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abstraction, developing efficient GPGPU code is still complex and error-prone. This
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1 Introduction

Graphics Processing Units (GPUs) have been widely
adapted as alternative platforms for inexpensive, high
performance computing. Their increased popularity

results not only from their unique combination of
power, performance, and cost but also from the
great improvement in GPU programmability. CUDA
(Compute Unified Device Architecture) is one such
approach to lower the barriers to the complex GPU
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programming. The CUDA model abstracts a GPU
as a general-purpose multi-threaded SIMD (Single
Instruction, Multiple Data) architecture, known as a
general purpose GPU (or GPGPU). Even though the
CUDA programming model offers a more user-friendly
interface, programming GPGPUs is still complex and
error-prone, due to the exposure of its unique memory
and execution models to programmers.

OpenMP [OpenMP] is an API (Application
Programming Interface) for multi-platform shared
memory programming, which consists of compiler
directives, library routines, and environment variables.
In our prior work [Lee et al., 2009], we have proposed an
automatic OpenMP-to-CUDA translation framework,
which extends the ease of creating parallel applications
with OpenMP to GPGPU architectures such as CUDA.
It includes various optimizations to deal with the
performance gap caused by architectural differences
between traditional shared memory systems, served by
OpenMP, and stream architectures adopted by most
GPUs.

However, developing efficient CUDA programs still
remains difficult; complex interactions among hardware
resources and the multi-layered software stack used
for CUDA compilation and execution make it difficult
for the compiler to statically predict the overall
performance effect [Ryoo et al., 2008b, Liu et al., 2009].
Moreover, the abstraction provided by the OpenMP-
to-CUDA translation framework does not allow enough
control over fine-grained tuning. To achieve optimal
performance, additional, manual modifications of the
generated CUDA code may be required, which can
be tedious and error-prone [Liu et al., 2009, Han and
Abdelrahman, 2011, Baskaran et al., 2010].

There exists extensive work to optimize the
performance of CUDA-based GPGPU programs. Studies
on general CUDA optimization strategies reveal that
the performance gap between well-optimized GPU
applications and poorly optimized ones can be orders of
magnitude [Ryoo et al., 2008b,a, Baskaran et al., 2008].
The studies also show that porting applications onto
GPGPUs may require very high effort and expertise to
obtain optimal performance. Even though there have
been several efforts to automatically optimize and tune
the performance of GPGPU programs, most of them
are either application-specific [Nukada and Matsuoka,
2009, Datta et al., 2008, Volkov and Demmel, 2008],
restricted to certain types of applications [Baskaran
et al., 2008], or applied to only a small subset of
optimization parameters [Liu et al., 2009]. Therefore,
achieving maximum performance for general GPGPU
applications is still a challenge and often involves manual
work.

To address this challenge, we propose OpenMPC
– OpenMP extended for CUDA, which comprises a
standard OpenMP API plus a new set of directives
and environment variables to control important CUDA-
related parameters and optimizations.

This paper makes the following contributions:

• We propose OpenMPC, an extended OpenMP API
for improved CUDA programming, which offers a
high-level programming and tuning environment
where users can generate CUDA programs in many
optimization variants without detailed knowledge
of the underlying CUDA programming and
memory models.

• We have developed a fully automated and
parameterized compilation system by extending
the framework proposed in our previous work [Lee
et al., 2009]; the OpenMPC directives and
environment variables allow users to have fine-
grained control over the overall OpenMP-to-
CUDA translation and optimizations.

• In addition to various transformation and
optimization techniques for seamless performance
porting, we have developed several tools that
assist users in performance tuning; the search
space pruner analyzes a given input OpenMP
program, plus optional user settings, and suggests
optimizations that are applicable to the given
program. This automatic suggestion has the effect
of pruning the search space that a tuning system
should navigate to find the best performance. For
the search space suggested by the pruner, another
tool called configuration generator defines all
corresponding compilation variants, such that they
can be created automatically by the OpenMP-to-
CUDA translator.

• We have evaluated the effectiveness of OpenMPC
using the reference compilation system and
tuning tools. The experiments on fourteen
OpenMP programs (two kernel benchmarks, three
NAS Parallel Benchmarks, and nine Rodinia
Benchmarks) demonstrate that tuning using
OpenMPC with optional manual modification on
the input OpenMP programs, which may be
automated by an advanced compiler, can improve
the performance up to 7.71 times (1.24 times on
average) over un-tuned versions, which is 75% of
the performance of hand-written CUDA versions.
If we exclude one exceptional case (Rodinia
Benchmark LUD), the average speedup will be 92%
of that of the manual CUDA versions.

This paper is a revised and expanded version of
our previous paper [Lee and Eigenmann, 2010]. It
is organized as follows: Section 2 gives an overview
of the CUDA model, and Section 3 describes the
baseline OpenMP-to-CUDA translation scheme and
new optimizations added in this work. Section 4
introduces OpenMPC, and Section 5 presents a reference
compilation system and a prototype tuning framework
supporting OpenMPC. Experimental results are shown
in Section 6, and related work and conclusion are
presented in Section 7 and Section 8, respectively.
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2 Background on the CUDA Model

CUDA-compatible GPGPUs consist of multiprocessors
called streaming multiprocessors (SMs), each of which
contains a fixed number of SIMD processing units called
streaming processors (SPs). Each SM has a set of
registers, which are logically partitioned among threads
running on the SM, a fast on-chip shared memory, which
is shared by SPs in the same SM, and special read-
only caches (constant cache and texture cache), which
are shared by SPs. A slow off-chip global memory is used
for communication among different SMs.

A CUDA program consists of parallel and serial
code regions; code regions with rich parallelism are
implemented as a set of kernel functions, which are
executed on the GPU by a number of threads in an
SIMD fashion. Serial regions, which are outside of kernel
functions, are executed by a host CPU.

In the CUDA model, threads are grouped as a grid
of thread blocks, each of which is mapped to an SM
on the GPU device. The number of thread blocks and
the number of threads per thread block, called thread
batching, are specified through language extensions at
each kernel invocation.

In the CUDA memory model, global memory,
constant memory, and texture memory are accessible by
all threads, shared memory is shared only by threads in
the same thread block, and registers and local memory
are private to each thread. The shared memory and
registers in an SM are dynamically partitioned among
the active thread blocks running on the SM. Therefore,
register and shared memory usages per thread block
can be a limiting factor preventing full utilization of
execution resources.

The CUDA model assumes that the host CPU and
the GPU device have separate address spaces. For
communication between CPU and GPU, the CUDA
model provides an API for explicit GPU memory
management, including functions to transfer data
between CPU and GPU.

One limitation of the CUDA model is the lack
of efficient global synchronization mechanisms.
Synchronization within a thread block can be enforced
by using the syncthreads() runtime primitive.
However, synchronization across thread blocks can be
accomplished only by returning from a kernel call,
after which global memory data modified by threads in
different thread blocks are guaranteed to be globally
visible.

3 Overview of the Automatic OpenMP-to-
CUDA Translation System

This section describes the OpenMP-to-CUDA
translation system, which automatically converts a
standard OpenMP program into a CUDA program
and applies various optimizations to achieve high

performance. This system has been built on top of the
Cetus compiler infrastructure [Dave et al., 2009].

