $). In [9 Bsymp 

of equations (3) and (6) were derived, for both the cases 
of 2er0 and nonzero constant spin rate w3. These feed- 
back control laws correspond to  asymptotic stabilization 
about the origin in the (wl,wz,+,B) state space. In the 
extended (w1, wz, d,B, +) rtate space this corresponds to 
stabilization about the onedimensional manifold Af = 

lated equilibrium. Feedback stabilization about a reduced 
equilibrium manifold has received attention recently, since 
it appears to be an important extension of Stabilization 
about an equilibrium, yielding bounded trajectories [4]. 
In the next section we extend the results of [9] to  include 
stabilization to the origin of the extended (complete) sys- 
tem of equations (3) and (4), for the restricted case o€ 
w3(0)=0.  In this case, as waa shown in [SI, the dynamics 
is strongly accessible and small time locally controllable 
a t  any equilibrium. Thus arbitrary reorientation of the 
spacecraft can be achieved if ws(0) = 0; if wa(0) # 0, re- 
orientation of the spacecra€t is not possible. However, 
s 00th stabilization about the one-dimension m nif 
2 1 s  always possible, regardless of the value o f w 3 h )  

totically stabilizing control laws I or the reducA system 

{(w1,wz,d,0,$) : W 1 = w 2 = 9 = B = O }  rather than an iso- 

3 Feedback Control Strategy 
Stabilization of the Kinematics 
Assuming a priori that wm = 0, the system to be driven 
to the origin takes the form 

wl = U1 

w z  = U2 

with 

( 9 4  4 = wl+wzsin4tan0 
e = w2cos9 (9b) 
4 = wzsin4secB ( 9 4  

or in the complex notation introduced previously, 

w = u  
w 0 2  

2 
w = - + , w  

These equations have the form of a cascade system so, as 
ili [9], we concentrate first on the problem of stabilization 
of the subsystem (lOb)-(lOc), regarding w as control in- 
put, and then we implement this control law through the 
integrator (loa). 

In [9] we have the following result. 

Lemma 3.1 The feedback control law 

(11) w = -nw 

(IC > 0) globally ezponentially stabilizes the subsystem 
(lob) with mte of decay 4 2 .  

With the control law (11) the closed-loop subsystem 
corresponding to (lob) takes the form 

(12) 
. I C  

w = --(1+ lWl')tu 2 
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and the corresponding closed-loop system in the (4, I), $) 
variables takes the form 

(134 
sin q5 i = - K  

cose(i + c o s ~ c o s e )  

- 

- 

-3 

(134 
sin 4 tan 0 6 = - K  

(1 + cosdcose) 

As t + 00 the Eulerian angles cp, B go to  zero, but $ tends 
to  some unspecified value. We will show next that, given 
any initial conditions 4(0), I ) ( O ) ,  $(O), we can calculate 
this final value of $. In addition, by requiring the final 
value of t+b to be zero, we construct an invariant manifold 
that can be used to  derive stabilizing control laws for the 
complete kinematics (9). 

Eliminating time from (13) we obtain 

d* dI) sinBcosI) - =sin@, - - 
d4 d d -  

Integrating the last equation yields 

(15) 

(16) 

sin 4 tan b‘ 
In - = I n  - sin (bo tan 0 0  

tan0 = uo sin 4 
or 

A A where ao = tan eo/ sin 40 wit,h 40 = 4(0), I)o I ) ( O ) .  From 
this equation, along wit.h the first of equations (14), we 
have 

A Letting $0 = $(O) and intcgrat.iitg from (40,00, 40) to the 
origin, we find that 

- $10 = arcsin(p0 COS(#O)) - arcsin(p0) (18) 

where po 6 a o / d m .  For the case when 40 = 0 (and 
-1r/2 < 00 < x/2) it can be easily shown that the previous 
equation simplifies to the statement that $0 = 0. The 
choice of 4 as the new independent variable is justified by 
the fact that it decreases monotonically to zero. Indeed, 
from (13a) and ( 5 )  one can write the differential equation 
for as 4 = -K~WI/COS~I) .  Now I) E ( - * / 2 , 1 r / ? )  and if 
4 = 0 for some time < 00 we have wl(t) = 0. However, 
this is not possible because from (13) the magnitude of 
wl decreases monotonically (exponentially) to zero. The 
phase portrait of the system of equations (13a)-(13b) is 
depicted in Fig. 3. 

