
AN ANALYTIC-GEOMETRIC MODEL OF THE EFFECT OF SPHERICALLY DISTRIBUTED INJECTION ERRORS FOR 
GALILEO AND ULYSSES SPACECRAFT: THE MULTI-STAGE PROBLEM* 

James M. long us^ * 
and 88-4245-CP 

Angus D. McRonald** 

Jet Propulsion Laboratory 
California Institute of Technology 

Pasadena, California 91109 

Abstract 

In previous work the problem of injecting the 
Galileo and Ulysses spacecraft from low earth 
orbit into their respective interplanetary trajec- 
tories has been discussed for the single stage 
(centaur) vehicle. The central issue, in the event 
of spherically distributed injection errors, is 
what happens to the vehicle? The difficulties 
addressed in this paper involve the multi-stage 
problem since both Galileo and Ulysses will be 
utilizing the two-stage IUS system. Ulysses will 
also include a third stage: the PAM-S. The solu- 
tion is expressed in terms of probabilities for 
total percentage of escape, orbit decay and reen- 
try trajectories. Analytic solutions are found 
for Hill's Equations of Relative Motion (more 
recently called Clohessy-Wiltshire Equations) for 
multi-stage injections. These solutions are 
interpreted geometrically on the injection sphere. 
The analytic-geometric models compare well with 
numerical solutions, provide insight into the 
behavior of trajectories mapped on the injection 
sphere and simplify the numerical two-dimensional 
search for trajectory families. 

Jntroductioq 

A previous paper1 addresses the single stage 
problem for Galileo and Ulysses in which the Cen- 
taur vehicle was planned to be used for both 
injections. The current plan is to use the IUS 
system, which means that the Galileo will have two 
stages and the Ulysses will use three stages, the 
third being a PAM-S. There will be time delays 
between stages so that the analytic solutions used 
in the past are invalid. A n  entirely new analysis 
is required for the multi-stage problem. The 
numerical method for the analysis is the same as 
in previous work.293 

The numerical approach involves selecting a 
pointing direction for iajection in inertial space 
defined by a cone angle, A, and a clock angle, B, 
and then numerically integrating the trajectory to 
find the resulting conditions. It is assumed that 
the misalignment of the injection can take place 
anywhere on the sphere. The probability associa- 
ted with each identified case is found by numeri- 
cal integration over the sphere. The types of 
cases identified are escape trajectories, powered 
entries (entry while the vehicle is still thrust- 
ing), orbit decay and prompt and delayed entries. 
Several points must be selected on the sphere in 
order to obtain enough reenlts to accurately cate- 
gorize the reentry types and to assign 
probabilities. 

The main problem with the numerical approach 
is that it is tedious and time consuming. The 
goal of this paper is to generalize the analytic- 
geometric models of the previous paper to include 
the multi-stage case. Before discussing the 
multi-stage case, the impulsive injection and sin- 
gle stage cases will be reviewed. 

The Velocity Svhere for Imuulsive Infection from 
Circular Orbit 

Fig. 1 illustrates the velocity sphere of all 
possible injection orientations from circular 
orbit. The radius of the sphere is equal to a 
coflstant, VI. For a specific injection the 
orientation of VI is defined by a cone angle, A, 
and a clock angle, 8. Note that these angles are 
analogous to qo-latitude (for A) and longitude 
(for 8). If the cone angle A is zero, then the 
injection velocity is aligned with the circular 
velocity vector and the vehicle achieves its maxi- 
mum energy. A cone angle of 180" will result in 
the minimum energy. Clearly the cone angle, A, 
determines the orbital energy the vehicle 
receives. The clock angle, B, determines the 
angular momentum (to be shown later). For a given 
value of A, B = 90° will result in the maximum 
flight path angle, while B = -90° corresponds to 
the minimum. 

The Escaoe Cone in the AB Plane. We will now 
consider the escape trajectories resulting from 
spherically distributed injection errors. 