3.1 Baseline Translation of OpenMP to CUDA

The baseline translation comprises two steps: (1)
interpreting OpenMP semantics under the CUDA model
and identifying kernel regions (code sections to be
executed on a GPU) and (2) transforming eligible kernel
regions into CUDA kernel functions and inserting codes
for memory transfers between CPU and GPU.

3.1.1 Interpretation of OpenMP Semantics under
the CUDA Programming Model

OpenMP directives can be classified into four categories:
(a) Parallel construct (omp parallel) – this construct

specifies parallel regions. Parallel regions may be further
split into sub-regions. The translator identifies eligible
kernel regions among the (sub-)regions and transforms
them into GPU kernel functions.

(b) Work-sharing constructs (omp for, omp sections,
etc.) – these constructs contain the true parallel codes
in OpenMP. Other sub-regions, within an omp parallel
region but outside of work-sharing constructs, are
executed by one thread, serialized among threads, or
executed redundantly among participating threads. The
translator interprets these constructs to partition work
among threads on the GPU device.

(c) Synchronization constructs (omp barrier, omp
critical, omp flush, etc.) – these constructs contain
explicit or implicit synchronization points. A parallel
region must be split into two sub-regions at each of these
constructs to preserve a global synchronization in the
CUDA programming model, as explained in Section 2.

(d) Data-property constructs (omp shared, omp
threadprivate, omp private, etc.) – the translator
interprets these constructs to map data into GPU
memory spaces. OpenMP shared data are shared by all
threads, and OpenMP private data are accessed by a
single thread. In the CUDA memory model, shared data
can be mapped to global memory, and private data can
be mapped to registers or local memory assigned for each
thread. OpenMP threadprivate data are private to each
thread, but they have global lifetimes. The semantics
of threadprivate data can be implemented using data
expansion, which allocates copies of the threadprivate
data on global memory for each thread.

3.1.2 Transformation of Kernel Regions into
Kernel Functions

The translator considers OpenMP parallel regions
as potential kernel regions. At each synchronization
construct, these parallel regions must be split. Among
the resulting sub-regions, the ones containing at least one
work-sharing construct become kernel regions. To reduce
expensive memory transfers between CPU and GPU, a
top-down splitting algorithm proposed in our previous
work [Lee et al., 2009] is used.
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The translator outlines each eligible kernel region
into a CUDA kernel function and replaces the original
region with a call to the function. The kernel-region
transformation involves two important steps: work
partitioning and data mapping. For work partitioning,
each iteration of omp for loops and each section of omp
sections are assigned to a thread, and remaining code
sections in a kernel region are executed redundantly by
all participating threads. To decide the thread batching
for a kernel function, the translator calculates the
maximum partition size among parallel work contained
in the kernel region. By default, the maximum partition
size becomes the total number of threads executing
the kernel function. If a user explicitly sets the thread
batching using directives or environment variables, the
translator performs necessary tiling transformations to
fit the work partition into the specified thread batching.

For data mapping, the translator exploits the
information in the data-property constructs. For the
data that are referenced in a kernel region, but not in
a construct, the translator can determine their sharing
attributes using OpenMP data sharing rules. Default
data mapping follows the rule explained in Section 3.1.1.
The CUDA memory model offers several specialized
memory spaces; read-only shared data can be assigned
to either constant memory or texture memory to exploit
temporal locality through dedicated caches, and shared
data with temporal locality can use fast memory spaces,
such as registers and shared memory, as a cache. Even
with no locality, passing read-only shared scalar variables
as kernel arguments can reduce global memory traffic,
since they will be placed on shared memory without
involving global memory.

Because the CUDA memory model requires explicit
memory transfers for threads executing a kernel function
to access data on the CPU, the translator must insert
necessary memory transfer calls for the shared and
threadprivate data accessed by each kernel function. A
basic strategy is to move all the shared data accessed by
a kernel function from the CPU to the GPU and copy
modified shared data back to the CPU after the kernel
finishes. The data movement strategy for threadprivate
data is decided by OpenMP semantics. However, the
basic strategy may be inefficient in that the CPU may
not use all shared data modified by GPU kernels, and
the data in the GPU global memory may be persistent
across kernel calls. To deal with these issues, we have
developed several compiler optimizations, described in
Section 3.3.

3.2 Transformation Techniques Supporting
OpenMP-to-CUDA Translation

This section explains transformation techniques that
are used to address various issues arising during the
OpenMP-to-CUDA translation.

3.2.1 Upward-Exposed Private Variable Removal

As shown in Section 3.1.2, the baseline translation may
split original parallel regions at each synchronization
point to preserve a global synchronization under the
CUDA programming model. However, this splitting may
create an upward exposed private variable problem (UEP
problem). A variable is upward exposed if the variable
is used before it is written (defined). In the OpenMP
memory model, the value of a private variable is not
defined upon entry to a parallel region unless the variable
is in a firstprivate clause, and the value is also not
defined upon exit from the region if the variable does
not appear in a lastprivate clause. Therefore, private
variables without firstprivate clauses should be defined
first in a parallel region before they are used. When a
parallel region is split into two sub-regions, a private
variable becomes upward exposed if the variable is
defined in the first sub-region but used in the second sub-
region. To resolve this problem, the definition statement
of the private variable should be moved out of the
enclosing sub-region, and the private variable should be
changed to a firstprivate variable in both sub-regions.

A transformation algorithm is shown in Figure 1.
To find UEP variables, a traditional live analysis is
performed; live-in private variables upon entry of a
kernel region are the UEP variables for the kernel
region. However, some private variables may become
upward exposed after the kernel region is transformed
into a kernel function, if they are used in the
control part (initial statement, condition expression,
or step expression) of any omp-for loop in the kernel
region. The translator decides the thread batching of
a kernel region by calculating the maximum partition
size among parallel work contained the kernel region,
and the resulting code for the thread batching is
inserted somewhere before the kernel function call site.
(Actual insertion point can vary depending on related
optimizations.) Therefore, private variables that are used
in the control part of any omp-for loop will be included in
the thread batching calculation code, and depending on
the insertion location of the code, the private variables
may become upward exposed. The current algorithm
conservatively includes these variables as potential UEP
variables (lines from 8 to 10 in Figure 1). The next step is
to find statements where the UEP variables are defined
(DEF statements) and move them before their enclosing
kernel regions, so that the DEF statements are reachable
to kernel regions with UEP problems. However, we may
not be able to move all DEF statements; all variables
used in a DEF statement should be visible in the lexically
enclosing block, the value of the UEP variable should be
thread-independent, and moving the DEF statement out
of the enclosing region should not change the program
semantics. To check these conditions, the algorithm
performs three tests:

• Check whether a kernel region containing a DEF
statement has a UEP problem related to the DEF
statement (lines 14 and 15 in Figure 1). If so,
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Algorithm to remove upward−exposed private variables
Input: OpenMP program where kernel splitting algorithm is applied
Output: OpenMP program where upward−exposed private variables are removed
1 for each procedure p containing kernel regions
2 perform live analysis on p
3 for each kernel region KR in p
4 for each private variable s , which is live upon entry to KR
5 if ( s is not a reduction variable ) add S to UEPSymSet
6 for each omp−for loop L in KR
7 for each private variable s used in L
8 if ( s is not a index variable of L )
9 if ( s is used in initial statement, condition expression, or step expression of L )
10 add s to UEPSymSet
11 for each private variable s in UEPSymSet
12 convType = 0
13 for each kernel region KR in p
14 if ( s is written in KR )
15 if ( s is upward−exposed in KR ) convType = −3; break
16 else if ( s is written in any loop in KR )
17 if ( (s is not used as index variable ) and (s is not used as reduction variable ) )
18 convType = −1; break
19 else if ( s is written in a simple statement SS in KR ) add SS into removeStmtSet
20 else convType = −2; break
21 if ( convType < 0 ) continue
22 for each statement SS in removeStmtSet, move SS before the enclosing kernel region
23 for each kernel region KR where s is upward−exposed
24 remove s from OpenMP private clause; add s to OpenMP firstprivate clause

Figure 1 Transformation algorithm to remove upward exposed private variable problems

moving the DEF statement out of the kernel region
may change the program semantics.

• Check whether a DEF statement resides in any of
loops in the kernel region, and the corresponding
UEP variable is neither used as index variable nor
used as reduction variable (lines from 16 to 18 in
Figure 1). If so, the UEP variable is likely to have
a thread-dependent value, not suitable for DEF
statement movement.

• Check whether a DEF statement is a simple
assignment statement without conditions (lines 19
in Figure 1). If not, moving the DEF statement
may alter the program semantics.

If all of these tests are passed, the algorithm will perform
the code transformation; move DEF statements out of
the enclosing parallel regions and change UEP variables
from OpenMP private variables to firstprivate variables
(lines from 22 to 24 in Figure 1). However, the safety
tests conducted in the algorithm are not conservative
enough to always guarantee correctness. Therefore, the
compiler provides multiple options so that a user can
choose and approve an appropriate transformation level.

3.2.2 Selective Procedure Cloning

This transformation selectively clones procedures that
contain kernel regions or calls to procedures that contain
kernel regions (possibly indirectly). This transformation
is performed as a preprocessing step for context-
sensitive, interprocedural analyses, such as the ones
described in Section 3.3. This preprocessing ensures
that every kernel function is called in a unique calling
context, which supports context-sensitive analysis and
translation.

The core algorithm of the selective procedure cloning
transformation is shown in Figure 2; first, the algorithm
traverses the call graph in post order and creates
a list of procedures, where callee procedures come
before their callers. Second, the algorithm finds the
procedures that contain kernel regions and their caller
procedures including indirect callers. These procedures
are candidates for cloning; we include caller procedures,
because if they are called multiple times, kernel regions
in the callee procedures will be called in different
contexts. Third, the algorithm clones procedures in the
candidate list if they are called more than once. In this
step, cloning should be performed first on the procedures
that are higher in the call graph, since cloning of a caller
procedure will result in multiple invocations of its callees.

An alternative to this selective cloning is to use
a selective inlining method. However, inlining is more
complex than cloning and may lose information at
subroutine boundaries, leading to more conservative
aliasing. Therefore, our translator uses cloning instead
of inlining.

3.3 Compiler Optimizations

Compiler optimizations related to GPU memory accesses
can be classified as follows: (1) techniques to optimize
data movement between CPU and GPU, (2) techniques
to optimize GPU global memory accesses, and (3)
techniques to exploit GPU on-chip memories. In simple
kernel programs, the first category may not be an
issue; most previous work has focused on the last two
categories. In our prior work [Lee et al., 2009], we have
also identified several key transformation techniques to
enable efficient GPU global memory access and exploit
GPU on-chip memories. However, in experiments with
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Selective procedure cloning algorithm
Input: OpenMP program where kernel splitting algorithm is applied
Output: OpenMP program where procedures are cloned so that each procedure

containing kernel regions is called in a unique context
1 procedureList = a list of procedures in ascending order of call graph
2 for each procedure p in procedureList
3 if ( p contains kernel regions ) add p into callingProcList
4 while ( callingProcList is not empty )
5 c p = callingProcList.removeFirst()
6 for each procedure p p which calls c p
7 if ( (p p is not a main procedure) and (p p is not in visitedProcList) )
8 add p p into callingProcList ; add p p into visitedProcList
9 if ((c p is called more than once) and (c p is not in clonedProcList))
10 add c p into clonedProcList in the order of procedureList
11 if ((c p is called only once) and (c p is not in mayClonedProcList))
12 add c p into mayClonedProcList in the order of procedureList
13 while ( (clonedProcList is not empty) or (mayClonedProcList is not empty) )
14 if ( clonedProcList is not empty ) c p = clonedProcList.removeLast()
15 else if ( mayClonedProcList is not empty ) c p = mayClonedProcList.removeLast()
16 if ( c p is called more than once )
17 for each function call fcall to c p, clone c p and replace fcall with a new call to the cloned procedure

Figure 2 Procedure cloning algorithm which clones procedures containing kernel regions interprocedurally

larger applications, which typically contain several kernel
functions called in different procedures, we have found
that data movements between the CPU and the GPU
can be costly. We have developed several compile-time
techniques to reduce this cost, described next.

Techniques to Optimize Data Movement between the
CPU and the GPU: The basic data movement strategy
is to transfer data accessed by a kernel function from
the CPU to the GPU before the kernel function is
called, and transfer back modified data from the GPU
to the CPU after the kernel function returns. However,
if a compiler can determine that GPU global memory
already has up-to-date data, they do not have to be
copied again from the CPU. For this, we have developed
an interprocedural data flow analysis that identifies
resident GPU variables, which are the variables that
reside in the GPU global memory and contain the same
contents as the corresponding OpenMP shared variables
in the CPU. The analysis algorithm recognizes if an
OpenMP shared variable is used as a reduction variable
in a kernel region and removes the variable from the
resident GPU variable set. The rationale is that the
translator implements reduction operations using a two-
level tree reduction algorithm [CUDA reduction], where
the final reduction is performed on the CPU; after the
reduction operation finishes, only the CPU has the final
reduction output. Moreover, if a read-only shared scalar
variable is passed as a kernel argument for the current
kernel execution, the variable is directly copied to the
shared memory without using global memory. In this
case, the variable is not added to the resident GPU
variable set, since global memory may contain stale data.

We have developed another interprocedural data flow
analysis to identify redundant memory transfers from
the GPU to the CPU. We define a live CPU variable
as the variable that resides in the CPU and may be
potentially read before its next write. Even though a
shared variable is modified by a kernel function, if it is
not a live CPU variable at the exit of the kernel function,

it does not have to be copied from the GPU to the
CPU, since it will not be used by the CPU before it is
modified again. We can not blindly apply a traditional
live analysis, because the CUDA memory model has two
separate address spaces, while a traditional live analysis
assumes only one address space. More details on this
analysis can be found in our previous work [Lee and
Eigenmann, 2010].