Equation (18) yields an expression for tlie initial condi- 
tions from which the feedback w = -KW will drive system 
(13) to the origin. We now introduce the manifold 

S fi { (4,I),$) E M : s(4,I),ll,) = 0 } (19) 

where the the function s : M --* R is defined by 

A 
s(4,0, ll,) = $ + arcsin(pcos 4)  - arcsin(p) (%a) 

y = n./d1 + n,z , a = tanB/siii 4 (?ob) 

Clearly, S is an invariant manifold for system (13). More- 
over, by construction, every trajectory on S (with w = 
- e w )  satisfies limr-oo(4(l),I)(t),1D(t)) = 0. It is there- 
fore advantageous to consider tlie utility of this manifold 

-2 -1 0 1 2 3 
Phi W) 

Figure 2: Phase portrait of reduced system. 

Figure 3: The two-dimensional manifold S. 

in achieving stabilization to the origin I$ = I) = $ = 0. It 
is interesting to note that S is independent of the control 
gain K ,  therefore once on this manifold, any positive K will 
lead to  the origin. The manifold S is shown in Fig. 3. 

The derivative of -9 along trajectories of (13), can be 
computed to be 

i = -wzw1 + W I W Z  = I m ( w w )  (21) 

As expected, the choice of w = -KW maintains Ir 0 and, 
once on S, the trajectories remain there. 

In order to render S an ottractingmanifold, we restrict 
consideration to w # 0 and propose the following control 
law 

(22) 
. c c  
w 

W = -KW - 1--9 

with p > 0. With this control law the closed-loop system 
becomes 

with ( w , s )  E (C\{O}) x R. Moreover, w + KW + 0 as 
s 4 0. Therefore, as long as w # 0 the control law 
(22) drives all trajectories of subsystem (23) to  the origin, 
for arbitrary initial conditions. Care should be taken in 
implementing (22) because the control law is not defined 
at  points where w = 0 and s # 0. We will return to this 
point shortly. We have now the following result regarding 
system (23). 
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Theorem 3.1 Consider the closed-loop system (2s) with 

p > IC /?  

and consider any initial condition (w(O),e(O)) E C x R 
with w(0)  # 0 .  Then !he following hold. 

( i )  w(t )  # 0 for all t 2 0 .  

(ii) The trajectory ( w ( . ) , s ( . ) )  is bounded and 
lim (w( t ) ,  s ( t ) )  = 0. 
(-00 

(iii) The control history U(-) is bounded and has bounded 

Proof We first show that if w ( 0 )  # 0 then w ( t )  # 0 for 
a l l t > O .  

Siilce 

derivative. 

i lw12  = ? R e ( i u )  

one readily obtains that 1w12 satisfies the differential equa- 
tion 

z]wl’ = - R I . U f ( l  + 1201’) (24) 
d 

A 
Using the transformation z, = l/Iwl’ one can inte6rat.e 
(24) to obtain 

where CO (Iw(0)12 + l)/lw(0)12. Clearly w ( t )  # 0 for 
all t 2 0 and 1imt-- w(t )  = 0. In fact, the magnitude 
of w ( t )  is bounded bet,ween two exponential functions as 
follows 

lw(o)le-+’ 2 ~ u , ( t ) ~  > c;’12e-+‘ t l t  2 o (26) 

From (23b), it should be clear that 

s ( t )  = s(O)e-”’ ; 

hence, s(.) is bounded and limt-= s(l) = 0. 