Fig. 2 illustrates the escape cone resulting 
from such a simple model. Since 

and from the law of cosines 

we obtain from Eqs. 1 and 2 

The fractional area, Sea,, encompassed by the 
eacape cone ie given by 

In the AB plane the escape cone appears as a 
straight line, as shown in Fig. 3. 
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Fig. 1. Coordinate system for velocity sphere 

In Fig. 2 all trajectories with cone angles 
less than or equal to Aesc have the necessary 
energy for escape. However, not all of these 
cases result in actual escape because those having 
negative flight path angles may reenter before or 
during the pass through periapsis. For low Earth 
orbit, nearly half of the trajectories with escape 
energy will reenter. 

Thus, a more complex problem arises, namely 
the identification of the contour separating the 
reentry and escape trajectories (among the escape 
energy cases) and the integration of the area 
bounded by the upper half escape cone and the con- 
tour in question. 

For simplicity it is assumed that any trajec- 
tory with a periapsis equal to or below the atmo- 
sphere boundary (assumed here to be at 400,000 
feet) will result in reentry. Thus, we are inter- 
ested in the families of trajectories having con- 
stant periapses, which will be referred to as k 
periapsis contours. 
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Fig. 2. rhe escape cone 

Fig. 3. Escape trajectories in the AB plane 

In the next two sections, the equation of the 
isoperiapsis contour will be derived and the inte- 
gral of the area bounded by the escape cone and 
the isoperiapsis contour will be specified. This 
integral gives the true area on the sphere of the 
escape trajectories for impulsive injection. 

The Isooeriavsis Contour in the AB Plane. As 
discussed above, the isoperiapsis contour will be 
used to divide the escape cone into two regions: 
trajectories which escape and trajectories which 
reenter due to a periapsis lower than or at the 
atmosphere boundary. 

Consider the family of trajectories with 
rp = constant. The energy and angular momentum 
equations are 



where r and Vp are the periapsis radius and 
periapsfs velocity, respectively. Since we are 
interested in isoperiapsis contours, rp is 
assumed constant in Eqs. 5 and 6, but H and E are 
not assumed to be constant for the various fami- 
lies of trajectories under consideration, since 
VT is a varying function of the cone angle, A: 

+ ZVcVI cos A + (7) 

The flight path angle, YT, is a function of both 
cone angle, A, and clock angle, B: 

-1 Y T  = sin [(VI/VT) sin A sin B] (8) 

Thus for isoperiapsis contours, the only two 
constants in Eqs. 5 and 6 are rp and p as the 
cone and clock angles A and B are permitted to 
vary for different injections. 

Eliminating Vp from Eqs. 5 and 6 we obtain 

We will now write VT = VT(A) and YT = YT(A,B) 
to obtain the equation of the isoperiapsis contour 
in the AB plane. The result from Eqs. 7, 8 and 9 
is 

a cos A + b = sin2 A sin2 B 

where: 

Let us put Eq. 10, which is the equation of 
the isoperiapsis contour, in the xyz coordinates 
of Fig. 4. Then the transformation equations for 
the unit sphere become 

x = sin A sin B (11) 

z = sin A cos B (13) 

So that Eq. 10 can be put in the form 

Thus the equation of the isoperiapsis contours 
is the equation of a parabola. Figure 5 illus- 
trates the geometric interpretation of the isoper- 
iapsie contours: the intersection of the sphere 
of injection velocities with a parabolic cylinder 
which extends along the plus and minus 
z directions. 
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Fig. 5. Parabolic cylinder for isoperiapsis contours 

Area Under the Isoveriavsis Contour. The area 
under the isoperiapsis contour and above the 
escape contour is illustrated in Figs. 6 and 7. 
This area corresponds to hyperbolic entries, which 
are trajectories with escape velocity or greater 
but with periapses lower than or equal to the 
atmosphere and with initial flight path angles 
that are negative. 

