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Abstract 

A new model for tethered satellites in low orbit, where atmospheric effects are significant, is 
developed. The model allows the analysis of the dynamic behavior of tethered satellites in a 
general orbit. The results obtained for a system in circular orbit compare favorably to previous 
work. The behavior of tethered systems performing aeroassisted orbital maneuvers is also 
simulated. In particular, the cases of elliptic orbit transfer and hyperbolic aerocapture are 
presented. The results in the elliptic case indicate that orbital maneuvers can be performed with 
small tension forces in the tether. In the hyperbolic case the behavior is not so benign, because the 
forces are quite large, but the utilization of tethers for aerocapture appears to be physically 
feasible. 

Introduction 

In recent years, with the development of new 
materials, the concept of long tethers in space has 
become feasible. Many applications for these systems 
have been proposed,ls2 including the deployment of 
tethered spacecraft in the upper atmosphere of a planet. 

The analysis of a tethered satellite is very 
complex, more so if the effects of an atmosphere are to 
be taken into consideration. For this reason the early 
research on the subject utilizes simplifying assumptions 
to facilitate the understanding of the basic behavior of 
the system. The most common assumption is to 
decouple the orbital motion from the rotational motion 
of the This assumption works 'very well 
for short tethers in circular orbit, but for long tethers the 
changes in attitude have a greater effect on the orbital 
motion and vice versa. Also if the tether is not in a 
circular orbit the attitude of the system is affected by the 
changes in position and angular velocity during the 
orbit. For this reason a circular orbit is also assumed in 
most cases.3" Another common assumption is to model 
the tether as a rigid This assumption is 
reasonable in most cases, even when small aerodynamic 
forces are p re~en t ,~  but if there are large aerodynamic 
forces, or if the tether undergoes large rotations this 
assumption must be questioned. The tether is also often 
assumed to be mass~ess,~.~ which works well with short 
tethers, but as the tether length is increased, its mass has 

an increasing effect on the behavior of the system. One 
last assumption which is very often found in the 
literature is to constrain the motion of the system to the 
orbital For most applications this is a good 
approximation since the disturbances on the system in 
the out-of-plane direction are very small, and have little 
effect on the in-plane motion. 

When the aerodynamic forces are included in the 
model the analysis gets much more complicated. 
Although several applications of tethered systems in low 
orbit have been proposed,lg not much research has 
been done in this area. 

In this paper a model for a long tethered satellite 
in low orbit is presented. The model takes into 
consideration some of the behavior that was left 
unexplored in earlier work. In particular, the coupling 
between the orbital motion and the attitude motion are 
taken into account. In addition, the distributed effects of 
drag and mass along the tether are carefully modeled. 
The only remaining assumptions of the literature that 
have been retained are rigid rod and planar motion. This 
improved model makes possible the study of some of the 
applications proposed for tethered satellites which have 
not yet been fully analyzed, such as aerobreaking 
tethers. 

The paper is organized in the following manner. 
First the new model is developed, starting from the more 
general assumptions just mentioned. Then the equations 
of motion are derived using Newton's law for the 
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translational motion and Eulcr's law for the rotational 
motion. Next numerical results arc prescntcd and 
compared with some of the previous work on the 
subject3 for the special case of circular orbit. New 
results for hyperbolic aerocapture and elliptic orbit 
aeroassist are also presented. 

Equations of Motion 

Modeling Assumptions 

The tethered system modeled in this paper, shown 
in Fig.1, consists of two spacecraft, an orbiter of mass 
m, and a probe of mass m,, conncctcd by a thin tether 
of length I .  

These assumptions simplify the analysis 
significantly, but the fundamental bchavior of the system 
is maintained. The model is general enough to allow the 
analysis of arbitrary initial orbits and includes the 
coupling between the orbital and rotational motions. 
The aerodynamic effect of an atmosphere is also 
included in order to study the behavior of tethered 
systems in low orbit. 

