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Abstract—A full-wave equation that describes nonlinear prop-
agation in a heterogeneous attenuating medium is solved nu-
merically with finite differences in the time domain (FDTD).
Three dimensional solutions of the equation are verified with
water tank measurements of a commercial diagnostic ultrasound
transducer and are shown to be in excellent agreement in terms
of the fundamental and harmonic acoustic fields, and the power
spectrum at the focus. The linear and nonlinear components
of the algorithm are also verified independently. In the linear
non-attenuating regime solutions match results from Field II, a
well established software package used in transducer modelling,
to within 0.3 dB. Nonlinear plane wave propagation is shown
to closely match results from the Galerkin method up to four
times the fundamental frequency. In addition to thermoviscous
attenuation we present a numerical solution of the relaxation
attenuation laws that allows modelling of arbitrary frequency
dependent attenuation, such as that observed in tissue. A perfectly
matched layer (PML) is implemented at the boundaries with
a novel numerical implemenation that allows the PML to be
used with high order discretizations. A -78 dB reduction in the
reflected amplitude is demonstrated. The numerical algorithm
is used to simulate a diagnostic ultrasound pulse propagating
through a histologically measured representation of human
abdominal wall with spatial variation in the speed of sound,
attenuation, nonlinearity, and density. An ultrasound image is
created in silico using the same physical and algorithmic process
used in an ultrasound scanner: a series of pulses are transmitted
through heterogeneous scattering tissue and the received echoes
are used in a delay-and-sum beamforming algorithm to generate
a images. The resulting harmonic image exhibits characteristic
improvement in lesion boundary definition and contrast when
compared to the fundamental image. We demonstrate a mecha-
nism of harmonic image quality improvement by showing that the
harmonic point spread function is less senstive to reverberation
clutter.

I. INTRODUCTION

Characterization of acoustic waves that propagate nonlin-
early in an inhomogeneous medium has important applications
in diagnostic and therapeutic ultrasound. The heterogeneous
composition of tissue distorts the phase and generates un-
wanted reverberation of an ultrasonic signal. This results in
the degradation of the lateral resolution and contrast of an
ultrasonic scanner. The nonlinearity of wave propagation is
used to the advantage of diagnostic scanners that use the
harmonic components of the ultrasonic signal to improve the
resolution and penetration of clinical scanners [1]. Harmonic

imaging has been shown to have an important effect in
reducing phase aberration and clutter [2].

A number of equations and numerical methods that address
nonlinear propagation, heterogeneous media, or multiple scat-
tering have been proposed. Ultrasonic propagation through
fine scale heterogeneities has been simulated with a finite
difference time domain (FDTD) solution of the 3D linear wave
equation [3]. The full-wave equation accounts for multiple re-
flections and scattering but current numerical implementations
lack the ability to simulate nonlinear propagation and attenua-
tion. The Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation
or nonlinear one-way parabolic wave equation, accounts for
nonlinearity, attenuation, and diffraction within a paraxial
approximation. The parabolic wave equation assumes that field
variations transverse to the direction of propagation are slow
compared to axial variations and the paraxial approximation
limits the equation’s validity to about 15◦ from the axis of
propagation. Additionally this one-way wave equation does not
model reflections, scattering, and heterogeneities. The nonlin-
ear full-wave equation describes acoustic fields in a nonlinear
thermoviscous medium. It has the advantages of both the three
dimnensional linear wave equation and the nonlinear parbolic
wave equation by incorporating nonlinearity, attenuation, and
all wave effects, such as multiple scattering, reflection, and
refraction. It is not limited by a paraxial approximation so it
accurately describes an ultrasonic beam in the off axis region
and it is valid for arbitrary scatterers in the field.

The incorporation of arbitrary frequency dependent absorp-
tion laws is straightforward in frequency domain methods.
However it is numerically intractable for time-domain methods
to solve the equivalent convolution. In this paper, in addition
to thermoviscous attenuation, which is only valid for fluids, we
use relaxation mechanisms to model arbitrary attenuation, such
as the power laws observed in tissue. The numerical methods
are based on research in seismic wave field but are adapted
for the high order spatial discretizations used here.