Besides quantifying the area of hyperbolic 
entries, integration under the isoperiapsis con- 
tour also can be used to quantify two other 
areas: actual escape trajectories and orbit decay 
trajectories. The calculation of the area of 
actual escape trajectories is trivial: subtract 
the area of the hyperbolic entries from the area 
of the escape cone. The area of the orbit decay 
cases, illustrated in Figs. 6 and 7, involves 
another integration under the isoperiapsis contour 
and bounded by the escape cone. These are the 
cases in which the orbit is elliptic and the peri- 
apsis is above or at the atmosphere. All remain- 
ing cases are elliptic with periapses lower than 
the atmosphere and so involve prompt or delayed 
entries corresponding to negative and positive 
initial flight path angles, respectively. Some of 
the prompt cases are powered entries, which will 
be discussed in the next section. 
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In Fig. 8, the integration of the area between 
the isoperiapsis contour and the escape cone is 
illustrated. The shaded area corresponds to half 
of the hyperbolic entries. The surface integral 
of Fig. 8, normalized (by dividi by 4%) so ='f that the sphere has unit area, is 

where B(A) is found from Eq. 10: 

B(A) = sin-I [(a cos A + b)l/2/sin A] (16) 

and A(-90') is the value of A for B = -90" on the 
isoperiapsis contour (the inverse function of 
B(A) : 

A(-90') = sin-1 [(a + b)lI2 (a + (17) 

Methods to approximate the integrals for the 
area of hyperbolic entries (Fig. 8) and the area of 
orbit decay (Fig. 9) will be discussed in the 
section on numerical applications (below). 

The Finite-Bum. Sinale-Stane Problem 

In the previous paper1, Hill's Equations of 
Relative Motion (also referred to as the Clohessy- 
Wiltshire Equations), were used to analyze the 
single stage, finite b u m  problem. 
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Fig. 8. Integration of hyperbolic entry area 
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Fig. 9. Integration of orbit decay area 

A modem application of Hill's Equations is to 
analyze the rendezvous problem. If a target vehi- 
cle in circular orbit is assumed to be at the origin 
of a rotating reference frame xyz which has the x 
axis pointing away from the center of the earth (see 
Fig. 10) and the y axis pointing along the circular 
velocity vector, then Hill's Equations, describing 
the motion of a rendezvous vehicle, relative to the 
target vehicle are as follows 

where n = 8 = Vc/rc and ax, ay and az are acceler- 
ations from external forces (such as thrusters). 
An excellent discussion of these equations is pre- 
sented in ~ a p l a n ~ .  Notice that even if there 
are no external forces, there would still be a 
relative acceleration between the rendezvous 



GEOMETRY 

- "t cos nt +:? t 
2 n 

Substituting the solution for x 
Eq. 24 and integrating term by term 
solution for y: 

accelerations. Since the xyz coordinates rotate 
a t  a ra te  of n, Eqs. 18-20 become 

2 x - 2n3 - 3n x = % COD nt + ay sin nt (21) 

y + 2ni = ay cos nt - ax sin nt (22) 

In the previous paper1 the rotational effect 
on the acceleration was ignored, resulting in a 
small error for long burns. 

Note that Eq. 22 can be integrated once to 
obtain 

Y(t) = Yo - 2 n W t )  - xO) + 2 sin nt 

Substituting Eq. 24 into Eq. 21 we obtain 

+ 3ay sin nt + 3a cos nt X 

We can now easily integrate Eq. 25 by the 
usual methods to obtain 

+ (t ko t 2 ' )  sin nr 
n2 

sin nt 

(Eq. 26) into 
gives the 

TYPICAL BEHAVIOR 

Fig. 10. Relative motion 

vehicle and the target (origin). This is because, 
in general, the vehicles are not in the same 
orbit. Notice also that Eq. 20 represents out-of- 
plane motion which is decoupled from the in-plane 
motion. 

We will assume that the acceleration from the 
injection rocket will have 8 fixed direction in 
inertial space (but that the direction will be in 
error). Let ax, ap and a2 be the inertial 

~ ( t )  = z (h,, + Y,, - 4 %) sin nt 
n 

- (2  f + 5 2) (1 - cos nr) 
n 

+ 3 2 t sin nt + 3 2 t cos nt 



The solution for z is trivial, since it is AV P I E lnbo/(mo- (mo - mf)(t/tb))] 
decoupled. Integrating Eq. 23, we obtain: SP 

2 Thus, the average acceleration is 
z = (zO - a /n ) cos nt + (kO/n) sin nt 

Z 
(28) 

a = AV/t 

With the complete solution of Hill's Equations, 
it is now possible to address the powered entry 
problem. The idea is to rendevous with the atmo- 
sphere, This means setting Eq. 26 to 

where 

which is a negative number (approximately equal to 
-100 km). The time, tatm is an arbitrary con- 
stant between 0 and tb, where tb is the total 
b u m  time. By picking tatm = tb, the solution 
of Hill's Equations gives the conditions during 
entry at the moment of burnout. Similarly by set- 
ting tat. = tb/2, the conditions at entry, 
when half the fuel is burned, can be examined. 