The development of the equations of motion is 
divided into two parts. First the translational equations 
of motion for the center of mass of the system are 
developed using Newton's Law: 

F = ma, (1) 

Then the rotational equation of motion of the system 
about its center of mass is developed using Euler's Law: 

The equations are expressed in a frame which rotates 
with the orbit and is represented by the vectors el and C2 
in Fig. 1. 

Translational Equations of Motion 

The acceleration of the center of mass with 
respect to the center of the planet, which is assumed to 
be inertially fixed, is easily found as: 

where R represents the distance from the center of mass 
to the center cjf the planet and 8 is the angle along the 
orbital path. 

If the linear density of the tether is defined as q, 
then the total mass of the system is given by: 

Gravitational Forces 

Fig. 1 Tethered system. 

The system is moving in a gcneral orbit around a 
rotating planet which may have a significant 
atmosphere. The bchavior of this systcm is very 
cornplcx. In order to simpliry the analysis some 
assumptions are made. First, since spacecraft are 
usually small comparcd with the tcthered systcm, the 
orbiter and the probe are assumcd to bc particles. Next 
the motion of the tcther is constraincd to thc plane of the 
orbit. This works well in most cases since the out-of- 
plane disturbances are small. In addition the orbit is 
assumcd to be equatorial and the atmosphere is assumed 
to rotate with the planct. Finally the tether is modeled as 
a rigid rod. This assumption is often made in the 
literature and it has proven to be reasonable in most 
cases.3 

The gravitational forces are found assuming an 
inverse square model. For the two particles the forces 
are: 

F, = - pno[(R + I ,  cos a)cl + l o  sin a ~$I/R; (5) 

F, = - pm,[(R - I ,  cos a):, - I ,  sin a c2 1 / ~ ;  (6) 

where p is the gravitational parameter for the planet, a 
represents the angular rotation of the tether with respect 
to the vertical direction, and I ,  and 1, are the lengths 
along the tether from the center of mass to the orbiter 
and the probe respectively. R, and R, are the respective 
distances from the center of the planet and can be 
written as: 

R, = d~~ + 1; - 2Rlp cos a (8) 
Since the tether is not massless, the gravity force must 



be integrated along its length. This integration can be 
easily performed and the expression for the force acting 
on the tether is: 

r 

1 -- 
sin a 

Drag Forces 

The aunosphcric density of the planet p, at radius 
Ri is modeled as an exponential function: 

(IIr-Ri+Rp1 )lH 
Pi = p,e (10) 

where p, is the reference density at the reference altitude 
H,, H is the scale height, and Rpi is the radius of the 
planet. The atmosphere is assumed to rotate with the 
planet. The drag force for a body moving through an 
atmosphere can be written as: 

F = - %pCDSVV (11) 

Where CD is the drag cocflicient, S is the frontal area of 
the body and V is its velocity with respect to the 
atmosphere. Using this equation, expressions for the 
drag forces acting on the two masscs are: 

FDo = - ~poCDoS,VoVo (12) 

FDp = - ~ / Z P ~ C ~ ~ S ~ V ~ V ~  (13) 

where CDo and CDp are the drag cocfficienls for the 
orbiter and the probe respectively, and So and S, 
represent their frontal areas. Note that the masses are 
assumed to be spherical and the frontal area does not 
change with the orientation. p, and pp represent the 
atmospheric density at the orbiter and probe altitudes as 
given in Eqn. (10). V, and Vp represent the wind 
velocities: 

v, = [R- l o @ +  & -  R) sin a]Cl (14) 

+ [ ~ ( i )  - R) + 1,(0 + & - R) cos aX2 

V, = [R + 1,(6 + & - R) sin ( 1 3  

where l2 is the angular velociry of the atmosphere. Note 
that the orbit is assumed to be equatorial, which means 
that the velocity of the atmosphere has no components 
perpendicular to the orbital plane. The drag force acting 
on the tether is found by integrating the aerodynamic 
effects at every point on the tether, since the density and 
the velocity vector change significantly along the length 
of the tether. The force acting on a differential tether 
element is given by: 

whcrc CDT is the drag coefficient of the tether, assumed 
constant along the length, V, represent the velocity, with 
respect to the atmosphere, of a differential portion of the 
tether located at a distance x from the center of mass, R, 
is its distance from the center of the planet, and dST is 
the differential tether area perpendicular to the wind 
velocity. To simplify the integration, the tether is 
divided into two sections which are analyzed separately. 
These sections are given by I, and Ip which are the 
segments of the tether above and below the center of 
mass, respectively (see Fig.1). Now V, and R, can 
easily be written as functions of x and previously 
defined variables as: 

v,, = [R - x(0 + & - R) sin alel (17) 

