Compiling for Speculative Architectures*

Seon Wook Kim and Rudolf Eigenmann

School of Electrical and Computer Engineering
Purdue University, West Lafayette, Indiana

Abstract. The traditional target machine of a parallelizing compiler
can execute code sections either serially or in parallel. In contrast, target-
ing the generated code to a speculative parallel processor allows the com-
piler to recognize parallelism to the best of its abilities and leave other
optimization decisions up to the processor’s runtime detection mecha-
nisms. In this paper we show that simple improvements of the compiler’s
speculative task selection method can already lead to significant (up to
55%) improvement in speedup over that of a simple code generator for a
Multiscalar architecture. For an even more improved software / hardware
cooperation we propose an interface that allows the compiler to inform
the processor about fully parallel, serial, and speculative code sections as
well as attributes of program variables. We have evaluated the degrees
of parallelism that such a co-design can realistically exploit.

1 Introduction

Parallelizing compilers have made significant progress over the past ten years.
While they could exploit parallel machines effectively in only two out of twelve
scientific/engineering programs in 1990 [1], today they are successful in half of
these programs [2, 3]. Still, there remains a tremendous potential to be exploited.
For example, today’s compilers are still limited in exploiting parallelism in most
C programs. Speculative architectures [4-8] can potentially overcome these lim-
itations.

This paper makes two contributions towards our goal of developing advanced
compiler technology that exploits speculative processors. First, starting from a
simple code generator for Multiscalar architectures [4], we have improved the
methods for selecting speculative tasks (i.e., code sections that will be executed
speculatively in parallel) [?]. Second, we propose an improved software /hardware
interface that allows the compiler to inform the processor about code sections
that are provably parallel or serial and those that are worth parallelizing spec-
ulatively at runtime. We have identified these code sections in several programs
and have evaluated the degree of parallelism that can be exploited.

* This work was supported in part by NSF grants #9703180-CCR and #9872516-EIA.
This work is not necessarily representative of the positions or policies of the U. S.
Government.

Table 1. Simulation results on the Multiscalar architecture. The table shows the im-
provements of three Perfect Benchmarks due to our enhanced task selection techniques.
We measured IPC (instructions per cycle), speedup (the ratio of execution time on one
processor to that on four processors), and load imbalance. Each processor has a two-way
superscalar architecture. For comparison, the table shows the real speedups obtained
by the automatically parallelized programs on a 4-processor Sun UltraSPARC server.

Multiscalar
Original | Improved
Benchmarks||Sun IPC|Speedup|L0ad imbalance| IPC|Speedup|L0ad imbalance
TRFD 2.42)(2.28| 1.42 38.4% 3.27 1.97 9.5%
BDNA 2.22||1.55| 1.48 49.0% 1.62| 1.55 5.7%
ARC2D 4.07|[1.69] 1.49 38.7% 2.42| 2.13 6.6%

2 Informed Task Selection

As a starting point of our project we have measured the performance of a number
of programs on a Multiscalar architecture simulator. We expected to see good
parallel efficiency on numerical programs, such as the Perfect Benchmarks. How-
ever we have found that, on a machine with 4 processing units (PU) both the
speedup relative to a 1-PU architecture and the number of instructions issued
per machine cycle (IPC) are limited. In fact, the speedup is much less that the
one measured for the compiler-parallelized programs executed on a 4-processor
Sun UltraSPARC server. Table 1 shows these measurements.

We have found that one reason for the limited performance is the simple task
selection scheme applied in the compiler: Each basic block is dispatched to the
next PU for parallel execution. However, each loop iteration consists of at least
two basic blocks - the actual loop body and a small block containing the branch
code to the next iteration and loop end. It is obvious that these two basic blocks
are not only intrinsically sequential but also very different in length, leading
to load imbalance. Combining the two basic blocks requires knowledge of the
program’s loop structure. We have modified the compiler (a modified version of
GCC) so that it performs this transformation. It results in improvements of up
to 55% in speedup, as shown in Table 1.

Additional improvements can be made if the compiler considers data depen-
dence information. For example, loop iterations which the compiler can prove
as dependent can be combined into a single task. The compiler/architecture
interface, described in the next section, will enable this and other optimizations.