Here we propose a novel three-dimensional numerical so-
lution to a nonlinear full-wave equation that additionally
describes arbitrary frequency dependent attenuation and vari-
ations in density. As the accuracy of simulations improves it
becomes increasingly important to include higher order effects.
We present the first numerical method that comprehensively
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describes three dimensional nonlinear wave propagation in
heterogenous media with arbitrary attenuation law. This paper
also describes the implementation of perfectly matched layers
(PML) at the boundaries to reduce reflections to negligible
levels. It is shown that the FDTD method can accurately
represent nonlinear ultrasonic propagation from a diagnostic
transducer and that it can simulate heterogeneities in speed of
sound, attenuation, nonlinearity, and density.

II. METHODS

A. Acoustic Equation

The nonlinear full-wave equation used in this paper is a
second order wave equation that describes a nonlinear wave
propagating in an attenuating medium.
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The first two terms in Eq. 1 represent the linear wave equation,
the third term accounts for thermoviscous diffusivity, followed
by nonlinearity, variations in density, and v relaxation mecha-
nisms. Here p is the acoustic pressure, c0 and ρ are the equilib-
rium speed of sound and density, δ is the acoustic diffusivity,
and β is the nonlinearity parameter. The nonlinear parameter
B/A is related to the coefficient, β, by β = 1+B/2A and the
diffusivity δ can be expressed as a function of the absorption
coefficient α with the equation δ = 2αc30/ω

2 (where ω is the
angular frequency). The material parameters c0, δ, ρ and β can
be functions of space. The relaxation equation (Eq. 2) has v
peaks at characteristic frequencies ωm with weight am that
depend on the particular frequency dependent attenuation law
that is being modeled. The change in speed of sound ∆c must
obey the Kramers-Kronig relation to preserve causality.

B. Diffraction

Explicit finite differences in the time domain are used to dis-
cretize the nonlinear full-wave equation on a three dimensional
Cartesian grid. The three dimensional linear wave equation is
modeled with a rotated stencil in Cartesian coordinates. Fourth
order spatial derivatives were used to minimize the effects
of numerical dispersion and reduce the requirements for grid
refinement. Higher order discretizations that operate only in
the Cartesian directions tend to have unwanted directionality–
the wave propagates at different speeds along the direction of
discretization compared to directions that are at an angle [4].
This type of error has particular significance for correct
focusing and spherical propagation from point scatterers. To
minimize this effect, the spatial discretization used here has
two rotated stencils in addition to the conventional Cartesian
stencil. The total star-shaped stencil for the spatial derivatives
is shown below,

∇2p ≈ Cn
i,j,k =
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∑
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+ η
∑
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where θ, φ, ψ have the possible values -1, 0, 1, and γ and η
are arbitrary weighting coefficients with γ+η ≤ 1, γ ≥ 0, and
η ≥ 0, and, for this equation only, δ is the Kronecker delta
function rather than the diffusivity.
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Fig. 1. Directions of the stencil for the linear wave equation in the positive
quadrant.

The linear temporal derivatives are approximated by second
order finite differences. The spatial derivatives in the density
term are modeled with a standard fourth order approximation,
but because only a first order derivative is being calculated the
total width of the spatial stencil remains unchanged.

III. RESULTS

The linear non-attenuating algorithm was compared to
an equivalent Field II simulation for a commercial trans-
ducer. Field II solves the wave equation with the Tupholme-
Stepanishen method for calculating linear pulsed ultrasound
fields in a homogeneous medium. It has been widely validated
and is commonly used to model transducers.

Figure 2 compares the intensity of the acoustic field for the
Field II and FDTD nonlinear full-wave simulations across the
lateral plane. The agreement is good throughout the simulated
region. There are small visible differences, notably the -6
dB contour is approximately 1 mm more proximal to the
transducer face in the nonlinear full-wave simulation and the
-20 dB contour is slightly narrower at shallow depths (z < 1.5
cm). However, the overall morphology of the contours is very
close.
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Fig. 2. A comparison of the intensity of the acoustic field as calculated
by Field II and the linear inviscid FDTD nonlinear full-wave method for a
commercial clinical ultrasound transducer. The lateral plane is shown.

A. Nonlinear plane wave

Results from the inviscid FDTD nonlinear full-wave simu-
lation were compared to the results from the Galerkin method
applied to the inviscid Burgers’ equation. In the frequency
domain (right graph of Fig. 3) there is excellent agreement
at the fundamental and second harmonic frequencies. At the
third harmonic there is a 1.2 dB difference between the peaks
and at the fourth there is a 2.5 dB difference.
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Fig. 3. Nonlinear propagation of a plane wave as calculated by the FDTD
nonlinear full-wave algorithm and the Galerkin scheme. A time domain
waveform is shown on the left and the power spectrum is shown on the
right.

