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Abstract

Analytic expressions have been found for
Fuler's Equations of Motion and for the Eulerian
Angles for both symmetric and near symmetric
rigid bodies under the influence of arbitrary
constant body-fixed torques. These solutions
have been used to solve for the secular terms in
the translational AV equations 4in inertial
space. This secular AV solution is of interest
in application to spinning spacecraft in that it
describes the average direction of the AV of the
spacecraft during a spin-up maneuver. WNumerical
integration of the governing differential
equations has verified chat the secular &V
solution is valid for large time and is accurate
in many physical situstions including spin-up
maneuvers of the Galileo spacecraft.

L. Introduction

The Galileo spacecraft is a dual-spin
spacecraft designed to explore Jupiter and its
moons. It is scheduled to be launched from the
space shuttle in May of 1986 to arrive at
Jupiter in August of 1988, The spacecraft's
prime mission is to send a probe into the Jovian
atmosphere. After the probe has been released
the spacecraft will perform the orbit insertion
maneuvver, sending it into orbit around Jupiter.
It will spend the next twenty months collecting
scientific data on Jupiter and 1its moons and
transmitting it to Earth.

The spacecraft 1Is wusually in dual-spin
mode, but during AV m@maneuvers the mode ({5
changed to single-spin by locking the rotor and
stator together. It 1s then spun up to 1.05
rad/s, from a nominal of 0,306 rad/s, prior to
an axial AV burn. This Increases the stability
margin and accuracy of the maneuver. After the
burn, the spacecraft 1is spun down to ©.306
rad/s. The thruster configuration 1is 1llu-
strated in Fig. 1 where S52A and -S5!A are the
primary spinup and spindown thrusters,
respectively, and S2B and =-SIB are backups.
Because of certain design considerations, (such
as plume impingement problems, redundancy and
expense of thrusters), the Galileo spacecraft
does not have coupled thrusters. Thus, during a
spinup or spindown manuever, there will be not
only a constant body-fixed torque about the spin
axlis, but also small undesired constant torques
about the transverse axes. The undesired torquef
cause the orientation of the angular momentumn
vector to change in inertial space.
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Fig. 1 Spin thruster configuration.

Analytic expressions are found for Euler's
Equations of Motion and for the Eulerian Angles
foer both symmetric and near symmetric rigid
bodies under the Influence of arbitrary constant
body-fixed torques.! These solutions provide
the body-fixed angular velocities and the
attitude of the body, respectively, as functions
of time. They are of special interest in
applications to spinning spacecraft because they
include the effect of time warying spin rate.
Thus, they have been applied to spin-up and
spln=down maneuvers as well as to error analysis
for thruster misalignments. In order to
complete the analysis of these maneuvers, one
final set of differential equations must be
Integrated: those corresponding to the AV's
imparted to the spacecraft during the spin-up or
spin—-down maneuver.

The main purpese in solving these equations
is found in their applications to satellites and
deep space probes. Even though numerical solu-
tions are easily found by computer simulations
analytic solutions can provide deeper insight
and understanding and can be used in obtaining
quick solutions, error analyses, and compact
algorithms for on-board computations., In space
applications certain simplifying, vet realistic,
assumptions can be made so that valuable
approximate analytic solutions can be found,

The following sections include a brief
description of the previous work, the analytic
development of the secular solution for the AV
equations, and simulation results which validate
the accuracy of the solution.

I1I. Background and Summary of Previous Work

Solution of Euler's Equations of Motion

Euler's-equations of motion of a rigid body
are:
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An accurate approximate analytic solution
to Eqs. (1) is obtained for near-symmetric rigid
bodies subject to arbitrary constant moments by
assuming:

w, * Mz t /Iz + wzo. (2)

When I, = then Eq. (2) is exact but when 1

1 the a&broxlmation provides wvery useful
accurate solutions, particularly when w_ and w
are small, which Is usually the case for spinz
stabilized spacecraft, The solutions for w, and
wy are glven in Appendix 1.