U = s/w. Since CO > 1 one has that 
We now show that w ( . )  and & ( e )  are bounded. Let 
A 

lv(i)l = Is ( t ) l / lw( t ) l<  Is(O)le-”’(coe“’ - 1)’12 

< Is(0)lc~/2e-(fi-s’2)t  t / t  2 0 

A Since A = p - IC /?  > 0, v decays exponentially to zero 
with rate at least equal tao A. Thus limt-m ~ ( t )  = 0 and 
U is bounded by lu(t)l  < ~ s ( O ) ~ C ; / ~  fi /?I for all t 2 0. 
Hence w is bounded as 

Iw(t)l < IClW(0)l + pls(0)lcy2 P 2  v t  2 0 
Direct calculation shows that the derivative i is bounded 
as 

l i ( t ) l  < (P + P4)ls(o)Ic;/’ 2 P3 V t  2 0 
A 

where /34 = n(1 + l.w(0)12)/? + p(ls(0)l + BIC~”) /?  and 
the derivative of w IS bounded as 

P s  

Therefore the derivative of w is bounded as 1G(t)1 < IC/& + 
pP3, for all t 2 0. This completes the proof. 8 

Choosing therefore the gain IC in (22) such that p > IC/?, 
one has that, if w(0) # 0 then w ( t )  # 0 for all t E 
[O,oo), and that limt--(w(t),s(t)) = 0 which implies 
that limt-oo(~(t),8(t),(1,(1)) = 0. If on the other hand 
w(O).= 0 (and s(0) # 0) the control law has to be slightly 
modified, as will be shown next. 

IW(l)l 5 p(1 + lu~(o)12)lw(o)l + $ ( P I  + IS(O)llW(O)l) 

Stabilization of the Complete System 
This section contains the main results of the paper. Let 
X be the open set C x (C\{O}) x R. Given m y  compact 
subset W C X ,  we present a controller which generatea U 
for the full system (10) and which has the property that 
for any initial condition in W ,  the resulting trajectory 
converges asymptotically to zero. 

u = u,  = - ~ ( w + e w ’ ) - i ~ g ( w , w , a ) - u ( w + r s w + i ~ s )  2 

(27) 
where 

The proposed controller is given by 

and the scalars a, IC, p are chosen to satisfy 

IC > 0, P > IC, Q > ( ~ + 8 ) / 2 ,  (29) 

where /3 satisfies 

+ + iw/ t i~1(1+ IWI~)”’/IWI 5 B v (w,  w, a) E w 
(30) 

The main idea behind the proposed control law is to 
approximately implement control law (22) through the 
integrator (loa), by choosing the gain U “large enough”. 
Indeed, introducing the variable 

(31) 
A 

2 = w + KW + i p p  
W 

we can rewrite the closed-loop system in the form 

i = -a2 

i = -ps+Zm(zm) (324 

Note that for large a the z-subsystem can be considered 
as a boundary layer system for equations (32). The outer 
layer, corresponding to E = 0 ,  is in fact the system (23). 
Therefore, for large U one expects the overall system to 
behave like the system of Theorem 3.1. This statement is 
made precise in the following theorem. 

Theorem 3.2 Consider the closed-loop system (32) with 
a ,  p and n satisfying (29) and consider ang initial condi- 
tion (w(O) ,  w(O), s(0))E W .  Then the following hold. 

( i )  w ( t )  # 0 for all t 2 0;  hence the control law (27)- 

(ii) The trajectory (z(.),w(.),a(-)) is bounded and 

(30) is well-defined for all t 2 0 .  

lim (z(t),w(t),a(t)) = 0 
t-CO 

(iii) The control history U ( . )  is bounded and satisfies 
limt-= u ( t )  = 0. 