R,, = dR2 + x2 + 2xR cos a (18) 

for the upper section of the tether and: 

v,, = [R + x(9 + a - R) sin (19) 

R, = 4 ~ '  + x2 - 2xR cos a (20) 

for the lower section. In this case the differential frontal 
area is not as simple as for the two masses, since its 
value depends on the tether orientation and the direction 
of the wind velocity vector at a given point on the tether. 
To take this effect into consideration the differential area 
can be written as: 

where d represents the diameter of the tether, dx is a 
differential length along the tether, and G2 is a unit 
vector perpendicular to the tether and aligned with ?2 
when a is zero (see Fig.1). To ease the integration a 
sign function, sgn ( ), can be introduced, and 
assuming that there is no change in the sign of V, 6, 
along the tether, the differential area can be written as: 

where V, is the tether velocity at the end of the tether 
section. The case where the sign of V, i2 does not 
remain constant can be solved by first finding the point 
in the tether where the sign change occurs, and then 
breaking the integrals into two sections corresponding to 
the two different signs. We call this point the 
aerodynamic switching point, because it corresponds to 
a position on the tether at which the direction of the 
normal wind velocity switches. Writing V,, V, and G2 
in terms of previously defined variables, the differential 



area expressions for each tether section become: 

dSTo = (sgn[- R sin a + ~ ( i )  - R) cos a 

+ 1,(8 + & - n)] 

[ - ~ s i n a + ~ ( i ) - R ) c o s a  

+ x(8 + a - R)]~/V, ~ d x  

dSTp = (sgn[- R sin a + R(0 - R) cos a 

- rp(B + a- n)i  

[ - ~ s i n a + R ( 0 - - R ) c o s a  

- x(e + - Q)]d/V,)dx 

Using these expressions in the equations for the 
differential forces and integrating, the total drag force 
acting on the tether is: 

FDT = - sp,cDTd [ ~ ( 8  - R) cos a 

- R sin a l ~ ( 6 , ~ ~ ~  + 6,IP1) 

- R(C) - R) sin a cos al(6,I02 - 8,1P2) 

- (0 + it - nl2 sin a(60~03 + 6,1,~) Z1 I 
+ [ ~ ( e  - R) cos a - R sin alR(0 - R)(6,IOl + 6,IPl) { 

- R sin a cos a1(6,IO2 - 6,1p2) 

. 

where 

6, = sgn(Vlo 62) (26) 

1 = jlPx"l e-R'"dx 
P " 0  

(29) 

where R,, and Rap are given in Eqns. (18) and (20). 

This is the exact drag force expression for the tether. It 
can be combined with the expressions found previously 
to obtain the equations of motion for the center of mass 
of the system, but the integrals must be solved 
numerically. At this point an assumption can be made to 
simplify the expressions, Eqns. (28) and (29), and make 
them integrable. The problem originates from the 
square root terms, Eqns. (18) and (20). By using the 
approximations 

the integrals reduce to the form: 

and can be integrated to give: 

The assumption is equivalent to considering the position 
vectors to be parallel, so that the angles Po and Pp are 
small (see Fig.1). This approximation is valid when the 
tether is short, or in the case of long tethers when the 
orientation of the tether is close to the vertical (i.e. a 
small). Finally the equations of motion for the center of 
mass of the system are obtained from Eqns. (I), (3)-(6). 
(9h (121, (13). (25): 

.2  
(m, + m, + ql)& - RB ) = (F, + Fgp (36) 

+ FgT + FDo + FDp + FDT) el 

Rotational Equation of Motion 

Since the system is assumed to move in the plane 
of the orbit it has only one rotational degree of freedom, 
therefore only one equation of motion is obtained from 
Euler's law. 