Approximate Solution for the Eulerian Angles

The kinematic equations of motion for a
type 1:3-1-2 Euler angle rotation are?

$x = wxcos¢y + wzsin¢y
éy =Wy, - (wzcos¢y - wxsin¢y)tan ¢,
. = (mzcos¢y - mxsin¢y) sec b . (3)

A  highly accurate approximate analytic
solution for the Eulerian angles for a near-
symmetric rigid body has - been found and the main
restrictions on the solution are that two of the
Eulerian angles (¢ and the parameter,
éz/wzz, mist remain sma%l. This solution is
given in Appendix 2.

Solution for the Angular Momentum Vector

With the analytic results for the angular
velocities, Wys W, and—rwz, and type 1:3-1-2
Euler angles, ¢.,"¢,, and ¢;}“the approximate
analytic solution Yor the angular momentum
vector in inertial space c¢an be constructe
easily:

(4)

where A is the transformation matrix based upon
the Eulerian angles. The nominal pointing
history of the angular momentum vector‘ﬁ, during
the spinup maneuver is shown in Fig. 2, which
was generated from Eq. (4).3 Since the angles
involved are very small, the quantities Hx/Hz
and H /H are used to describe the orientation

rg; angular momentum vector in inertfal
space. o

It is interesting t¢ note that the radial
distance of the spiral path exhibited in Fig. 2
from 1ts center c<an be approximated accurately
by the heuristic relation:

1 2
p(r) = (2 + MY/ B (5)

The center point of the spiral is alsc
approximated by the simple heuristic relations:
Hx/H = ~M /1 w
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Fig, 2 Nominal orientation of the angular
momentum vector in inertial space during
gpin-up maneuver.

These solutions were inspired by the constant
spin rate case, M_ = O, in which they can be

easily derived for small angles ¢ and ¢.. 1In

this situation the angular wmomentum ‘vector
precesses about the direction given in Eq. {6)
in a closed curve.

It was further reasoned that for very large
durations of the pinup maneuver, as time
approaches infinity, Che direction of A¥ should
appreach the average direction of,”ﬁ, or the
center point of the spirat in Fig. 2. 8ince the
angles involved in this case are also very
small, the quantities AVX/AVZ and AV /AVZ will
be used to describe the orientation “of the AV
vector in inertial space. Tt is the intent of
this paper to show that by ignoring periodic
terms and concentrating on the secular terms,
the approximate_solutions for the AV equations
for wvery large times will approach a limiting
direction comparable to Eq. (6) or in other
words:

, - 2
AV, JOV, ~ “yllz“’zo

~ 2
AVY/AVZ Hx/Izwzo. (7)

111. Secvuvlar Solutions for the AV Equations

Acceleration Equations

Let F_ F, be the body fixed forces
due to he spin ekruster and m be the mass of the
spacecraft, Then for Type 1:3-1-2 Eulerian
angles, [ 4, the acceleration
components in ineéﬁlal space are:

'73;7 V} /m'
v =A S E/m} (8)
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where A is the transformation matrix based upon
the Eulerian angles. During the spinup maneuver
the terms fg and ¢_ can be large while f
¢x and ¢ are tyypically small. In the case of
Galileo g 1s a small term encompassing thruster
misalignment, plume impingement, and wobble. By
ellowing ¢ and ¢'y to be small Egs. (8) reduce
to:

f f
= = - X - X
a —= cos$, = o= sinp, ~ (¢ycos¢z + cpxsinq;z)

f f f
X z .

ay = sin¢Z + EX c:osqbz + o (¢ysm¢z - ¢xcos¢z]
_fx Ly i

TR tE At 9

where, according to Appendix 2,
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%50 sinfa{7 at2 + bt)] + U sgna

1 — — ) - R
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ys
1 _ -—
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[wyc (z at? + bt} - w (7 2t? + bt}
MZ
e 2
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It is reasonable to assume that the large time
solution would be independent of the infitial
conditions therefore Egs. (10} can be reduced
to:

— 1 — —
¢, (t} = U sgna [wys (5 at? + Bt) +

1 -
W . (778t + b))

- 1 -
¢y (t} = U sgna {Wyc (7 at? + bt) -

1 — -
W (7 at? + bt]]

M

, ()= Ltz +w0t, (11}

where u, 2, and b are as defined in Appendix 1.
The ¥ functions can be expressed as follows:
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and the J functions can in turn be defined as:
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where for large time:

_ -sin h,
L 1, h, h)= —j"
€ 12 2h Bl
1
(14)
_ cos hy
Ls {(t, h , h } = ——
bz 2h ||
1
From Ref. (1) it can be seen }ha G, and G

are negligible in comparison to F_ and F_ and by
considering only the highest order terms can be

written as:
1yem Vz
- (pE
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Asymptotic expansions can be written for
Eq. (15) and by allowing time to become very
large and by keeping higher order terms:

= - (aT)
F, (F) = cos (a

2/ nfglto

- sin (at)
F, (1) = —/————.

2\/ﬂl§l t,

(16)

Equation (12) can now be re-written as:
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Taking the expressions for the constant
coefflcients K,, through K and K through

,found in Appendix l,suﬁstltutlng 1them into
tIYxe- above equation, and then combining the W
functions in accordance with Eqs. (11} yields:
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Fig. 3 Transverse delta-V's in inertial space
during spin-up maneuver.
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Fig. 4 Nominal orientation of the delta-V
vector in Inertial space during spin-up
maneuver.,

As was mentioned previously, Fig. (2)
illustrates the pointing history of the H vector
of Galileo during the pre-JOl spin=-up
maneuver, Fig. (3) illustrates that during this
spin-up maneuver the lateral wvelocity of the
spacecraft is bounded and Fig. (4) shows the
pointing history of the AV vector and that it is
converging upon the point mentioned above. It
is interesting to note that the center of the
center spiral in Fig. (2} is along the same
direction as the spiral in Fig. (2) is along the
same direction as the spiral center in Fig. (4).
This confirms the previous assumption that the
limiting direction of the AV vector as a result
of deing a spin-up maneuver for large time
coincides with the average H vector direction,

V. Conclusions

Analytic expressions have been found for
Euler's Equations of Motion and for the Eulerian
Angles for both symmetric and near symmetric
rigid bodies under the iInfluence of arbitrary
constant body-fixed torques. These solutions
were then used to develop a secular solution for
the change 1n velocity imparted fo the rigid
bedy as a result of these body-fixed tdrques and
subsequently this secular solution was confirmed
by a2 numerical time simulation.
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Appendix 1

T and ¥ can be written in terms of Fresnel
integrals

Solution for W _ and W,
b
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-1 sin %— atl+br + 2 sgna f and g functions
'Al)‘Z v 2a j |
C(x) = % + f{x) sin (-;—' xz) - g(x) cos (-121- x2)
where
‘ B 1 2 L)
,_at +bt+b2)5gn§ S{x) =3 ~ £{x) cos (%x) - g{x) sin ('2"‘)
2a :
L o8 5 4 .
Y& ’ the salution for w, can be simply written as
= sgna .
2a
=2 w () = kyj€y + kyo8y + Kygey F ko sy +k of + k2
(‘2‘ atZ+bt +L)sgna
2a :
§ = sin s ds
2 Vg where
Z— sgna . _Jdh
% ka1 = uy0r ke «‘2 o
I -1 I -1
A = 2L, 5, =E X — =
1 1 2 I k , =u sgna [—

x ¥ %3 o

. -1 ac 1
1%2 “20 —e= (3-8 +:( -c)
X1h, ("2'7‘ 0) 3| 2 4]

[

X,d
'd TE',-I; ALA, w 1
-k
I

u = 1 for pure spin up (a and b same sign)