B. Experimental verification
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Fig. 4. Experimental (left) and simulated (right) PSF’s for the fundamental
(top) and harmonic (bottom) beams.

The acoustic plane at the transducer face was measured
and used as an input to the full-wave simulation with the
acoustic properties of water. Shown on the left of Fig 4
are the experimentally measured point spread functions for
the fundamental (top) and harmonic (bottom) fields. The
equivalent plots are shown for the simulated data with the
experimentally determined intial conditions on the right.

There is an excellent agreement betweent the experimental
and simulated fundamental PSF’s in terms of primary and
secondary features. The size and position of the mainlobe are
very similar and the initial off-plane position of the transducer
is apparent in the measured and simluated data sets. The
elevation and lateral sidelobes also have similar position and
amplitude. Features that are less than 35 dB down from the
peak or off axis with respect the lateral and elevation planes
exhibit a close correspondence even though there is a visible
amount of noise in the experimental data.

The harmonic PSF’s shown in the bottom of Fig. 4 have
similar primary features and many of the secondary features
are distinguishable even though the noise floor of the experi-
mental data limits the accuracy of the comparison in the sub
-30 dB range.

C. Ultrasonic imaging

A focused ultrasonic pulse was propagated through a two
dimensional hetergeneous tissue model with twelve point
scatterers per resolution.The tissue representation was obtained
from a histologically stained sample of human abdominal
wall [5], [3] and the structures in the tissue were correlated
with their measured properties of which the speed of sound is
shown on the right of Fig. 5..

A circular anechoic region with a 5 mm diameter was placed
at the focus to mimic a lesion. To simulate an ultrasonic
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Fig. 5. On the left, a graphical representation of the variation in the speed of
sound for the abdominal layer (not shown are spatial variations in attenuation,
nonlinearity, and density). On the right, the acoustic field of a diagnostic pulse
at the focus (scale is compressed to emphasize small amplitudes).

imaging system, a focused pulse was transmitted and allowed
to propagate. The resulting reflections were measured and
a standard constant F-number delay and sum beamforming
algorithm was used to create a single A-line. The process was
repeated by translating the transducer and forming a series of
A-lines that are shown as fundamdental (left) and harmonic
(right) B-mode images in Fig. 6.

IV. CONCLUSION

We have introduced a finite difference time domain algo-
rithm that solves the nonlinear attenuating full-wave equation
in three spatial dimensions. The numerical method propagates
nonlinear diagnostic ultrasound waves in an heterogeneous
attenuating medium with boundary conditions that reduce
reflections to negligble levels. The entire acoustic field is
simulated so the effects of reflection, reverberation, multi-
ple scattering, and clutter can be accurately modeled and
an arbitrary acoustic source can be placed anywhere in the
three dimensional simulated field. In the simulations presented
heterogeneities in the nonlinearity, attenuation, density, and
speed of sound can be modeled with a resolution of 12.5 µm.

The numerical solutions were verified extensively. Diffrac-
tion, or the linear wave term, was verified with Field II, a simu-
lation package that is considered a standard in linear transducer
modeling, and with water tank measurements. Differences
between the two simulations were less than 0.3 dB across the
considered acoustic field. The nonlinear propagation was also
verified numerically with results from the Galerkin method for
a propagating plane wave and were shown to be agreement to
within 2.5 dB up to four times the fundamental frequency.
There is negligible disagreement if only the fundamental and
harmonic frequencies are considered.

We demonstrated the code’s ability to propagate sound
through heterogeneous media by transmitting an ultrasound
pulse through a measured representation of human abdominal
wall. The method’s capabilities were demonstrated by creating
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Fig. 6. Simulated fundamental (left) and harmonic (right) ultrasound
images of an anechoic region below an abdominal using a transmit-receive
beamformation process.

fundamental and harmonic ultrasonic images in silico through
the same physical process used in a diagnostic scanner: a series
of pulses were transmitted through a heterogenous scattering
medium and the received acoustic field at the transducer plane
was used in a beamforming algorithm.
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