The information obtained from these analyses is
passed to the actual translator in the form of
annotations, and the translator will perform necessary
transformations depending on the passed information.

4 OpenMPC: OpenMP Extended for
CUDA

OpenMPC extends the baseline programming system
described in Section 3.1 by adding new directives and
environment variables that allow users or automatic
tuning systems to control the overall translation and
apply various optimizations and related parameters in
an abstract way. The directives are also internally used
by the translation system to pass information among
compiler passes.

4.1 Directive Extension

OpenMPC directives are used to annotate OpenMP
parallel regions using the syntax common in OpenMP.
The syntax of the OpenMPC directives is shown in
Table 1.

Table 1 OpenMPC directive format

#pragma cuda gpurun [clause [,] clause]...]

#pragma cuda cpurun [clause [,] clause]...]

#pragma cuda nogpurun

#pragma cuda ainfo procname(pName) kernelid(kID)
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Table 2 Brief description of OpenMPC clauses, which control kernel-specific thread batchings and optimizations

Clause Description

maxnumofblocks(N) Set Maximum number of CUDA thread blocks for a kernel
threadblocksize(N) Set CUDA thread block size for a kernel

noloopcollapse Do not apply Loop Collapsing optimization

noploopswap Do not apply Parallel Loop-Swap optimization
noreductionunroll Do not apply loop unrolling for in-block reduction

Table 3 Brief description of OpenMPC clauses, which control kernel-specific data caching strategies

Clause Description

registerRO(list) Cache R/O variables in the list on GPU registers
registerRW(list) Cache R/W variables in the list on GPU registers

noregister(list) Set the list of variables not to be cached on GPU registers
sharedRO(list) Cache R/O variables in the list on GPU shared memory
sharedRW(list) Cache R/W variables in the list on GPU shared memory

noshared(list) Set the list of variables not to be cached on GPU shared memory
texture(list) Cache variables in the list on GPU texture memory

notexture(list) Set the list of variables not to be cached on GPU texture memory

constant(list) Cache variables in the list on GPU constant memory
noconstant(list) Set the list of variables not to be cached on GPU constant memory

Table 4 Brief description of OpenMPC clauses, which control data mapping or movement between CPU and GPU. These
clauses are used either internally by a compiler framework or externally by a manual tuner.

Clause Description
c2gmemtr(list) Set the list of variables to be transferred from a CPU to a GPU

noc2gmemtr(list) Set the list of variables not to be transferred from a CPU to a GPU
g2cmemtr(list) Set the list of variables to be transferred from a GPU to a CPU

nog2cmemtr(list) Set the list of variables not to be transferred from a GPU to a CPU
nocudamalloc(list) Set the list of variables not to be CUDA-mallocated

nocudafree(list) Set the list of variables not to be CUDA-freed

Table 5 Brief description of OpenMPC environment variables, which control program-level behaviors of various
optimizations, thread batchings, and translation configurations.

Parameter Description
maxNumOfCudaThreadBlocks=N Set the maximum number of CUDA thread blocks

cudaThreadBlockSize=N Set the default CUDA thread block size
useMatrixTranspose Apply Matrix Transpose optimization

useLoopCollapse Apply Loop Collapsing optimization

useParallelLoopSwap Apply Parallel Loop-Swap optimization
useUnrollingOnReduction Apply loop unrolling for in-block reduction

useMallocPitch Use cudaMallocPitch() for 2-dimensional arrays

useGlobalGMalloc Allocate GPU variables as global variables
globalGMallocOpt Apply CUDA malloc optimization for globally allocated GPU variables

cudaMallocOptLevel=N Set CUDA malloc optimization level for GPU variables
cudaMemTrOptLevel=N Set CUDA CPU-GPU memory transfer optimization level
assumeNonZeroTripLoops Assume that all loops have non-zero iterations

convStatic2Global Convert static variables in procedures except for main into global variables
disableCritical2ReductionConv Disable critical-to-reduction conversion pass

UEPRemovalOptLevel=N Set the level of upward exposed private variable removal optimization

MemTrOptOnLoops Apply memory transfer promotion optimization
localRedVarConf=N Configure how local reduction variables are generated for array-type variables

forceSyncKernelCall Enforce explicit synchronization for each kernel call
addCudaErrorCheckingCode Add CUDA-error-checking code right after each kernel call

addSafetyCheckingCode Add GPU-memory-usage checking code just before each kernel call

The gpurun and cpurun directives are inserted either
automatically by the compiler or manually by the
user, while the nogpurun directive is inserted mostly
by the user, and the ainfo directive is always inserted
by the compiler. The gpurun directive specifies that
the attached parallel region is eligible for kernel-region
transformation. Clauses in Table 2, Table 3, and Table 4
may be used for this directive. The gpurun directive
controls the translation of each kernel region. The cpurun

directive says that the associated parallel region will be
executed by the CPU. For this directive, the following
four clauses from Table 4 can be used: c2gmemtr,
noc2gmemtr, g2cmemtr, and nog2cmemtr. The nogpurun
directive prevents the translator from transforming the
attached kernel region. In our system, the gpurun
directive is usually added by the automatic translator;
it can be overridden by the nogpurun directive inserted
by a user or a tuning system. The translator uses the
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Table 6 Brief description of OpenMPC environment variables, which control program-level behaviors of data caching
strategies.

Parameter Description
shrdSclrCachingOnReg Cache shared scalar variables onto GPU registers

shrdArryElmtCachingOnReg Cache shared array elements onto GPU registers

shrdSclrCachingOnSM Cache shared scalar variables onto GPU shared memory
prvtArryCachingOnSM Cache private array variables onto GPU shared memory

shrdArryCachingOnTM Cache 1-dimensional, R/O shared array variables onto GPU texture memory

shrdSclrCachingOnConst Cache R/O shared scalar variables onto GPU constant memory
shrdArryCachingOnConst Cache R/O shared array variables onto GPU constant memory

Table 7 Brief description of OpenMPC environment variables, which control tuning-related configurations.

Parameter Description

cudaUserDirectiveFile=filename Set the name of file containing user directives
extractTuningParameters=filename Extract tuning parameters applicable to a given input program

genTuningConfFiles=directory Generate sets of tuning configuration files and user-directive files

defaultTuningConfFile=filename Set the name of file containing default CUDA tuning configurations
tuningLevel=N Set tuning level (0: Program-level tuning 1: Kernel-level tuning)

ainfo directive to assign unique IDs to each kernel
region. This allows programmers and tuning systems to
provide additional directives via a separate user directive
file, rather than annotating the input OpenMP code.
Directives provided in a user directive file have a similar
syntax as that in Table 1, but are prefixed by the
procedure name and kernel ID they refer to.

4.2 Environment Variable Extension

OpenMPC environment variables control the program-
level behavior of various optimizations or execution
configurations for an output CUDA program. The
supported environment variables are summarized in
Table 5, Table 6, and Table 7; variables in Table 5
control default behaviors of various optimizations and
translations and set default thread batching for an
input program. Those in Table 6 control program-
level behaviors of data caching strategies, which may
be overridden if each kernel region is annotated
with data-caching clauses in Table 3. The ones in
Table 7 are special variables used to set various tuning
configurations. Because directives have priority over
environment variables, users or tuning systems can alter
the program-level optimizations and configurations for
each kernel region.