The angular momentum of the system about its 
center of mass is: 

again, written in the ? frame, which is moving with the 
orbit (see Fig.1). The time derivative of this vector is: 



Next the torques acting on the system about its 
center of mass are found. For the two masses the 
torques are obtained using the expressions for the forces 
derived in the previous section. The moments produced 
by the gravity forces acting on the masses are: 

ME, = pm,Rl, sin aJR:t3 (40) 

M,, = - pmpRlp sin @,'E3 (41) 

The aerodynamic forces acting on the masses yield the 
following moments on the system: 

M h = -  % p o ~ , ~ o l o ~ o [ ~ ( 8  - 0) cos a, (42) 

- R sin a + 1,(9 + a - 

MDp = ? h p p ~ D p ~ p l p ~ p [ ~ ( e  - Q) cos a (43) 

- R sin a - 1,(0 + a - 

The moments due to the tether are found by 
integrating along its length. For the gravity torque the 
integration is not difficult and gives the following 
expression: 

The expression for the drrig moment is more complex 
and it is analyzed following the same approach that was 
used to obtain the drag forces in the previous section. 
Given the differential force in Eqn. (14), the differential 
moment for a differential tether element is written as: 

for the upper section and: 

for the lower section. These expressions can be used to 
obtain the following equation for the aerodynamic tether 
torque: 

- R sin a]*(6,1~2 - ZpIp2) 

+ 2(0 + a - Q)[R(~  - Q) cos a 

- R sin a](6,IO3 + IjpIp3) 

+ (6 + & - ) 2 6 0 1  - $I@)} E3 (47) 

where, again, the integrals are given by Eqns. (28) and 
(29). The parallel vector assumption, Eqns. (30) and 
(31), permits the replacement of the integrals by the 

approximations in Eqns. (32) and (33). Now from Eqns. 
(39)-(44) and (47) the rotational equation of motion is 
given by: 

Constants of the Motion 

In low orbit, where the effects of an atmosphere 
are significant, there are no conserved quantities for the 
system. In the drag free case some constants of the 
motion exist. The analysis of these constants provides 
some understanding of the fundamental behavior of the 
system. First the total energy is known to be constant 
since the only force present, gravity, is conservative. 
The kinetic energy for the system is: 

J 

and the gravitational potential energy is: 

+In[ R p + l p - R c o s a ] ] )  R( l -  cos a )  

The total energy of the system is: 

The kinetic and potential energies can be also 
used to write the lagrangian: 

Since the lagrangian is not a function of 8, another 
constant is given: 

aL - = const. 
aC, 

(53) 

Differentiating Eqn.(52), the constant is: 

(m, + mp + q l ) ~ 2 8  + (54) 

+ q/3 (1: + 1,') (dc + 8) = const. I 
which is the angular momentum with respect to the 
center of the planet. 



Tether Tension 

The tension in the tether can be easily calculated 
at the points where it connects with the orbiter and the 
probe by using Newton's law (Eqn. (1)). The 
accelerations of the orbiter and the probe are: 

+ ~0 + 2 ~ 8  + l o  [(a + 8) cos a 

- (0 + ci12 sin a cz 11- 

The orbiter and the probe are acted upon by 
aerodynamic, gravitational and tether forces. 
Expressions for the gravity and drag forces acting on 
both vehicles are given in Eqns. (3, (6), (12) and (13). 
The tether forces are the only unknowns, and can be 
written as: 

for the orbiter, and: 

for the probe. These equations are written in the i. 
vector frame. To analyze tether tension it is more 
convenient to utilize the 6 frame, which is fixed in the 
tether (see Fig.1). The vector transformation is: 

C,) cos a + (T . Z2) sin a 

. t , )  sin a + (T t2) cos a 6 2  I 
Note that the 6, componcnt of the force, perpendicular 
to the tcthcr, is nonzero in gcncral because the tether is 
assumed to be a rigid rod. This component of the tether 
force provides an indication of the accuracy of the rigid 
rod approximation. The component, directed along 
the tethcr, can be positive or negative since a rod can be 

loaded in compression as well as in tension. The 
presence of compressive forces is unacceptable for a 
tethered system, and care must be taken to ensure that 
they are never encountered in the proposed applications. 