It will be assumed that the initial relative 
positions and velocities are zero 

Writing out Eq. 26 gives 

=2[2(cosnt -1) atm n atm 

+ l a y  
2 n2 (sin nt atm 

All the terms in Eq. 32 are known except the 
accelerations ax and ay. The equation speci- 
fies the relationship between ax and ay so 
that the vehicle will enter the atmosphere at the 
time tat,. 

Eq. 32 can be written most simply as 

Now, consider a sphere of radius, a, in the 
xyz coordinate system (Fig. 11). 

Then a plane representing Eq. 33 can be drawn 
through the sphere. The sphere represents all the 
possible accelerations that can be applied to the 
vehicle and the direction of the application of 
thrust can be specified by the cone angle, A, and 
clock angle, B, as in the velocity sphere (Fig. 
I). Then the components of acceleration are given 
by 

ax = a sin A sin B (37) 

aZ = a sin A cos B (39) 

The points on the sphere that also satisfy Eq. 
33 (the plane equation) describe a circle, which 
is the locus of points that result in reentry at a 
specified time, tat,,,. The various loci repre- 
senting various reentry times (ranging from 0 to 
tb seconds) will be referred to as isochrones 
(for constant time contours). 

Combining Eqs. 33, 37 and 38 allows the solu- 
tion of the clock angle, B, as a function of the 
cone angle, A: 

sin B = (C3 - c2 a cos A)/cl a sin A (40) 

Thus, given a cone angle, A, a clock angle B is 
computed from Eq. 40 which corresponds to an iso- 
chrone circle. 

This model for the isochrones has been very 
successful in explaining the numerically generated 
b u m  plane diagram for the single stage Galileo/ 
Centaur problem shown in Fig. 12, as can be seen 
by the analytically derived Fig. 13. There is 
comparable agreement for the Ulysses/Centaur 
case.1 

Cj = clax 4 c2ay (33) SPHERE OF RADIUS, a 

which is just the equation of a line, since the 
c's are all constants. 

The value of the constant acceleration will be 
found through the rocket equation (see 
 ree en woods) : 

AV = I g ln(mo/mf) 
SP 

(34) 
PLANE OF EQ; Cg = a,C, + a C 

Y 2  
If incomplete burns are going to be considered 

(tat, < tb) then Eq. 34 can be written as Fig. 11. Acceleration sphere 



Fig, 12. Galileo/Centaur misaligned b u m  diagram: 
b u m  plane 

A CONE ANGLE IN DEGREES) 

Fig. 13. Analytic solution for Galileo/Centaur 
b u m  plane 

The Finite-Bum. Multi-Stane Problem 

For convenience, we repeat Hill's Equations 
with inertially fixed accelerations (Eqs. 21 - 23): 

2 x - 2n9 - 3n x = a cos nt + a sin nt (41) 
X Y 

In order to model the multi-staging we assume 
that the accelerations come in step functions as 
follows: 

where 

m = total number of stages 

= acceleration of the kth stage along 
the X inertial coordinate 

Tki = time of ignition of the kth stage 

Tkf = burnout (or final) time of the kth 
stage 

For the first stage, we will use Eq. 36 to 
model the average acceleration. For the other 
stages, we will assume that the average 
acceleration is found by 

= 1 8 ln(mki/mkf)/(Tkf - Tki) 
"k 

Integration of the z Eauation 

We will demonstrate our approach on the simp- 
lest equation, Eq. 43. Combining Eqs. 43 and 46, 
the differential equation for z is: 

We will assume zero initial conditions: 

Care must be exercised when integrating dif- 
ferential equations with step functions, which are 
in the class of generalized function. W. ICaplan6 
discusses the theory of generalized functions in 
his book on operational methods. 