5 Reference OpenMPC Compilation and
Tuning System

We have developed a reference compilation and tuning
system supporting OpenMPC by extending our previous
compiler framework [Lee et al., 2009]. The new reference
compiler has several distinct features compared to the
previous framework: (1) all the optimizations that
were applied manually have been automated, (2) new
transformations and optimizations, including those in
Section 3.2 and Section 3.3, are implemented, (3) an
OpenMPC directive handler is added, (4) there is a clear
separation between optimization passes and translation

passes, and compiler passes communicate each other
using the new directives, and (5) new transformation
passes are implemented to perform the necessary code
changes for each OpenMPC directive or environment
variable.

The new compiler also includes capabilities for
efficient tuning: a search space pruner and a tuning
configuration generator. Using the compilation system,
we also created a prototype tuning system, which builds
a pruned optimization search space by analyzing the
program and optional user settings. It then creates a
path through the space and generates output CUDA
code for each point in the search space.

OpenMP 
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Parser 
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Translator 

OpenMP 
Stream    
Optimizer 

CUDA    
Optimizer 

OpenMPC
 Directive 
 Handler 

Kernel   
Splitter 

Input        
OpenMP/ 
OpenMPC 
Program 

Output    
CUDA     
Program 

User       
Directive 
File 

(A) 

Figure 3 Overall compilation flow. For automatic tuning,
additional passes are invoked between CUDA
Optimizer and O2G Translator, marked as (A) in
the figure (See Figure 4).

5.1 Overall Compilation Flow

Figure 3 illustrates the overall compilation flow. The
Cetus Parser converts the input OpenMP/OpenMPC
program into an internal representation (Cetus IR).
The OpenMP Analyzer interprets standard OpenMP
directives and analyzes the program to find all
explicit/implicit OpenMP shared, threadprivate, private,
and reduction variables. The analyzer also identifies
implicit barriers defined by OpenMP semantics
and replaces implicit synchronization points with
explicit barrier statements. The Kernel Splitter splits
parallel regions at each synchronization point to
enforce synchronization semantics under the CUDA
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programming model. The OpenMPC-directive Handler
processes OpenMPC directives present in the input
program and annotates each kernel region with ainfo
directives to assign a unique ID. The handler also
parses a user directive file, if present. The OpenMP
Stream Optimizer transforms CPU-oriented OpenMP
programs into GPU-oriented ones, and the CUDA
Optimizer performs CUDA-specific optimizations. Both
optimization passes store their results in the form
of OpenMPC directives in the Cetus IR. In the last
pass, the O2G Translator performs the actual code
transformations according to the directives inserted
either by a user or by the optimization passes.

5.2 Compiler Support for Efficient Tuning

The OpenMPC directives and environment variables
control various transformations and optimizations.
Therefore, this set constitutes the basis of a tuning
system. The compiler provides two important building
blocks for efficient tuning systems: search space pruning
and tuning configuration generation.

5.2.1 Search Space Pruning

A complete optimization search space may consist of
all possible combinations of values of the OpenMPC
directives and environment variables. For automatic
tuning, however, only the clauses in Table 2 and Table 3
and the environment variables in Table 5 and Table 6
are used as tuning parameters. Clauses in Table 4 have
a predictable effect – they are used either by a user or
by the translator internally, and variables in Table 7
are used to control various tuning-related configurations.
Even with the subset of directives and environment
variables used for tuning, the overall optimization
space can be too large to be searched. The automatic
search space pruning function attempts to reduce this
optimization space to a feasible size.

First, the search space pruner analyzes conditions
necessary for applying each optimization and checks
whether a given program has code sections satisfying
the conditions. If no eligible code section is found, the
optimization is removed from the optimization space.
Second, the pruner suggests applicable caching methods
for each variable that exhibits locality, based on the
caching strategies described in our previous work [Lee
et al., 2009].

The search space pruner may not be able to analyze
the applicability of all parameters since the analysis
may be too complex or sensitive to runtime inputs
(i.e., unsafe). The pruner reports these parameters. In
response, a user may decide and express the validity
of these parameters in the optimization-space-setup,
described next.

5.2.2 Tuning Configuration Generation

Once the search space pruner defines a pruned
optimization space, the configuration generator creates

tuning configuration files for each point in the search
space. The configuration files are fed to the O2G
translator, one at a time, generating output CUDA code.
By default, the configuration generator builds tuning
configurations for program-level tuning, but a user can
choose more exhaustive kernel-level tuning, using an
environment variable (tuningLevel in Table 7).

To reduce the space further, the user may provide
an optional optimization-space-setup file to exclude
specific parameters from the search space. The setup
file can direct the tuning system to choose aggressive
optimizations, which otherwise might be unsafe.
Additionally, the setup file may contain the search ranges
of important tuning values, such as the number of thread
blocks and thread block size.

5.3 Prototype Tuning System

We have created a prototype tuning system (shown in
Figure 4) using the tuning tools described in the previous
section. The overall tuning procedure is as follows:

1. The search space pruner analyzes an input
OpenMPC program plus optional user settings,
and suggests applicable tuning parameters.

2. The tuning configuration generator builds a
search space, further prunes the space using the
optimization space setup file if user-provided, and
generates tuning configuration files for the given
search space.

3. For each tuning configuration, the O2G translator
generates an output CUDA program.

4. The tuning engine produces executables from the
generated CUDA programs and measures their
performance by executing them.

5. The tuning engine decides a direction to the next
search and requests the configuration generator to
generate new configurations.

6. The last three steps are repeated, as needed.

In the proposed tuning framework, a programmer can
replace the tuning engine with any custom engine; all the
other steps from finding applicable tuning parameters to
generating code variants for each tuning configuration
are automatically handled by the proposed system. In
our prototype, we have developed a simple tuning engine,
which performs exhaustive search. Tuning with such a
simple algorithm is feasible for our benchmarks, because
the automatic search-space pruner can effectively reduce
the optimization search. There exist algorithms for more
efficient search space navigation [Ryoo et al., 2008b, Pan
and Eigenmann, 2008]; they could replace exhaustive
search in our system.
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Figure 4 Overall tuning framework, where input IR is
passed from CUDA Optimizer in the compilation
system (See Figure 3).

6 Evaluation

This section discusses the performance of the proposed
OpenMPC system. Using the prototype tuning system,
we have conducted two types of tuning experiments:
profile-based tuning (ProfT) and user-assisted tuning
(UAT). In profile-based tuning (ProfT), a target
program is tuned with a training input data set –
the smallest available set, in our case; the tuning
system finds the best variant for the training input, and
then the best variant is used to execute and measure
the performance with the actual data sets of interest
(referred to as production data). The profile-based tuning
is fully automatic.

User-assisted tuning (UAT) is used to obtain an
upper performance bound of our tuning system. The
programs have been tuned for each production data
set. In addition, the user assists the tuning system by
confirming the applicability of aggressive optimizations.
The other tuning processes are performed automatically.