Proof. 
(32b), the magnitude of w obeys the equation 

We first show that w ( t )  # 0 for all i 2 0. From 

d 
j$lJI’ = -(1 + Iw12)(ICIw(2 - R e ( 2 9 ) )  (33) 

From definition (30) of /3 and condition (29) on a we have 
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Recalling (24) and (26), the last inequality implies that 
Iz(?)l 5 PltiJ(t)l for all t 2 0, where 12, satisfies the differ- 
ential equation 

d 
d t  -1612 = - ( I C  + P ) ( l +  112,1')1tij12, 12,(0) = w ( 0 )  (34) 

Since I R e ( z ~ ) , ) l  5 1 ~ 1 1 ~ 1  aiid IzI 5 /3ltijl it follows from (33) 
that 

d 
d t  -Iw12 2 -(1 + Iwl')(.lwl' + PlWll~t iJ l )  (35) 

From (34) and (35), Iw(t)l  5 lG(t)1 implies that 

Since Iw(0)l = lG(O!l, it follows that Iw(t)l  2 ItiJ(t)l for all 
t 2 0. Now, according to (34) ,  G(t)  # 0 for t 2 0. Thus 
w ( t )  # 0 for t 2 0. 

Next we show that limt-- w ( t )  = 0. Since lw(2)l 2 
Itij(t)l for all t 2 0, where G decays exponentially with 
rate ( IC + p ) / 2 ,  we have 

Since Q > ( IC + P ) / 2  this term is exponentially decreasing. 
Moreover, since R e ( z a )  5 I z I I u ~ ~ ,  from equation (33) one 
obtains 

From (36), Iim,,,(lz(t)l/lz(p(t)I)=O; hence one can read- 
ily show that limt-, ut(t) = 0. Since w is continuous, it 
must also be bounded. 

We now show that the variable 9 = s/lwl' is bounded 
and asymptot,ically converges t.0 zero. The evolution of 9 
is governed by 

Since limt,, w ( t )  = 0, limt-, t ( t ) / w ( f )  = 0, and p - 
IC > 0, one can now readily show that q ( . )  is bounded and 
limt-, q ( t )  = 0. 

It now follows that s(-) is bounded and converges 
to zero asymptotically. We have therefore shown 
that the solutions of (32) are bounded, and that 
timt,,(5(t),w(i),s(l)) = 0. 

Since limt-,9(f) = 0, one also has from (31) that 
limrdoow(t) = 0. It is easy to check that g in (37) is 
bounded and tends to zero as t -+ 00. Therefore, U is 
bounded and Emt,, u(f) = 0, as claimed. Tliis coin- 
pletes the proof. 

Corollary 3.1 Under the hypotheses of Theorem 3.2 toe 
hove t h o t l i m t - , ( w ~ ( t ) , w 2 ( t ) , 4 ( t ) , B ( t ) , ~ ( t ) )  = 0. 

So far, we have demonstrated that for initial conditions 
with w(0)  # 0, it is possible to construct a control that 
will drive system (8)-(9) to the origin, with (4.8, di) avoicl- 
ing the one-diniensional manifold 

i A  Jv = {(@,@;$h) : 6 = B = O , $  # 0) 

The previous methodology cannot be used if the initial 
condition is such that 4(0)=0(0)=0 and tl,(O)#O (ui(O)= 

0 and s(O)#O). Linearization of system (loa)-(lob) about 
w = 0 however, gives 

w = u  (394 

(39b) 
W & = -  
2 

The linearized system about w = 0 is completely control- 
lable, and by choosing, for example, a constant control 
U = uc E C, one can move away from NI. Once away 
from n/' one can use the control (27) t o  drive the system 
to the origin. We summarize the control strategy to  drive 
to  the origin w1 =w2 =tj=e=$=O from arbitrary initial 
conditions. 