For Eq. 48, Kaplan defines the operator 
To[f] for initial values zero: 

Putting 

into Eq. 50, we obtain: 



Since Eq. 48 ie linear, the solution from Eq. 52 is 

Integration of the x Equation 

In order to integrate Eq. 41, we must first 
perform a single integration of Eq. 42 to obtain y 
(as in the single stage problem) and then substi- 
tute the expression for y into Eq. 41 to decoupled 
Eqs. 41 and 42. We obtain for y: 

+ ' 4rk [(sin nt - sin nTki)h(t - 
n Tki) 

k=l 

with 

x(0) = f(0) = 0 

and 

f(t) = h(t - a), 

cos nt h(t - a), or 

sin nt h(t - a) 

Then the operator, To, given by Eq. 50 gives 

To [COS nt h(t - a)] = 2 {n(t - a) sin nt 
2n 

- sin na sin n (t - a)) 

T [sin nt h(t - a)] = -L {sin nt - n(t - a) cos nt 
0 2n 2 

- sin na cos n(t - a)} h(t-a) 

( 5 9 )  
- (sin nt - sin n Tkf)h(t - Tkf)] 

Thus, the multi-stage solution for x(t) is 

[(cos nt - cos nTki)h(t - 
n Tkf' 

k=l 

- (cos nt - cos nT )h(t - kf Tkf ) I  (54) 

Substituting Eq. 54 into Eq. 41 gives 

m 

where we 

hi = 

C = 

Ci = 

Bi = 

Consider 

have introduced the notation 

h(t - Tki), hf ' h(t - Tkf) 
cos nt, B = sin nt 

Cos nTki, Cf = COB nTkf 

sin nTki, sf = Bin nTkf 

the solution of 

where we have introduced additional notation 



Intenration of the v Eauation 

By substituting Eq. 60 into Eq. 54 and inte- 

If we define new functions 

grating, we obtain y(t): 

m 
L 

y(t) = nZ (3 [3(Nic - s + si)hi 

- 3(Nfc - S + s )h + 3s (1 - C )h f f  i i i 

- 3sf(1 - C )h + 3(ciAihi - c P P f )  f f 

- 4(c S h - cfSPf) + (S - si)hi i i i 

- (9 - sf)hf1 
+ a [2(c - ci)hi - 2(c - c )h 

yk f f  

+ 3(Nis + c - Ci)hi - 3(N S + c - c )h 
f f f  

- s S h + s f S P f  + 3(siNihi - sfNPf)] i i i  

then 

Since g~ and gp are known functions of 
tatm, Eq. 69 is the equation of a line as before 
in the single stage case. In our application to 
the Galileo and Ulysses problems we assume the 
directions of all the stages will be the same. 

Eq. 69 not only applies to these problems, but 
also cases in which the succeeding stages are mis- 
aligned in a different fixed directions. Thus the 
linear eauation of Ea. 69 is an im~ortant general 
result. 

n e  Velocitv Com~onents The Isochrone Contour;. By setting the alti- 
tude equation, Eq. 60, equal to the altitude of 
the atmosphere at a given time, we obtain the 
equation of isochrone (fixed time) contours: 

The velocity component in xyz coordinates are 
given by 

Eq. 60 can be put in the form: 

A convenient expression for y is found in Eq. 
54. The expressions for x and z are found by dif- 
ferentiating Eqs. 60 and 53. (Note: the delta 
functions which arise from differentiation are of 
no consequence to physical systems6 and so will 
be ignored.) 

Suppose that the initial stage direction is 
given (ax1, ayl, a2 ) and that the directions of 
the succeeding stagts are determined by the first 
stage direction. Then Eq. 63 can be rewritten as 

where we have introduced the scaled accelerations 

- 
and where & = 1. We assume that the scaled 
variables in'E;~:~&5 and 66 are known parameters. 



Simplified Velocity Eauations. Eqs. 70-74 and 
54 specify the velocity for the multi-stage prob- 
lem, but they are very difficult to work with. In 
order to guide future work, a simplified approach 
is provided now. 