= -] for pure spin down (a and b opposite
sign and 0 < t < ~ b/a)



kxk = u sgna

3]

- A.d

a 1 1 1

= (e = ()

iz Ay
k u sg:ﬁ L —}l—d—

= - - ’
x5 |3 \”‘1"2
- [ ac

k_ . = u sgna -_— ==
xe =l 1a|]

e} _
C0 =C =—— s8gna

na

=2

b —
SO =5 =— sgna

ra

sgna

2, 87
f=f ?5+]-°—sgna

The solution for w, 1s analogous
solution for w

solution by rep}facing

I, I
(0, ) 2wt (12/11) 2

c with d,

B0 with Wygs

Wyo with =, ,

and d with -C.

to the
and canybe found from the o

Appendiy 2

Solution for ¢ and ¢}.

0, (t) =4 o cos [a (—;— 3l + Et) :l
+ 450 sin [cx (% atl 4 'St) ]

W (.
Xc

1
2

2’ +_.1.3t)}

4+u sgna {Wyc (2 at” + bt) - Wxs (72 at” + bc)}

T w () sin(eT - ag)

wys(?) = dg
o Ve2aozas
"» T wx(ﬁ) cos{aT - af)
Wl = dg
° VE2 + 23 ¢
T w (£} cos(aT = af)
LGB 2 de
o ,432 + 28
_ T wx(E) sin{atr - =f)
Wl = a&

o VN+zme

- 1
T = (Al Y )2 [ (ar?/2)+be]



where

Wys('r) = klecs(?’ 1, 0, ~a, Q-T_)+ky2385(?’ 1,0, ~u, a7}

2 _)
—=Sgna, -0, a7

+ k _J (?, sgna,
y3es 2a

=2
Lsgni, -a, OZ_T)

-
kylers T, sgna, p

+ kySFs (T) + kyGGS (T
h‘xc(r) = klecc(r, 1, 0, ~a, at) + kaJcs(T’ -o, at, 1, D)

+ - — b
kx3Jcc(T’ sgna,

=2
+ kx4Jcs(T- -0, o7, sgna, -‘-’—-sg-né)

+ kaFs (1) + kxﬁGs(T}

where

T (Tr ks Kys Ky k) =

j.?cos(kli_ tky)eos(kyf+k,) .
~ d

Vit 4 g3t

[}

J.5(Ts k;s ks, g k) o=

h

cos(klé; + kz)sini"} 3£+ kl,)

13
‘f..z -
o B® + 2a £
Jss(?’ k1’ kys k3’ kl;) -
T
sin(k; g + kz)s-in(k3£+k4)
df

‘[; V‘B.Z'PTEE

-2
— 2 E"'E_,_ sgna ) cos{at - af)
T 2a

dg

-,

F_ (1)
° Vo2 423 ¢
Tt J-Z-{g + E] sgna [sin(aT ~ af)
. m Za’ r
F_(D) = f 4%
0 No2+ 3¢
-g JE E +P.._ sgn‘a_ oS8 (0:.'[_ - Qi)
T i Za
G (1) = f a%
[ —2 —
o V b“ + 2a &

TE

a%

=2
JE [ £ +P:jl sgna Jsin (a7 - af)
T 2a
G (1) = f

° 432+236;

Define the integrals LC and Ls:

T
cos(hli_, + hZ)

1
h)g_,[ Evr

2 %7
o ~E2+2—£€

T,
s:m(hll_j + hZ)

— 1
LS(T, hl' hz) 3 f ——_;———:._
o Qb + 2a £

L. (1, hy, df

dg

Then, by well-known trigonometric identities:

JCC(T, kll kz: kap k‘.) - Lc(?, kl - k3, kz - k‘.)
+1, (1, kl + ks ky + k)
Tes (o kpu Ky, kg, k) =L (7, k) +ky, k, v k

kK 6,)

- LS(?, kl - k3, k2 - ka)