if w = O a n d s # O  
if otherwise 

Remark 1 The reader should not be misled to  think 
that the integration of equations (13) is a coincidence at- 
tributable to  the particular Eulerian angles used. In fact, 
the complete integration of the system is a direct con- 
quence of the integrability of the new kinematic equation 
(6) for w (which is independent of the Eulerian angle set 
used) under the feedback control w = -ICW. To make this 
point clear, in the following equation we give, without 
proof, an expression for the manifold S as a function of 
( w ,  $) instead of (4, B,  $). 

s = { ( W , $ ) E C x ( - I , I ] : 3 ( w , $ ) = 0 }  
~ ( w ,  $1 = 9 + arctan(Re(w')/Zm(w')) 

- arctan((lwl' + Re(w2)) / Im(w2))  

This can be derived directly from equations (12) and (7), 
without the need to resort to equations (13). 

Remark 2 Notice that equation (5) establishes a smooth 
change of coordinates (i.e., a diffeomorphism) between 
(wl ,w2)  and (d,e), for all (4,e) which do not corre- 
spond to an "upside-down" configuration of the rigid body 
(e = 0,4. = I); in this case w = 00. Thie permits the use 
of equation (6) instead of equations (4a)-(4b) in stabiliza- 
tion problems, since stability of w implies in particular 
that w ( t )  < 00 for all i > 0. Of course, one has to  take into 
consideration the case when initially the rigid body has 
this singular configuration; however, we can always avoid 
this problem by simply turning the thrusters on to  move 
away from this initial orientation. 

As a final remark we note that the difference between 
the current control strategy and the control strategy of 
[5], where the same problem is investigated, is that in [5] 
tl authors intend to render the one-dimensional manifold h)e attractive, whereas in the current work we intend to 
avoid h/' and render attractive the invariant manifold .S. 
We have demonstrated a control strategy that for initial 
conditions (q50,80,$0) e Aft drives the system to the ori- 
gin with the proper choice of feedback gains. If the initial 
conditions are on n/' then one must first move owoy from 

in order to go to the origin, i.e., the control strate 
is nonlocal in nature. This can be achieved either by tE 
methodology described eartier, or by the techniques of [SI. 

4 Numerical Example 
We illustrate the previous ideas with a numerical example. 
Consider a large angle maneuver of a symmetric space- 
craft that is initially a t  rest ( w l ( 0 )  = wa(0)  = 0) and with 
initial orientation given by 4(0) = r,e(O) = 0.251,$ = 
-0.51. This initial data is taken from [5] for comparison. 
The controller is given by equation (27). The feedback 
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gains are chosen as IC = 0 . 5 , ~  = 1.25 and U = 2. The 
results are shown in Figs. 4 and 5. This problem corre- 
sponds to an initial condition not on the manifold S (eee 
Fig. 3). In the first five seconds the configuration is driven 
to S and once on S the system exhibits exponential decay 
to the origin as predicted by Lemma 3.1. 

Phi lOl=Pi. lhctaKll=Pi/4, Ps i  IOl=-Pi/2 

1 
5 IO 15 20 25 

R 
‘ 0  

T I s u )  

Figure 4: Angular velocities w1 and w2. 
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................ I ..................................................... T 

.................................................... 1 .................. 
.............. i ................ : ................. i ................. : 

................................... j ................. f 

Figure 5: Eulerian angles 4, 8 and $. 

5 Conclusions 
We have demonstrated a control strategy that achieves 
arbitrary reorientation of a rotating s acecraft, when the 
two available control torques span t i e  two dimensional 
plane perpendicular to the axis of symmetry, under the 
assumption that the initial spin-rate is zero. Integrating 
the complete closed-loop system of the kinematic e y  
tions we have constructed a two-dimensional man1 old, 
which is used to derive a feedback control that drives the 
complete system to the origin from arbitrary initial condi- 
tions. The control design methodology is based on a novel 
formulation of the attitude kinematics, which promises to 
be extremely useful for control and/or Stabilization pur- 
poses. 
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