Let us assume that the altitude remains con- 
stant during the b u m  and that the acceleration 
maintains a constant direction in inertial space. 
We will also assume that the circular velocity of 
the initial orbit rotates at a constant angular 
rate (n) and can be added to the accrued velocity 
of the vehicle. Then for this highly simplified 
model, the inertial components are 

VX = axt - Vc sin nt (75) 

Vy = ayt + Vc cos nt (76) 

Let AVX = axt, AVy = ayt and AVZ = azt so that 
Eqs. 75-77 become 

Notice that when t = 0 in Eqs. 78-80 we have the 
impulsive injection case. Thus, the effect of Eqs. 
78-80 is to include the rotation of the circular 
velocity vector. The effect on the escape cone 
and the isoperiapsis contour is simply to rotate 
the coordinate system by an angle of nt, where the 
time, t, is now interpreted to be the tatal time 
from first ignition to final burnout, including 
coast times in between. 

With these simplified expressions for velocity 
(Eqs. 78-80) the areas for escape, hyperbolic 
entry and orbit decay reduce to that of the im- 
pulsive injection case. In the numerical applica- 
tions (below) it will be demonstrated that these 
approximations are reasonably good. It can also 
be demonstrated analytically that for nt small, 
Eqs. 75-77 are obtained from the multi-stage 
equations. 

Numerical A~plications 

We will now apply the multi-stage models 
developed above to the Galileo-IUS and the 
Ulysses-IUS problems. For the escape trajectories 
we will approximate the area by 

where 

f = 1/2 + l/n (a + sin a cos a) 
a = sin-1 (A (-9O0)/AesC)in radians 

and where A (-90") is defined by Eq. 17. (See 
Fig. 14) 

CONTOUR 

ENTRIES 

Fig. 14. Approximation for escape trajectories 

As in Ref. 1, spherical triangles will be used 
to approximate the area of orbit decay, since for 
low Earth orbits, the isoperiapsis contour can be 
approximated by great circles. 

In Fig. 15, the numerical results are shown 
for the Galileo bum plane for an orbital altitude 
of 110 NM. In Fig. 16 the analytic model is 
applied to the same problem. 

' 1 ' 1 ' ' " ' 1 1 1  

,/ a8q"h 
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36 34% TOTAL 

C I N E  ANGLE A. deg 

Fig. 15. Fixed misdirected burn map for Galileo 
(numerical solution) for 110 NM orbit 

Table 1 gives the b u m  durations, masses and 
ISP9S. 

The area for the delayed entries is approxi- 
mated by (1-H-D)/2 where H is the area of the 
escape cone and D is the area of the delay. No 
value is obtained for the prompt trajectories. 
Because of the slightly overestimated area for the 
total powered entries, the total of powered, 
elliptic and escape is slightly over 100% for the 
analytic solutions. We also note that the escape 
cone and isoperiapsis contours of the analytic 
solution are rotated by a greater angle than their 
counterparts in the numerical solutiun. In spite 
of this, there is very good agreement for the 
percentage of escapes and good agreement for the 
percentage of decays. 
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Fig. 16. Fixed misd i r ec t ed  burn map f o r  G a l i l e o  
( a n a l y t i c  s o l u t i o n )  f o r  110 NM o r b i t  

Table 1. Galileo Injection at 110 NM 

Event Time, sec Mass, lb Ispr set 

B U M  1 0-152 38676-17033 293.3 
COAST 1 152-212 
BURN 2 212-315.4 14593-8519 301.2 

Table 2 presents the data used for Galileo 
injection at 160 AM with a burn delay between the 
first and second stages of 200 seconds. 

Table 2. Galileo Injection at 160 NM 

Event Time, sec Mass, lb Isp, Set 

BURN 1 0-152 38676-17033 293.3 
COAST 1 152-352 
BURN 2 352-455.4 14693-8519 301.2 

The numerical and analytic solutions are shown 
in Figs. 17 and 18, respectively. 

For Ulysses, which involves three stages, 
Tables 3 and 4 give the burn parameters for ini- 
tial orbits of 110 HM and 160 NH. The numerical 
and analytic results are displayed in Figs. 19-22. 

