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Abstract—Based on Mindlin’s piezoelectric plate theory and 
the plane wave expansion (PWE) method, an eigen-matrix is 
formulated to study the frequency band gaps and dispersion 
relations of the lower-order Lamb waves in two-dimensional (2D) 
piezoelectric phononic plates. The phononic plates analyzed are 
composed of solid-solid and air-solid constituents with square 
and/or triangular lattices. Factors that influence the opening and 
width of the complete band gaps of Lamb waves are identified 
and discussed. For solid/solid phononic plates, the filling material 
chosen with a larger mass density, proper stiffness, and weak 
anisotropic factor embedded in a soft background material is 
suggested to obtain wider complete band gaps in the lower bands. 
On the other hand, for air/solid phononic plates, to achieve the 
complete band gaps are relatively difficult, and the background 
material itself with a proper anisotropy and a high filling fraction 
of air holes may favor the band-gap formation.  

I. INTRODUCTION 

In recent years, there has been a growing interest in 
studying the properties of acoustic wave propagation in the 
composite materials, called phononic crystals (PCs), whose 
mass densities and elastic constants are periodically arranged 
in space [1]. The interest in these materials arises mainly from 
that they give rise to complete acoustic stop bands, which are 
analogous to the photonic band gaps for optical waves in 
photonic crystals [2] and may find promising applications to 
engineering such as acoustic wave guiding, filtering, and 
vibration shielding [3]-[4]. In addition to those phononic 
structures abundantly dealing with the bulk acoustic modes 
traveling in the interior of the medium and the surface acoustic 
modes on a truncated free surface of the structure [5]-[6], very 
recent studies show that another worthwhile category of 
phononic structures would be the periodic plates of finite 
thickness whereby the Lamb waves can propagate in [7]-[8]. 
On the other hand, it is worth noting that Lamb modes have 
been important in a variety of resonators, sensors, and 
characterization of elastic properties of thin films [9].  

Among the existing studies, a lot of theoretical methods 
have been successfully applied to analyze the bulk acoustic 
waves in infinite phononic crystals; however, it is not always a 
straight forward task to adapt these methods for phononic 
plate problems. Based on the classical plate theory and three-
dimensional equations of motion with suitable boundary 
conditions, respectively, the PWE method is used to address 
the phononic plate problems [7]. By using the on-shell layer-

multiple-scattering theory, the guided and quasiguided elastic 
waves in a glass plate coated on one side with a period 
monolayer of polymer spheres, immersed in water, were 
studied [10]. Applying Bloch theorem of a periodic medium to 
the FEM formulation, the frequency band structures of Lamb 
waves in phononic plate consisting of quartz inclusions 
arranged periodically in an epoxy host were calculated and 
analyzed [8]. Recently, the Mindlin’s plate theory based PWE 
method has been developed to serve as a concise and efficient 
way in analyzing the frequency band structures of lower-order 
Lamb modes in lower bands for non-piezoelectric phononic 
plates [7].  

The purpose of this paper is to develop a PWE formulation 
for a piezoelectric phononic plate based on Mindlin’s theory of 
piezoelectric crystal plate [11] and discuss the dispersion and 
band gaps of the Lamb modes. The analyzed structure is an 
infinite periodic plate with a finite thickness consisting of an 
array of cylindrical inclusions embedded in a hosting material, 
where the inclusions and/or the hosting material of the plate 
can be considered as piezoelectric solids here.  

Figure 1. Top views and cross-section of infinite two-dimensional phononic-
crystal plates with square and triangular lattices. Right-hand sketches are the 
corresponding first Brillouin zone. 
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II. MINDLIN’S THEORY BASED PWE METHOD