In these experiments, fourteen OpenMP programs
(two kernel benchmarks (JACOBI and SPMUL), three
NAS OpenMP Parallel Benchmarks (EP, CG, and
FT), and nine Rodinia Benchmarks [Che et al., 2009]
(BACKPROP, BFS, CFD, HEARTWALL, HOTSPOT,
KMEANS, LUD, NW, and SRAD)) were automatically
transformed and tuned.

For comparison, three types of code variants
of the tested programs were also evaluated: Base,
AllOpt, and Manual versions. Base means CUDA
programs translated by the proposed system without
any optimization, AllOpt refers to the code variants
where all safe optimizations are applied automatically
by the compiler, and Manual represents hand-written
CUDA versions. In creating the manual CUDA versions
of the tested programs that do not have corresponding
CUDA versions (JACOBI, SPMUL, EP, and CG), we
have also used OpenMPC; we have first annotated each

OpenMP source program using the OpenMPC directives
and generated CUDA programs with our translator. We
have then applied additional manual transformations to
the generated CUDA programs, as possible.

The tested GPU device is an NVIDIA Quadro FX
5600 GPU, which has 16 multiprocessors (SMs) clocked
at 1.35 GHz and 1.5 GB of DRAM. Each SM consists
of 8 SIMD processing units (SPs) and has 16 KB of
shared memory. The host CPU is a 3-GHz AMD dual-
core processor with 12 GB DRAM. The translated
CUDA programs were compiled using the NVIDIA
CUDA Compiler (NVCC) and the serial versions of the
input OpenMP programs were compiled using the GCC
compiler version 4.2.2, with option -O3.

Table 8 summarizes the performance improvements
achieved by the tested tuning systems. Overall, we found
the followings:

• User-assisted tuning using the described system
increases the performance up to 4.23 times (1.19
times on average) over the un-tuned versions
(AllOpt). When the input OpenMP programs were
optionally modified by hand (we believe that
most of the changes can be done automatically
by an advanced compiler), we could improve the
performance up to 7.71 times (1.24 times on
average) over the un-tuned versions; the average
performance gap between hand-written versions
(Manual) and versions generated by our tuning
system (ModUAT) is less than 25%. If we exclude
one exceptional case (Rodinia Benchmark LUD),
the average performance gap is less than 8%.

• The proposed search-space pruner is able to reduce
the optimization search space effectively (98.7% on
average).

• In some programs, profile-based tuning is highly
sensitive to input data, motivating future work in
runtime tuning methods.

The detailed results are presented in the following
sections.

Table 8 Overall tuning performance. Input Type refers to
the types of the translation input sources; Mod.
means that the input OpenMP code is manually
modified before fed to the translator. All-Opt
versions are the ones where all safe optimizations
are automatically applied. In A(B) format, B refers
to the performance when the results of LUD,
which shows the largest performance gap between
tuned and manual versions, are excluded.

Perf. Improvement Relative Performance
Input over All-Opt Versions over Manual Versions
Type MIN MAX AVG MIN MAX AVG
Orig. 1 4.23 1.19 0.02 1.92 0.5 (0.58)
Mod. 1 7.71 1.24 0.02 2.68 0.75 (0.92)
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Table 9 Optimization search space reduction by the
search-space pruner for program-level tuning of the
original OpenMP programs

Benchmark # of Tuning Configurations Search Space
W/O pruning W/ pruning Reduction (%)

JACOBI 25600 100 99.61
SPMUL 16384 128 99.22
EP 21504 336 98.44
CG 6144 384 93.75
FT 16384 512 96.88
BACKPROP 65536 128 99.8
BFS 49152 96 99.8
CFD 49152 384 99.22
HEARTWALL 65536 512 99.22
SRAD 65536 1024 98.44
HOTSPOT 16384 256 98.44
KMEANS 65536 256 99.61
LUD 49152 48 99.9
NW 65536 32 99.95

6.1 Optimization Space Reduction

Table 9 shows the optimization search space reduction
due to pruning. Aggressive parameters are pruned,
unless the user confirms their validity. In all experiments,
we have used program-level tuning. For programs with
small number of kernels, kernel-level tuning would be
feasible as well, despite our simple, exhaustive search
engine. We have verified that the performance results of
both methods are nearly equal for those small programs.
Applying kernel-level tuning in programs with many
kernels, such as CG and FT, would increase the search
space significantly, motivating future work in advanced
search space navigation [Ryoo et al., 2008b, Pan and
Eigenmann, 2008].

6.2 Tuning Performance of Kernel Benchmarks
and NAS Parallel Benchmarks

JACOBI is a stencil computation kernel used in
many regular scientific applications, such as partial
differential equation solvers. Even though JACOBI has
a simple, regular access pattern, the base-translated
GPU code performs poorly due to un-coalesced global
memory accesses (OrgBase in Figure 5(a)). Our
translator changes the access patterns to coalesced ones
(OrgAllOpt). The results of profile-based tuning are
shown as OrgProfT in the figure. User-assisted tuning
(OrgUAT) shows the best performance that the proposed
tuning system can achieve. The figure also includes
the performance of production-tuning-only versions
(OrgProdT); the performance difference between
OrgProdT and OrgUAT indicates the additional gain
achieved by applying unsafe, aggressive optimizations.
The performance gap between the manual version
(Manual) and the system-tuned version (OrgUAT) is due
to a caching optimization using tiling transformation,
which is not supported in the current translation system.

EP is a highly parallel application, which computes
Gaussian deviates using pseudo-random numbers.
Despite its parallelism, the base-translated version of EP
performs poorly (OrgBase in Figure 5(b)), which again

is due to un-coalesced global memory accesses (details
in our previous work [Lee et al., 2009]). As in JACOBI,
our translator removes this limitation (OrgAllOpt). In
the case of EP, profile-based tuning is not effective.
Our results indicate that the performance of some GPU
applications is highly sensitive to the input data. In
such cases, input-sensitive tuning systems, such as G-
ADAPT [Liu et al., 2009], will perform better than
profile-based tuning systems.

Our tuned programs (OrgUAT) do not always include
all caching optimizations. For example, the private array
caching optimization allocates a private array in shared
memory to reduce long latencies to the CUDA local
memory. However, this optimization is implemented by
expanding the private array in the shared memory, which
puts pressure on this memory due to its small size. Our
compiler could perform nearly same optimizations as the
manual version (Manual), but due to the inefficiency
in handling array reduction patterns, the system-tuned
versions (OrgUAT) show less speedups than the manual
versions. An advanced array section analysis technique
would be able to reduce this performance gap.

Sparse matrix computation is used in many
scientific applications. SPMUL and CG are two
important irregular programs performing sparse matrix
computation. Sparse matrix computations tend to
exhibit irregular computation and communication
behavior; our results in Figure 5(c) show that profile-
based tuning is not very successful. One interesting
point about SPMUL is that none of the tuned program
variants for any input had loop collapsing applied
(details in our previous work [Lee et al., 2009]), even
though this optimization was selected by most of the
tuned variants of CG. Loop collapsing enables coalesced
accesses to global memory by combining two nested
sparse computation loops into one; additionally it caches
shared data in the shared memory to reduce global
memory accesses. However, the optimization increases
the usage of shared memory and avoids exploiting the
texture memory. Therefore, the overall benefit of the
optimization is not statically predictable, making it
amenable to tuning. In SPMUL case, the proposed
translation system could perform the same optimizations
as the manual version (Manual in the figure).

