Micromechanical Pierce Oscillator for Resonant Sensing Applications
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ABSTRACT

We present the design techniques and experimental char-
acterization of a Pierce oscillator circuit adapted for micro-
mechanical elements with resonant frequencies lying
between 100 and 300 kHz. Micromechanical double-ended
tuning fork resonators serve as the crystal element of the
oscillator. The measured phase noise of these oscillators lies
below -100 dBc/Hz at a frequency offset of 500 Hz away
from the carrier with in-circuit quality factors exceeding
30000. This noise figure improves upon previous reported
values and demonstrates the feasibility of a Pierce oscillator
for micromechanical vibrating elements with resonant fre-
quencies lying under 1 MHz. The value of the second har-
monic distortion factor (HD,) is -44 dB for an output

amplitude of 50 mV.
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INTRODUCTION

Micromechanical oscillators have been considered as
attractive replacements for quartz crystal oscillators as tim-
ing references in digital circuits due their small size and
potential for fabrication compatibility with standard CMOS
VLSI processes, enabling novel single chip systems. In
addition, micromechanical oscillators form essential compo-
nents of many transducers such as accelerometers [1], gyro-
scopes, pressure sensors, AFM probes and biological
sensors to detect molecular interactions. The performance of
the oscillator is critical in all of these applications and is
often a limiting factor in overall system performance.

The primary design challenge of adapting an oscillator
circuit for thin-film micromechanical resonating elements is
the large equivalent motional resistance of the resonating
element. Early work in micromechanical oscillators
employed transresistance amplifiers [2] to supply the high
gain required to sustain oscillation in micromechanical ele-
ments. Recently, lower noise oscillator topologies such as
the Pierce scheme [3,4] have been demonstrated.

This paper discusses the design techniques involved in
adapting the Pierce oscillator scheme for micromechanical
resonating elements. Experimental verification of these

design principles has been conducted for micromechanical
double-ended tuning fork (DETF) resonators with resonant
frequencies lying between 100 and 300 kHz. DETF oscilla-
tors in this frequency regime are often incorporated as sense
elements in resonant accelerometers and gyroscopes. The
performance of the oscillator directly determines the resolu-
tion of the sensor and hence a low noise oscillator configura-
tion is essential.

OSCILLATOR DESIGN

The micromechanical oscillator comprises of a free-
standing element (a double-ended tuning fork in the current
implementation) configured to resonate in a desired mode. A
schematic of the double-ended tuning fork is shown in Fig-
ure 1. The electromechanical characteristics of the resonat-
ing element can be described by an electrical equivalent
composed of a series LCR circuit [2]. The parasitic
feedthrough capacitor (C,), that may have sources in sub-
strate coupling or poor layout, couples the drive voltage over
to the port where the motional current is sensed. This para-
sitic feedthrough capacitor (C,) serves to introduce a phase
shift in the loop and can thereby degrade oscillation.

Figure 1: Schematic of the mechanical structure of the dou-
ble-tuning fork and its simplest electrical equivalent circuit.

As shown in Figure 2 (A), the electromechanical element
is embedded in the feedback loop of a sustaining amplifier.
The Pierce oscillator topology uses a capacitive input to
integrate the motional current from the resonator. A DC
biasing path to the amplifier input is provided by a large
resistor. The value of this resistor should be set large enough
so as to not introduce significant loading at the amplifier
input or additional phase shift in the signal path. The gate
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capacitance of the active input device must be designed to
be much smaller than the integrating capacitance to avoid
amplitude fluctuations due to large drive voltages. The
device sizes and bias conditions are determined by optimiz-
ing with respect to a trade-off involving the oscillator signal-
to-noise ratio, output distortion and amplifier gain. The con-
dition for oscillation can be written in terms of the loop gain

(Gw)):

ZG(jw) = 0°
IG(jw) 21 ()
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For a high-Q oscillator, the resonant characteristics of the
mechanical element should define the output frequency. The
Pierce circuit operates at a frequency slightly higher than the
actual series resonance frequency where the crystal acquires
an inductive behavior (Z,,,, = joL,,+R,). The motional
resistance (R,) degrades the oscillator loop gain and for
large enough values can prevent oscillator startup. Figure 3
depicts how the loop gain degrades as a function of the high

equivalent motional resistance of these resonators.
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Figure 2: Schematic of the Pierce oscillator circuit. (A) is a
block diagram of the circuit while (B) is the linear system
equivalent. A(s) is the amplifier transfer function and H(s) is
the mechanical transfer function.
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Figure 3: Plot of the magnitude of the maximum loop gain
as a function of the motional resistance of the resonator at
different oscillator output frequencies.

Figure 2 (B) shows a schematic of the Pierce oscillator,
including its simplest representation as a linear system. The
relevant transfer functions can be written as a function of the
frequency spacing from the carrier (Aw):
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A is the gain supplied by the sustaining amplifier to over-
come the motional resistance loss in the mechanical ele-
ment. These equations are relevant for the noise analysis
where I,,; represents the equivalent current noise injected at
the input of the sustaining amplifier and F,, is the noise
equivalent force that the mechanical element is subjected to
as a result of the brownian motion of the gas particles in the
surrounding ambient [5].