Consider a plate with thickness h whose material properties 
are homogeneous along the thickness. The coordinates are set 
up as follows. The x3-axis be the thickness direction and 
directed downward, and the x1-x2 plane rests in the middle 
plane of the plate. Mindlin’s two-dimensional theory gives [11]
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(1)

where ( )p
ju  and ( )pφ , (p=0, 1), are the pth order displacements 

and potential field, respectively. ρ  is the mass density, and 1

and 2 are correction factors. cIJ, eiJ, and ij are the elastic 
stiffness, piezoelectric constant, and permittivity, respectively. 
Moreover, the modified material constants are given by 
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The constant sIJ, is elastic compliance, and the determinant is 
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Consider an infinite 2D piezoelectric phononic plate as 
shown in Fig. 1. In a periodic structure, the displacements and 
potential field satisfy the Bloch theorem. Therefore, in 2D case, 
the displacements and potential can be expressed as 
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where r=(x1, x2) is the 2D position vector, ω  is the angular 
frequency, k=(k1, k2) is the Bloch wave vector in the two-
dimensional Brillouin zone (BZ), and G=(G1, G2) is the two-
dimensional reciprocal lattice vector. jAG , 4

GA , α
GB , and 3

GB
are the corresponding Fourier coefficients. The periodicity of 
the structure implies that the material properties f(r) may all be 
expanded in the Fourier series:  

 ( ) ,⋅=
G

rG
Gr ieff   (6) 

Substituting Eq. (5) and Eq. (6) into Eq. (1), one can obtain 
a linear system of equations in the matrix form:  
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While the summation of Eqs. (5) and (6) are truncated up to n
reciprocal lattice vectors G in practice, Matrix L in Eq. (13) is 
reduced to a 7n by 7n matrix. Each submatrix in L is a function 
of frequency, Bloch wave vector, reciprocal lattice vector, and 
Fourier coefficients. Eventually, the eigenfrequencies of Lamb 
waves are chosen by setting the condition: Det (L)=0. 

III. NUMERICAL CALCULATIONS OF BAND STRUCTURES

The solid/solid piezoelectric phononic plates are illustrated 
with the Quartz/Epoxy and TeO2/Epoxy combinations. First of 
all, Figs. 2(a) and (b) show the frequency band structures of 
Lamb waves propagating in the Quartz/Epoxy phononic plate 

(a) 

(b) 

2007 IEEE Ultrasonics Symposium625



with SL and TL, respectively. The radius R of the quartz 
cylinders is set at 0.4a, and the plate thickness h=0.275a for 
both of the lattices. These calculated results are obtained by 
using 289 reciprocal lattice vectors such that a satisfactory 
convergence can be attained in the displayed frequency 
interval. The calculations are along the irreducible parts of the 
first Brillouin-zone (BZ) boundaries, as those depicted in Fig. 
1. Shown in Fig. 2(a), the SL Quartz/Epoxy plate has a 
complete band gap of Lamb waves extended from 6.56 to 7.6 in 
the normalized unit; the band-gap width in terms of the ratio of 
the band gap width to its midgap frequency, therefore, is
14.7%. For that of the TL quartz/epoxy plate in Fig. 2(b), the 
lowest complete band gap ranges from 7.02 to 7.88, and the 
band-gap width is 11.5%. The Lamb-wave band gaps is 
slightly larger in the SL than in the TL for R=0.4a and 
h=0.275a.

Figures 3 and 4 display the band-gap distributions of the 
Quartz/Epoxy phononic plates simultaneously for the bulk 
waves and Lamb waves as a function of the filling fraction F
(volume fraction of the inclusions in the structure). Figures 3 
and 4 respectively refer to the SL and TL structures, and the 
plate thickness is h=0.275a. In Fig. 3, the distribution of the 
complete Lamb-wave gap is close to the two frequency regions 
of the complete bulk-wave gaps with a slightly down shift in 
frequency and overlapping with the first complete band gap of 
the bulk waves. The maximum band gap of Lamb waves for 
the SL Quartz/Epoxy plate takes place around F=0.45-0.5. For 
the TL structure in Fig. 4, a similar result is found, but there 
exists only one and larger complete band-gap region of bulk 
waves. The maximum complete Lamb-wave band gap for the 
TL Quartz/Epoxy phononic plate is at F=0.58. Note that the 
overlapping gaps of both bulk waves and Lamb waves can be 
regarded as the forbidden frequencies whenever the effects of 
the plate surfaces come into play or not as the waves propagate. 