CG is a more challenging sparse matrix computation
program. In CG, many kernel regions span across
several procedures, resulting in complex memory
transfer patterns between the CPU and the GPU.
Interprocedural data flow analyses presented in
Section 3.3 play a key role in creating efficient memory
transfer patterns (OrgAllOpt in Figure 5(d)). In
CG, applying aggressive optimizations increases the
overall performance (OrgUAT), since the aggressive
optimizations augment the accuracy of CUDA memory-
related optimizations. The GPU version of CG also
shows input-sensitive performance behavior, and thus
profile-based tuning was not effective (OrgProfT). In
CG, the manual version (Manual) applies more efficient
GPU memory allocation and data-transfer schemes than
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Figure 5 Tuning performance (speedups over serial on the CPU). OrgBase is the translation without optimizations,
OrgAllOpt applies all safe optimizations, which do not need user approval, and OrgProfT uses profile-based tuning.
(Both OrgBase and OrgAllOpt represent speedups when the thread batching is pre-tuned.) Both OrgProdT and
OrgUAT tune the programs with production data, but OrgUAT additionally applies aggressive optimizations under
user approval. ModAllOpt, ModProfT, and ModUAT apply the same techniques as OrgAllOpt, OrgProfT, and
OrgUAT respectively, except that in Mod-versions, the input OpenMP program was manually modified in a
GPU-friendly way before the translation. Manual is the manually translated version.
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the system-tuned version (OrgUAT), and the manual
version also removes some of the implicit barriers,
resulting in less kernel invocation overheads. This barrier
removal is possible under the CUDA memory model,
if two adjacent kernel regions are work-partitioned so
that no two threads communicate with each other. The
performance improvement by this manual overhead
reduction is more pronounced for small input data sizes,
as shown in Figure 5(d).

FT solves a 3-D partial differential equation using the
Fast Fourier Transform (FFT). The original OpenMP
code is heavily optimized for traditional, cache-based
architectures, and thus resulting memory access patterns
do not allow enough opportunity for coalesced memory
accesses when translated into GPU code. Therefore,
tuning the translation of the original OpenMP version
does not give any noticeable performance improvement,
even with various tunable parameters (OrgUAT in
Figure 5(e)).

Mod versions (ModAllOpt, ModProfT, and ModUAT)
refer to those where the input OpenMP program
is manually modified, such that it has the same
memory access patterns as the hand-written CUDA code
(Manual). The modified versions allow several tuning
opportunities for additional performance improvement;
when the input data size is small, the best performance
was achieved when all applicable caching optimizations
were applied, even though the best thread batchings
vary. As the input data size increases, however, not all
caching optimizations were selected.

Another interesting finding in FT is that profile-based
tuning (ModProfT) does not perform well if the input
data changes drastically; when the input class is B,
executing the best code variant selected by the profile-
based tuning failed, due to excessive memory usage. This
shows another example where traditional, profile-based
tuning does not work well.

6.3 Tuning Performance of Rodinia Benchmarks

In BACKPROP, the main performance bottleneck is
the uncoalesced memory access patterns caused by
the layout of two-dimensional arrays. The uncoalesced
access patterns may be changed by the parallel loop-
swap technique proposed in our previous work [Lee
et al., 2009], but the current compiler could not do so
automatically, for lack of advanced analysis techniques.
Figure 5(f) shows that improving the uncoalesced access
patterns manually (Mod in the figure) gains significant
performance. Even though the figure indicates that both
the profile-based tuning (ProfT) and user-assisted tuning
(UAT) perform no better than the versions where all
applicable optimizations are blindly applied (AllOpt),
tuning is still beneficial; different input data demand
different thread batching and optimizations for the best
performance, and the performance of the AllOpt versions
also varies according to the thread batching.

BFS performs a breadth-first search, which is a
commonly used graph algorithm. Even though the

algorithm is simple, it has irregular access patterns, and
the amount of computation is small for the given input
sets. Therefore, GPU memory allocation and memory
transfer times are dominant, allowing little room for
performance improvement through tuning. Figure 5(g)
show the tuning performance; due to its irregular,
memory-intensive nature, none of the GPU versions
perform better than the serial CPU versions.

CFD is an unstructured grid solver for the
three-dimensional Euler equations for compressible
flow. In CFD, applying aggressive optimizations to
reduce redundant memory-transfers has a noticeable
performance effect (OrgUAT in Figure 5(h)). Figure 5(h)
shows that there are big performance gaps between the
manual versions (Manual) and the automatic versions
(OrgUAT). Uncoalesced memory accesses, which are
difficult for the compiler to change automatically,
contribute to the performance gap mostly. The
uncoalesced access problem can be resolved by modifying
the input OpenMP program (Mod), and then the
compiler-translated versions could perform better than
the hand-written CUDA codes, when the thread
batching is properly tuned.

HEARTWALL is a program to track the movement of
a mouse heart in response to a stimulus. If we parallelize
the outermost loop of the main part, as done in the
original OpenMP version, the translated code suffers
from control flow divergences and uncoalesced memory
accesses (OrgUAT in Figure 5(i)). The manual versions
(Manual) use a complex thread batching scheme, where
each iteration of the outermost loop processing sample
points is assigned to a thread block, and iterations in
the inner loops computing each pixel are mapped to
threads in a thread block. We could get a similar effect
by using the OpenMP collapse clauses, and Mod in the
figure presents the speedups when the modified OpenMP
program is translated and tuned.

The performance gap between ModUAT and Manual
in the figure is largely due to the difference in
handling synchronizations; in the manual version, the
thread batching was applied in a way to minimize
global synchronizations, and thus most synchronizations
could be implemented using the syncthreads() runtime
library. However, in the OpenMP-to-CUDA translation
system, the only way to express synchronization is
to split kernels, and thus the automatically translated
version (ModUAT) consists of many small kernels,
incurring much more kernel invocation overhead than the
manual version. The HEARTWALL case suggests that
for achieving the best performance on some applications,
low-level APIs, such as hiCUDA [Han and Abdelrahman,
2011], may be needed to express GPU-specific features.

SRAD is a diffusion algorithm based on partial
differential equations and used to remove speckles in
ultrasonic and radar imaging applications. Figure 5(j)
shows the tuning performance on SRAD. The
performance of OrgUAT reveals that applying unsafe,
aggressive optimizations under user approval can
increase the performance substantially. While the
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automatic versions rely on parallel loop-swap to enable
coalesced accesses and use various caching optimizations,
such as registers and texture cache for temporal locality,
the manual versions (Manual) use tiling transformation
with shared memory for both coalesced access and
temporal locality. However, two-dimensional tiling and
caching on the shared memory incur more control flow
divergences and additional synchronizations; thus the
overall performance improvement is less impressive
than the automatic versions, which indicates that the
optimal caching strategies depend on locality patterns.
SRAD is a representative case showing that automatic
optimizations combined with tuning (OrgUAT) can
exceed the performance of the manually optimized
versions.