Equilibrium Positions 

In this section we analyze equilibrium positions 
where the angle a, which represents the tether 
orientation, is constant. The behavior of a is given by 
the rotational equation of motion, Eqn. (48). The left 
hand side of the equation shows a direct relation 
between the changes in 8 and a. Recall that 0 represents 
the orbital angular motion. This relationship makes it 
impossible to have equilibrium conditions in orbits 
where the changes in 8 arc not equal to zero, which 
means that equilibrium can only be found in circular 
orbits. Note that the relation between the behavior of 
the two angles also implies that the orbital motion is 
directly affected by the satellite motion; therefore, if the 
tether is not in equilibrium a perfectly circular orbit can 
not be maintained. 

For a circular orbit, 8 can be eliminated from the 
equation. At this point, the equilibrium condition is 
found by setting the right hand side of Eqn. (48) equal to 
zero. This gives the tether orientation where the sum of 
the moments acting on the system is equal to zero. If the 
aerodynamic effects are ignored, then two equilibrium 
orientations are found. First, a stable one is easily found 
for a equal to zero (in the limit). The second one is 
unstable, and it is located at a equal to d2 when the 
masses of the orbiter and the probe are equal. The 
solution moves away from that value as the mass ratio of 
the two vehicles changes, and numerical techniques 
must be utilized to obtain the solution since the equation 
becomes transcendental. When the drag effects are 
included two solutions are also possible if the 
assumption of circular orbit is maintained. Their values 
are close to those found in the drag free case for small 
aerodynamic effects. The differences increase as the 
aerodynamic torques become more significant. The 
stability of these solutions is similar to that of the drag 
free cases, with the solution close to zero being stable 
and the one close to rtf2 being unstable. For all mass 
ratios the equation is transcendental when the drag 
torques are included and both solutions must be obtained 
utilizing numerical methods. Note that to maintain 
circular orbit, necessary for the equilibrium conditions, 
thrust must be applied to the system to cancel the drag 
forces. (Otherwise, the orbit would decay.) 



Numerical Results Table 2 Equilibrium Conditions in Circular Orbit 

In this section the equations obtained previously 
are utilized to numerically simulate various tethered 
systems in orbit including the cases of circular orbit, 
elliptic orbit and hyperbolic aerocapture. 

Circular Orbit 

An analysis of a tcthercd system for the 
exploration of the planet Mars is found in Ref. 3 and has 
provided a source of inspiration to the authors. The 
systcm consists of an orbitcr and a probe connected by a 
long thin tether. The probe is low enough to make the 
aerodynamic effects on the system significant. The 
model3 is limited to the case of a spacecraft maintained 
in circular orbit by continuous thrust. As discussed 
earlier, an equilibrium position for the system is 
possible. The new model presented above is generally 
applicable to all types of orbits and so includes this 
special case as a subset. It is interesting to compare the 
results of Ref. 3 with the new model. 

Thrusting Case 

The input values given in Table 1 are taken from 
the analysis in Ref. 3. These values provide the physical 
characteristics of the system and the orbit in which it is 
moving. Several cases are studied utilizing different 
tether lengths and orbit radii. Using these data the 
equilibrium position can be found numerically, and 
represents the tether orientation where the torques acting 
on the system cancel. Note that the analysis includes a 
thrust force acting on the orbiter that cancels all forces 
except the radial component of gravity. For a tether 
length of 190 km the equilibrium angle a is found to be 
0.665'. Once the equilibrium orientation is found, 
values for all forces and moments present are also 
available. The dynamic behavior of the system can also 
be simulated and it is 