In each figure we see that the nnalytic models 
capture the essential behavior of the burn plane. 
Ihe average discrepancy between the numerical and 
analytic approaches is a few percent, with the 
greatest differences occurring for the minimum 
time for powered entries. (Of course this is 
where we expect the greatest differences to show, 
because there muat be some cases where the analy- 
tic solution would just barely predict reentry, 
while the numerical case would not.) In general 
the analytic solution tends to overestimate the 
powered entries. 
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DELAYED 3291 
DECAY la 93 - - 
ELLIPTIC ra 19% 
ESCAPE 1L6B 

190 164 144 120 LOO 80 60 40 20 0 
CONE ANGLE A, deg 

Fig. 17. Fixed misd i r ec t ed  burn map f o r  G a l i l e o  
(numerical  s o l u t i o n )  f o r  160 IGf o r b i t  
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g. 18. Fixed misd i rec t ed  burn map f o r  G a l i l e o  
( a n a l y t i c  s o l u t i o n )  f o r  160 NM orbit 

Table 3. Ulyssea Iqjection at 110 Rn 

Event Time, sec Mass, lb Is*, see 

BURN 1 0-152 38676-17033 293.3 
COAST 1 152-212 
B U M  2 212-315.4 14593-8519 301.2 
COAST 2 315.4-375.4 
BURN 3 375.4-460.4 5914-1415 292.1 



Table 4. Ulysses Injection at 160 10M 

Event Time, sec Mass, lb I,,,, sec 

BURN 1 0-152 38676-17033 293.3 
COAST 1 152-352 
BURN 2 352-455.4 14593-8519 301.2 
COAST2 455.4-656.4 
BURN 3 655.4-740.4 5914-1415 292.1 
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Fig. 19. Fixed misd i r ec t ed  burn map f o r  Ulysses  
(numerical  s o l u t i o n )  f o r  110 NM o r b i t  
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Fig. 20. Fixed m i s d i r e c t e d  burn map f o r  U lysses  
( a n a l y t i c  s o l u t i o n )  f o r  110 NM o r b i t  

COAST 2 
4 31% 

\ 

ULS 1tU2W PROB 

BURN I 0 
COAST1 XI6 
BURN 2 424 
COAST 2 431 
BURN 3 0.91 - -  
TOTAL 
"POWERED" 43.687. 

PROMPT 2.75 
DELAYfD 19.a 
DECAY 2.28 -- 
ELLIPTIC 24915 
ESCAPE 31.41% 

CONE ANGLE A, dq 

Fig. 21. Fixed misd i r ec t ed  burn map f o r  Ulysses  
(numerical  s o l u t i o n )  f o r  160 NPI o r b i t  
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Fig. 22. Fixed misd i r ec t ed  burn map f o r  Ulysses  
( a n a l y t i c a l  s o l u t i o n )  f o r  160 NM o r b i t  

Conclusions 

An analytic model has been developed for the 
multi-stage injection problem. It shows good 
agreement with numerically generated plots and 
simplifies the analysis considerably. Both 
methods have their disadvantages and sources of 



error. The analytic method is limited by the 
linearized equations and other simplifying assump- 
tions necessary to make the problem tractable. In 
the numerical approach the accuracy is limited by 
the number of points selected on the burn plane 
for simulation, vhich is limited by the time (and 
patience) of the analyst. Because of these con- 
siderations, it is highly likely that both tech- 
niques have errors of the order of a few percent. 

Perhaps the most profitable use of time is to 
use both methods in conjunction. The analytic 
burn plane can be produced first and requires only 
a few minutes to compute and plot. The results 
can be used to guide the selection of burn plane 
points in the numerical solution. Since the iso- 
chrones and the escape cone are approximated by 
small circles, a few one-dimensional searchea in 
the burn plane may muffice to identify their loca- 
tions and size. A similar approach may be used 
for the isoperiapsis contour. For small circles, 
numerical integration of the area is unnecessary. 
The area is found by measuring the radius of the 
circle and applying a simple formula. 

In conclusion, the labor involved in the two- 
dimensional search on the burn plane can be 
reduced conaiderably in the numerical approach by 
utilizing the analytic and geometric models devel- 
oped here. 
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