Tas (Tr ks Ry kg k) = L (%, ky = kyy ky - k)

=L (T, kg Fkg Ry k)

e



The integrals L. and 1; can be expressed
solely in terms of Fresnel Integrals C2 and Sp

-
Lt by hp) =g J’* =
1 a

|w|

- sgn

=3

1

|

- sint2 SZ(tl)»_ SZ(tO)] s

— ,'211 hl
L (T, h., h ).= — —=
s 1' 2 2hl 9z
. { cost, [Sz(tl) - SZ(tO)}
+ sint, [Cz(t) - Cz{to):’ j
0]
where

2
h,b - =2 —_
1 a - b a
to — SgN —hl N cl hl (f o+ ——_) sgn — ,

2a 2a hl
BB -
1 a
L, = hy = —— sgn
2a 1
x
1 cos t
Co(x) = — ——= dt
’ amd ok
x
S,(x) = A sin v .
& Jw

The C, and 5  Fresnel integrals are related to ¢

and S" by a c%ange of argument

o)

0= 53 )

; cost, [Cz(tl) - C?.(tO):I

Next, the unknown integrals F,, Fg, Gc and Gg
must be evaluated by asymptotic expansion since
they cannot be expressed explicitly in terms of
known functions. The asymptotic expansions of the
f and g functions are :

nzf(z) ~ 1 +Z (“1)m 1.3 '2 ;im-l)
m=1 (nz")

. Y. (4 1
r2g(z) ~ E : (_l)m 1 -3 2m+1( m + 1}
n=0 (TTZZ)

Only two terms of the expansions will be used

L1 3.
f(z) = e “325
1 15
gle) Y 53~
™z mz

to obtain

(

l:cosu:L cos, (uo, ul)

F ()=

1
2/nfa] |

. TR
+ sinul sml(uo, ul)] - 3 (E)

. [cosul cos, (uo, ul) =.Sinul sin3(u0, ul)] ,

F (1) = 1 ‘ [sinul cosl(uo, ul)

s /el |
- in, ( y| -3 (2)?
cosuy sin)(ug, u; (2)
. [sinul coss(uo, ul) - cosu, sinB(uO, ul)]i

o

w/ila]

o
+ s:{.nul sinz(uo, ul):‘ =15 (2)

GC(T) i [cosul cosz(uo, ul)

2

. [cosul COSA(UO’ ul)+s:i.nu:L sina(uo, ul)] l



_ a |

G (1) = —— [sinu cos,(u,, u,)

-3 4,'"’3' 1 270 1

2
- cosuy sinz(uo. ul)] ~15 (%)

|

. [sinul COSA(UO’ ul) - cosu; Sin&(uo’ ul)] [

where
N B2 1
u; = oar 4/, = % =TT
2a 2a 172
and the definitions have been used
ot
1
sin_ (t t,) sin s ds
w0 17 T m
¢ s
0

1
- cos s
cosm(to, r.l) E f e ds

s%nm(to, t1) and cosm(tp, t) can be reduced to
sinip(tg, t1)} and cos;(ty, t1). by repeated applica-
tion of t4e formulas: )

-m l-m
u cosu, - u cosu

1
cosm(uo, ul) f=———l - 1 1 o 0

1
T -z 1fp 1 (Ugs up)

. 1 1 1=
31nm(u0, ul) 13 ul"m sinul- up " sine

0

cosy (up, uy) and sinjy(up, uy) are expressible in
terms of the sine and cosine integrals

cosl(uo, ul) = Ci(ul) - Ci(uo)

sinl(uo, ul) = Si(ul) - Si(uo)

/1

where

z

cost - 1
i t o
Q
z
. sint
s;(2) 2 J[' =9t
[s]

The solution for ¢, 1s analogous to the
solution for ¢_ and can” be found from the ¢&_
x

solution by repfacing

¢x0 with ¢yo
¢xo‘ with —¢x0

wy . with w,

w, with uuy

Wy with - o
wx

c with wyc