Table 1 Tethered system parameters 

Orbiter Mass 
Orbiter CD, 
Orbiter Frontal Area 
Probe Mass 
Probe CDp 
Probe Frontal Area 
Tether Linear Density 
Tether CDT 
Tether Diameter 

Tether Orbit Equilibrium 
Length Radius (cm.) 0: 

The differences are due to the fact that the model in Ref. 
3 included some additional simplifying assumptions 
such as constant velocity along the tether and parallel 
position vectors. This last assumption eliminates gravity 
forces in the z2 direction, which can be of the order of 
10 Newtons in some cases, and also eliminates drag 
forces in the 2,  direction. Both of these forces affect the 
value and direction of the thrust required to maintain 
circular orbit. Overall, the two models are in close 
agreement about the behavior of the system. Note that 
the new model is not restricted to the study of systems in 
equilibrium. The dynamic behavior of tethered 
spacecraft with no thrust available or initially placed at 
nonequilibrium positions can also be analyzed, as shown 
in the next subsections. 

Non-Thrusting Case 

The case of a spacecraft initially placed in a 
circular orbit at the equilibrium position but with no 
thrust available is discused next. This case demonstrates 
the possibility of using the new model to analyze 
systems with complicated behavior, where there is a 
smng coupling between the orbital motion and the 
tether orientation. This coupling is given by the fact that 
the orbital motion is continuously changed by the drag 
forces which are determined by the altitude of the orbit 
and the attitude of tether. The input values are again 
taken from the analysis in Ref. 3, in particular the case 
where the tether length is 212 km. The equilibrium 
angle is found to be 0.533'. Note that it is different than 
before since no thrust forces (nor their associated 
torques) are present in this case. The dynamic behavior 
of the system is shown in Fig. 2. The results clearly 
show the changes in the tether orientation and the orbit 
decay caused by the drag forces. 

found that, as expected, the system maintains the same 
orientation for all time. The rcsults obtained are shown 
in Table 2, and are similar to those found in Ref. 3. 
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Fig. 2 Non-thrusting case. 

Elliptic Orbit 

An aerobraking tether can be used to reduce the 
eccentricity of a spacecraft in an elliptical orbit. The 
aeroassist maneuver is performed by dropping a probe, 
connected to the spacecraft by a long tether, into the 
upper atmosphere of the planet. In this approach only 
the probe travels through the atmosphere, eliminating 
the aerodynamic requirements (such as heat shielding 
and aerodynamic streamlining) on the orbiter. Large 
orbit changes can be obtained with one pass through the 
atmosphere, but the material strength requirements on 
the tether may be extreme. The loads on the tether are 
largely reduced if the maneuver is performed in several 
passes. A simulation of one such pass is shown here. 
The spacecraft studied is the one used in the circular 
case with a tether length of 260 krn. The spacecraft is 
initially placed in an elliptic orbit with eccentricity 0.5 
and semimajor axis 7250 km (assuming the tether is a 
point mass). The simulation starts with the spacecraft 
placed away from the atmosphere and with an attitude 
that places the probe in the atmosphere at periapsis, 
where the breaking maneuver takes place. The results, 
given in Fig. 3, show the effect of the aerodynamic drag 
on the orbit. The forces found in the tether have a 
maximum value of approximately 1500 Newtons. This 
value exceeds the strength of the tether described in Ref. 
3, but is acceptable given the strength of currently 
available materials. These results are very encouraging 
and open the way to the development of a new type of 
spacecraft to be used in planetary exploration. It should 
be noted that the probe may be equipped with sensors 
for atmospheric studies or may even be designed to land 
on the planet after the maneuver is completed. This 
allows the probe to provide scientific data at the same 
time that the aerobraking eliminates a propulsive 
maneuver. 

However, the rigid rod ap'proximation presents 
some problems since large components of the forces 
acting on the tether are directed perpendicular to it. The 
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Fig. 3 Elliptic transfer. 

maximum angle bctween the tether and the force is close 
to 80'. This result is inconsistent with the flexible 
behavior characteristic of a thin tether. It should be 
noted, however, that the results of the flexible tether 
analysis in Ref. 3 show that it is possible to have 
transverse force components at the exEemes of the 
tether while most of it remains straight. The analysis 
must eventually be extended to the case of a flexible 
tether, but these preliminary results are very positive. 