The distortion in the oscillator output can arise due to a
number of different reasons. At large drive voltages, the
small signal model of the active input device of the amplifier
is no longer valid and the gain of the input device begins to
change as it moves out of the desired bias region and possi-
bly from saturation into triode. In addition, there could be
mechanical nonlinearities due to overdrive as the spring
constant exhibits a stiffening effect, electrostatic nonlineari-
ties due to non-ideal actuators and sensing mechanisms that
introduce transduction coefficients that are amplitude depen-
dent.

T e i
Figure 4: SEM of three double-ended tuning fork oscillators
of differing output frequencies fabricated in the Sandia inte-
grated MEMS process.

EXPERIMENTAL VERIFICATION OF
OSCILLATOR MODEL

An SEM of the array of devices fabricated in the Sandia
National Laboratories integrated MEMS process [6] is
shown in Figure 4. The double-ended tuning forks are
designed with resonant frequencies lying between 100 kHz
and 300 kHz. A single stage sustaining amplifier is designed
in the standard Pierce configuration (Figure 5). High imped-
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ance biasing of the input node of the amplifier is imple-
mented by MOS transistors biased in the subthreshold
region of operation. The single-stage amplifier provides suf-
ficient gain to allow for the equivalent series resistance of
the DETF element to be as high as SM€. This allows for
operation of these devices in ambient pressures under 250
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Figure 5: Transistor-level circuit schematic of the Pierce
oscillator. The crystal block represents the electrical equiva-
lent of the double-ended tuning fork structure.

Figure 6 is an experimentally measured plot of the power
spectrum of the oscillator output over a 6 kHz range cen-
tered around the carrier frequency. A linearized model of the
oscillator predicts that the background noise level away
from the carrier is limited by the electronic noise of the sus-
taining amplifier. Background noise estimates from theory,
backed by SPICE simulation, match closely with values
obtained by experiment. At frequencies near the carrier, the
relationship between the noise power and the frequency
spacing from the carrier (Figure 7) follows an inverse cubic
power law relationship. This behavior indicates an aliasing
of the 1/f noise from the amplifier onto the carrier frequency.
A possible explanation of this behavior is a noise current
injected at the input of the amplifier resulting from the mix-
ing of the amplifier 1/f noise with the resonator displace-
ment. The phase noise expression for this behavior is given

by:

- fo V__ K (4
L(f,) = 101og((2QVp) m) 4)

where f,, is the frequency spacing from the carrier and f, is
the nominal resonant frequency of the DETF. Away from the
carrier the noise floor is set by the thermal electronic noise
of the sustaining amplifier. This noise expression is given

by:

2
L(f,) = 10log| —2=—Y_=_
m ¥ 38

Here v, is the output rms voltage of the oscillator and g, is

an equivalent transconductance considering the thermal
noise contribution of all the transistors in the sustaining

amplifier.

The output of the oscillator exhibits a second harmonic
distortion factor (HD,) of -44 dB for an output amplitude of
50 mV. The value of HD, is directly proportional to the out-

put amplitude of the oscillator as expected for nonlinearities
that can be expressed as a sum of higher order harmonics of
the resonator displacement. At this point, investigation into
the source of the distortion is still ongoing but it is likely
that the nonlinearity of the capacitive transduction scheme
to measure the motional current dominates. Higher harmon-
ics in the drive force are filtered by the mechanical transfer
function of the resonator and spring stiffening resulting from
large resonator displacements would result in a third har-
monic peak. MOS device nonlinearities are minimal as the
drive voltages used are fairly low. Nonlinearities due to
damping could be a potential cause but are difficult to model
accurately for this geometry.

Output power spectrum for a DETF oscillator
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Figure 6: Output power spectrum of a 241.9 kHz double-
ended tuning fork oscillator.
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Figure 7: The noise trend of the oscillator near the carrier
frequency. Note the /£ dependence of the noise power.
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Finite element simulations were used to model the
capacitance gradient for a comb drive structure (Figure 8).
The nonlinearity in the capacitance gradient can be
expressed as a power series function of the resonator dis-
placement.

%g = ao+alx+a2x2+... -(6)
i = Ve 0x(3) vio(E) (D)
The resulting expression for HD, is given by:
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Figure 8: Plot of the capacitance gradient along the direction
of motion as a function of comb finger overlap for an esti-
mated range of motion of 1um obtained using MEMCAD.
The error of the fit to the data is less than 0.015%.
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Figure 9: Appearance of the second harmonic peak in the
oscillator output shown in the inset. Note the near linear
relationship in the least squares fit for HD, as expected. The
dashed line shows the predicted HD, obtained by consider-
ing the capacitance gradient nonlinearity.

The second term in equation (7) represents a mixing of the
resonator displacement with the amplifier input voltage but
the estimated power of the second harmonic peak due this
term is an order of magnitude lower. The linear relationship
between the output amplitude and the magnitude of D, is
verified experimentally (Figure 9). The predicted value of
HD, obtained from results of the finite element simulation

to model the comb drive nonlinearity agree with experiment.
SUMMARY

A micromechanical Pierce oscillator was designed and
implemented in the Sandia National Laboratories IMEMS
process. The noise floor of the device at a frequency spacing
of 500 Hz away from the carrier is less than -100 dBc/Hz,
limited by the electronic noise of the sustaining amplifier.
The noise power behavior close to the carrier follows a 1/f°
trend that matches well with a model indicating a mixing of
the 1/f noise from the amplifier onto the carrier frequency.
The second harmonic distortion factor of the oscillator is
about -44 dB for an output amplitude of 50 mV and seems to
arise due to the nonlinearity of the comb drive transducer
used to measure the motional current.
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