3 Compiler / Hardware Co-design

Our goal 1s a scenario where the compiler detects parallelism to the maximum of
its abilities and leaves the rest up to the speculative hardware. More specifically,
the parallelizing compiler will detect and mark parallel loops, which will then
be executed by the processor in fully-parallel mode. Fully parallel execution will

TRED

EDA

A

[]polaris oo [senia

Fig. 1. Maximum parallelism that can be exploited in the programs TRFD, BDNA and
ARGC2D. Compile-time parallel sections can be exploited without speculative hardware
support. Runtime Doall regions can be detected as fully parallel by the hardware.
Doacross sections are partially parallel regions, also detectable at runtime.

not involve any speculative data tracking mechanism, saving overhead and obvi-
ating the need to reserve speculative data space. Data space 1s saved because, in
speculative operation, all written data would have to be buffered until the task is
no longer speculative. This can severely restrict the size of allowable speculative
tasks. Further overhead can be saved by marking serial (i.e, dependent) code
sections. The code generator will create a single task from such code sections,
avoiding task squashes as a result of dependence violations at runtime. Only
code sections that are neither parallel nor serial will become speculative tasks.
To enable this operation our basic compiler/architecture interface will

— define (the boundaries of) serial, parallel and speculative tasks,

— define variable attributes as shared dependent, shared independent, specu-
lative, private, or reduction operation. Speculative variables are those whose
accesses cannot be disambiguated at compile time. Private variables are those
that the compiler can prove to be written before read within a task. Reduc-
tion variables are only used as results of reduction operations.

Note that this interface requires a minimal extension of the Multiscalar ar-
chitecture: speculation can be suspended, such that the machine behaves like a
multiprocessor. This mode will be employed during the execution of fully parallel
tasks.

We have evaluated performance opportunities of this scenario. The bars in
Figure 1 show sections in the execution of TRFD, BDNA and ARC2D that can be
detected as parallel at compile time (using the Polaris parallelizer) and at run-
time, respectively. Runtime parallelism is split into sections that are fully parallel
(doall) and sections that need synchronization (doacross). We have performed
this analysis using the Max/P tool [?]. The figure shows that there are both
significant regions of compile-time and runtime parallelism. Developing efficient
mechanisms to exploit this potential is the object of our ongoing work.

4 Conclusion

We have presented a new compiler/architecture model for speculative processors.
Parallel tasks that can be detected at compile time are run in non-speculative,
multiprocessor mode. Program sections that may have dependences are paral-
lelized speculatively by the architecture. From the architecture’s point of view,
non-speculative parallel execution can save significant overhead and can increase
the parallel task size. We are currently completing the integration of the Polaris
parallelizing compiler with a GCC-based code generator, which will provide the
proposed architecture interface. The code generator will use high-level informa-
tion from the optimizing preprocessor to generate the information required in
the interface and to improve the quality of the generated code. In an initial study
to improve the selection of speculative parallel tasks we have already achieved
performance gains of up to 55% in speedup.

References

1. William Blume and Rudolf Eigenmann. Performance Analysis of Parallelizing Com-
pilers on the Perfect Benchmarks Programs. [IFEF Transactions on Parallel and
Distributed Systems, 3(6):643-656, November 1992.

2. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with the
SUIF compiler. IFEE Computer, pages 84-89, December 1996.

3. W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee,
D. Padua, Y. Paek, B. Pottenger, L.. Rauchwerger, and P. Tu. Parallel programming
with Polaris. TFEE Computer, pages 7882, December 1996.

4. Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar proces-
sors. The 22th International Symposium on Computer Architecture (ISCA-22),
pages 414-425, June 1995.

5. Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support for
a chip multiprocessors. Proceedings of the Eighth ACM Conference on Architectural
Support for Programming Languages and Operating Systems, October 1998.

6. J. Gregory Steffan and Todd C. Mowry. The potential for using thread-level data
speculation to facilitate automatic parallelization. Proceedings of the Fourth Inter-
national Symposium on High-Performance Computer Architectures, February 1998.

7. J.-Y. Tsai, Z. Jiang, Z. 11, D.J. Lilja, X. Wang, P.-C. Yew, B. Zheng, and S. Schwinn.
Superthreading: Integrating compilation technology and processor architecture for
cost-effective concurrent multithreading. Journal of Information Science and FEngi-
neering, March 1998.

8. Ye Zhang, Lawrence Rauchwerger, and Josep Torrellas. Hardware for speculative
parallelization in high-end multiprocessors. The Third PetaFlop Workshop (TPF-3),
February 1999.