Hyperbolic Orbit 

The utilization of aerobraking tethers for 
aerocapture presents some advantages over conventional 
vehicles. The orbiter is maintained in a high orbital path 
away from the atmosphere, which eliminates the need 
for thermal protection in the orbiter. The drag acting on 
the probe serves a double purpose. First it slows the 
entire system to place it in orbit around the planet. 
Second, after severing the tether, the probe can be 
delivered to the surface of the planet. The significant 
advantage of this system is that no propulsive braking 
maneuver is required. In addition, a long tether may 
avoid the sensitivity problems of conventional 
ae r~ap tu re .~  The aerobraking problem is simulated 
using the parameters of Table 1 with a tether length of 
290 km. The hyperbolic orbit is chosen to represent a 
general Earth to Mars transfer (eccentricity 2.0 and 
semimajor axis -3485 krn). The initial radius is taken far 
away from the planet where atmospheric effects are not 
present. The initial tether orientation is chosen so that 
the natural motion of the system places the probe at a 
low altitude during periapsis, when the drag effects are 
more significant. The energies of the system and of the 
individual particles (the probe and the orbiter) are 
monitored to determine the point at which aerocapture is 
achieved. The behavior of the system is shown in Fig. 4, 
where dramatic changes in R and a occur at the time 
when the energy of the system becomes negative (at 
approximately 1000 seconds). These results indicate 
that aerocapture can be achieved. 
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Fig. 4 Hyperbolic aerocapture. 

This possibility leads to some exciting implications that 
may have significance in future space vehicles. 
However some problems remain unsolved. Very large 
tension forces, up to 20,000 Newtons, are present. This 
indicates that a strong tether is required, and with 
present materials this implies great mass. Alternatively, 
new materials may provide greater strength. The forces 
also indicate that, as in the elliptic uansfcr case, the rigid 
rod model is not entirely valid since some transverse 
components and even compressive components are 
found in the rigid tether. As mention before,  he flexible 
tether analysis in Ref. 3 indicates that the rigid tether 
model may be a good approximation even in cases 
where the teher forces at the masses are not consistent 
with a flexible tether. Eventually the effects of 
flexibility must be included in the analysis, but these 
prelimipary results indicate that aerocapture with tethers 
is possible. 

Conclusions 

The results obtained with the new tether model 
indicate that the use of tethers in an atmosphere is 
feasible for circular and elliptic orbits. For aerocapture 
from hyperbolic orbit, the forces are very large, but the 
behavior of the system is quite acceptable. These large 
forces are of course closely tied to the physical 
parameters of the particular problem studied here. 

References 

'~ar ro l l ,  J.A., "Tehcr Applications in Space 
Transportation," Acta Astronautica, Vol. 13, No. 4, pp. 
165-174, 1986. 

2~ethers  in Space Hand Book, Office of Space Flight 
Advanced Programs (N.A.S.A.), Washington, 1986. 

3~orenzini, E.C., Grossi, M.D., and Cosmo, M., "Low 

Altitude Tcthercd Mars Probe," Acta Astronautica, Vol. 
21, NO. 1, pp. 1-12, January 1990. 

4~reakwell, J.V., and Gearhart, J.W., "Pumping a 
Tethered Configuration to Boost Its Orbit Around an 
Oblate Planet," Journal of the Astronautical Sciences, 
January-March 1987. 

'~ rnold ,  D.A., "The Behavior of Long Tethers in 
Space," Journal of the Astronautical Sciences, January- 
March 1987. 

%nh, N.X., Johannesen, J.R., Longuski, J.M., and 
Hanson, J.M., "Second-Order Analytic Solutions for 
Aerocapture and Balistic Fly-Through Trajectories," 
Journal of the Astronautical Sciences, Vol. 32, No. 4, 
pp. 429-445, October-December 1984. 