As another illustration, shown in Figs. 5 is the Lamb-wave 
band structure of the TeO2/Epoxy plate. The plate thickness is 
remained at h=0.275a, and the radius of the TeO2 inclusions is 
R=0.389a. Though the acoustic mismatches between TeO2 and 
Epoxy are larger than that between Quartz and Epoxy; 
however, it can be observed that both of the lattices for this 
combination open just narrow complete band gaps. For the SL 
TeO2/epoxy phononic plate, the complete band gap shown in 
Fig. 5 extends from 6.72 to 7.08 (5.2% in width). Additional 

calculation for the TL TeO2/epoxy plate shows that the gap is 
from 6.86 to 7.22 (5.1% in width). Even if change the radius R,
the frequency band structures display no more than the narrow 
Lamb-wave band gaps. On the other hand, the variation of the 
plate thickness also will not effectively benefit to a wider 
Lamb-wave gap. A wider band gap expected to exist in the 
phononic structure with a acoustic mismatch as large as 
possible or inclusions as massive as possible is almost a rule of 
thumb, which drawn form the investigations of bulk acoustic 
waves in infinite phononic crystals composed of isotropic 
constituents; however, by present analyses, the same dose not 
hold for those of Lamb waves in the phononic plates consisting 

Figure 2. Band structure of Lamb waves in the 2D Quartz/Epoxy piezoelectric 
phononic plate with triangular lattice. The radius R of quartz inclusions and 
plate thickness h are 0.4a and 0.275a, respectively.
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of anisotropic, piezoelectric components. In the case of TeO2-
epoxy structure, it can be explained by couple of reasons: 

1. Smaller values of the elastic stiffness and larger density of 
the inclusions result in the lower phase velocities, and 
thus, dense the distributions of the frequency bands. For a 
thin plate, the flexural-dominated bands aggravate this. 

2. The strong anisotropic factor (A=26.4) blocks the band 
gaps to be omnidirectional or reduces in the frequency 
width of the complete band gap. 

For an air/solid plate, Fig. 6 shows the frequency band 
structure of Lamb waves in the SL Air/Quartz piezoelectric 
phononic plate. The radius of the circular air holes is R=0.44a
(F=0.608), and the plate thickness is h=0.625a. This Lamb-
wave band structure exhibits just a tiny complete band gap 
from 2.96 to 3.05 (3% in width). Although the air inclusions are 
very efficient reflectors for elastic waves with any polarization, 
the resulted complete band gap is much narrower than those 
created by the Quartz/Epoxy plates. The main reason is that the 
air inclusions can not be resonated to widen the band gap; 
therefore, only a smaller Bragg gap for Lamb modes can exist 
with these periodic air holes based on the Bragg scattering 
mechanism. And a high volume filling fraction is needed to 
intensify the direction-dependent scattering so that the gap can 

open up as a complete gap. This complete Lamb-wave gaps of 
Air/Quartz plates are also highly sensitive to the plate 
thickness; the gap can sustain only a small variation of the plate 
thickness around h=0.625a. Finally, it is worth noting that the 
anisotropy of the background material itself of an air/solid 
phononic thin plate may not always be adverse to a complete 
band gap, yet can be a favorable factor to weaken the 
geometric anisotropy caused by the periodicity of the structure 
such that a complete band gap can open up. 

IV. CONCLUSION

By utilizing Mindlin’s plate theory based PWE method, the 
complete band gaps and dispersion relations of the lower-order 
Lamb waves propagating in 2D solid/solid and air/solid 
piezoelectric phononic plates have been analyzed. The eigen- 
matrix to calculate the dispersion relations has been derived. 
Some of the factors influence the opening and width of the 
complete Lamb-wave gaps are identified and discussed. For 
solid/solid phononic plates, the inclusions chosen with larger 
mass density, proper stiffness, and weak anisotropic factor 
embedded in a soft host is suggested to obtain wider complete 
band gaps for lower-order Lamb waves. For the Air/Quartz 
phononic plate, a narrower Lamb-wave gap is obtained with 
lacking the resonance mechanism. A background material itself 
with proper anisotropy may favor the opening of the complete 
band gaps for the air/solid plate. 
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Figure 6. Band structure of Lamb waves in the 2D Air/Quartz piezoelectric 
phononic-crystal plate with square lattice. The radius R of quartz inclusions 
and plate thickness h are 0.44a and 0.625a, respectively.
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