HOTSPOT is a thermal simulation tool used
to estimate processor temperature based on
an architectural floorplan and simulated power
measurements. The core part of HOTSPOT contains
two nested loops, where the outermost loops are
parallelized but the inner loops are also parallelizable.
The automatically translated versions of the original
OpenMP code (Org in Figure 5(k)) parallelize the
outermost loops as OpenMP does, but the iteration
spaces of the parallel loops are not big enough to create
threads to hide the long global memory access latency.
To increase the number of threads, the manual versions
(Manual) apply a two-dimensional thread mapping to
exploit the nested parallel loops. Mod in the figure
shows the performance after we manually inserted the
OpenMP collapse clauses to the nested parallel loops
in the original OpenMP code; in effect, the translated
kernels can be executed by a larger number of threads
due to the increased iteration space. In the HOTSPOT
case, the profile-based tuning (OrgProfT and ModProfT)
does not work well, due to the different thread batching
preference depending on the input size.

LUD is a simple matrix decomposition tool, whose
main computation consists of two simple parallel loops.
LUD does not have enough tuning opportunities; the
performance effect of the thread batching is small,
and there exist only a few applicable optimizations.
However, LUD is a special case, since algorithmic
changes specialized for the underlying GPU memory
model can achieve surprisingly high speedup (Manual
in Figure 5(l)), while there is little room for
tuning. The large performance gap reveals that for
some applications like LUD, customized algorithms
considering the underlying architectures are essential for
optimal performance.

Needleman-Wunsch (NW) is a global optimization
method for DNA sequence alignment. Due to its
simple structure, NW cannot benefit from tuning. Our
experiments show that the same tuning configuration
was selected for the best one regardless of the input size.
Figure 5(m) presents the overall tuning performance; the
performance gap between the manual versions (Manual)
and the system-tuned versions (OrgUAT) is mainly

caused by the lack of automatic tiling in the translation
system.

KMEANS is a well-known clustering algorithm used
for various data-mining applications. In KMEANS, even
with user-assisted tuning (ModUAT in Figure 5(n)),
there exists a big performance gap between the manual
versions (Manual) and the system-tuned versions.
We attribute the performance gap to the differences
in implementing array reductions; in the automatic
versions, private copies of a reduction array are used
for each thread to keep partial reduction outputs, but
the local copies are too big to be cached on the
shared memory. However, the manual versions use a
complex subscript manipulation so that each thread
can update disjoint parts of the reduction array; this
allows that threads in the same thread block share
the same local reduction array, which is cacheable on
the shared memory. To express these changes in the
OpenMP code, special extensions to explicitly express
the shared memory and GPU thread IDs will be needed.

7 Related Work

Several directive-based, GPU programming models have
been proposed: PGI Accelerator [PGI Accelerator],
HMPP [HMPP], OpenMP for Accelerators [Beyer
et al., 2011], OpenACC [OpenACC], hiCUDA [Han
and Abdelrahman, 2011], CUDA-lite [Ueng et al.,
2008]. These approaches are similar to ours in that
they use directives to provide abstractions of CUDA,
and a compiler automatically generates CUDA code
by interpreting these directives. These models provide
different levels of abstraction, and programming efforts
required to conform to their models and optimize
the performance also vary. Moreover, most of them
focus on optimizing communication between CPU and
GPU; these optimizations are explicitly expressed by
programmers through directives. By contrast, our system
supports various automatic performance optimizations
including analysis techniques to minimize memory
transfers between CPU and GPU. While previous
work provides little control over the diverse compiler
optimizations and GPU-specific features, our system
offers an abstract tuning environment to control various
optimizations and involved parameters.

Other related research [Baskaran et al., 2010,
Leung et al., 2010] developed automatic serial-to-
CUDA translation systems for affine programs. These
approaches use polyhedral compilers to find affine
transforms allowing optimal access patterns and
data movements between CUDA off-chip and on-chip
memories. By contrast, our compiler system optimizes
both regular and irregular programs and supports
optimizations to minimize data movement between CPU
and GPU, in addition to the ones for efficient global
memory accesses.

To help programmers find the best optimizations
in the large, discontinuous CUDA optimization space,
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Ryoo et al. proposed model-based search space pruning
techniques [Ryoo et al., 2008b]. Their techniques work
well unless global memory bandwidth is a performance
bottleneck. By contrast, our pruning algorithm reduces
the search space by checking the applicability of
each optimization. Their techniques can augment
our framework by providing further pruning when
the assumption holds, and our framework can also
complement their work by automating their manual code
conversions.

There exist a large body of work to automatically
tune the performance of CUDA programs, but most
previous work is application-specific; Datta et al. [Datta
et al., 2008] proposed an auto-tuning environment
and optimization strategies for stencil computations,
Nukada et al. [Nukada and Matsuoka, 2009] presented
an auto-tuning algorithm for 3-D FFT, and Volkov et
al. [Volkov and Demmel, 2008] conducted an extensive
tuning study for dense linear algebra. Unlike the
previous contributions, G-ADAPT [Liu et al., 2009] is
a compiler-based, general framework for input-sensitive
tuning. This work is the closest to ours; G-ADAPT
performs program transformations and optimization
space search automatically, and offers a set of directives
for programmers to specify search criteria. However,
the adaptive framework works on a small subset of
the optimization space, and thus the transformations
that G-ADAPT can perform are limited. Our work
is complementary to this work in that our compiler
framework can offer a richer set of transformations and
optimizations, and also support a larger number of
directives than G-ADAPT; by using our translator, G-
ADAPT could extend its optimization space. G-ADAPT
limitation of working only on existing GPU programs
could be relaxed by adopting our OpenMPC API as a
front-end programming model.

8 Conclusion

This paper proposes a new programming interface,
called OpenMPC, which is based on OpenMP but
extended with a new set of directives and environment
variables for efficient CUDA programming. OpenMPC
provides programmers with abstractions of the complex
CUDA programming and memory models and high-level
control over the involved parameters and optimizations.
We have developed a fully automatic compilation and
user-assisted tuning system, which is able to suggest
applicable tuning configurations for an input OpenMP
program, generate CUDA code variants for each
tuning configuration, and search the best optimizations
for the generated CUDA program automatically.
Experiments on fourteen applications from various
scientific domains demonstrate that the proposed system
achieves performance improvements comparable to
hand-coded CUDA for various applications. However,
a large performance gap between the manual versions
and the system-tuned versions in some applications also

reveals that further extensions to express the CUDA-
specific execution model and memory model may be
necessary to fully exploit the computing power of
GPGPUs.

OpenMPC is a scientific tool and API to explore
research directions for programming accelerators and
developing compiler technology. As this article is
getting finalized, several related directive proposals for
accelerators are emerging. Our ultimate goal is not
to propose a competing standard, but to develop the
knowledge about important directives and optimizations
for use by the community at large.
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