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Abstract— Time delay estimators, such as normalized cross
correlation and phase shift estimation, form the computational
basis for elastography, blood flow measurements and Acoustic
Radiation Force Impulse (ARFI) imaging. This paper examines
the performance of these algorithms for small displacements
(less than half the ultrasound pulse wavelength). The effects of
noise, bandwidth, downsampling, interpolation, and quadrature
demodulation on the accuracy of the time delay estimates are
measured in terms of bias and jitter.

I. INTRODUCTION

Several clinical applications depend on the accurate estima-
tion of displacement between successively acquired ultrasound
frames. Acoustic Radiation Force Impulse (ARFI) imaging
is a radiation force based imaging method that provides
information about the local mechanical properties of tissue[1].
ARFI imaging uses short duration acoustic radiation forces to
generate localized displacements in tissue, and these displace-
ments are tracked using ultrasonic correlation based methods.

Elastography, Doppler flow, or Doppler tissue measurements
use techniques similar to ARFI imaging to calculate motion.
Displacements in ARFI imaging are normally orders of mag-
nitude smaller than other modalities. ARFI generates displace-
ments on the order of a tenth to a hundredth of the ultrasound
wavelength (λ), elastography measures displacements of 10λ,
Doppler flow is usually greater than λ/10, and Doppler tissue
measurements are usually greater than λ/20.

This paper examines displacements in the ARFI imaging
range using three time delay estimators: normalized cross
correlation, Kasai’s algorithm[2], and Loupas’ algorithm[3].
We compare the performance of these algorithms for general
RF parameters, such as bandwidth and noise, and parameters
specific to ultrasound scanners, such as downsampling of base-
band RF.

II. METHODS

A. Phase Shift Estimation

Kasai et al. phase shift estimation algorithm[2] uses I/Q
data to determine the displacement between a reference and
a displaced signal by measuring the average phase-shift with
respect to the central frequency (see eqn. 1, next page).

The variable ū is the average displacement estimate for
a given axial range, M , and an ensemble length of N .
The I/Q components of the RF signal are calculated using
trigonometric quadrature demodulation.

Loupas et al. two dimensional autocorrelator[3] is show
as eqn. 2 (next page). The variable fdem is ratio of the RF
sampling rate to the sampling frequency of the signal (hence,
fdem = 5.0MHz/40MHz). Kasai’s phase shift estimator as-
sumes a constant mean frequency of the RF equal to the center
frequency of the transducer. Loupas’ algorithm evaluates the
mean Doppler frequency and the mean RF frequency along
each axial extent.

B. Normalized Cross Correlation

Normalized cross correlation has the best performance by
most measures relevant to time delay estimation in ultra-
sonic signals[4]. The correlation function c(j), between the
reference, fr, and shifted, fs, signals is normalized by their
standard deviation:

c(j) =

M/2∑
i=−M/2

[
fr(i) − f̄r

] [
fs(i + j) − f̄s(j)

]
√

M/2∑
i=−M/2

[
fr(i) − f̄r

]2 M/2∑
i=−M/2

[
fs(i + j) − f̄s(j)

]2
(3)

where f̄r is the mean of the reference value over a window
of size M and f̄s(j) is the mean over a window shifted by
j samples. The maximum of the normalized cross correlation
function indicates the point where two signals are most similar
to each other, and can thus be used to determine the displace-
ment between the reference and tracking lines in ARFI.

C. Bias and Jitter

Bias is the mean of the displacement error and jitter
represents the error for the bias, i.e. jitter is measured as the
standard deviation of the displacement error. Signal decorre-
lation, finite window lengths, and noise cause slight shifts in
the peak of a correlation function[5].

D. RF data simulation

RF data was constructed to simulate line scatterers moving
axially toward the transducer. A Gaussian enveloped RF pulse
was convolved with white noise in order simulate the echo
received when an ultrasound pulse is reflected from random
scatterers. Where stated, Gaussian white noise was added to
the reference and displaced signals. Unless otherwise speci-
fied, the RF lines used in the calculations and plots shown
below have a sampling frequency of 40MHz, a fractional
bandwidth of 0.7, a center frequency of 5 MHz, 2000 samples,
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Fig. 1. Jitter error comparison as a function of noise

100 independent realizations, and the algorithms have an axial
extent of 1.5λ.

III. RESULTS

A. RF Interpolation

Figure 1 plots the jitter between the reference and displaced
signal for varying SNR using different rf interpolation factors
for the first interpolation stage. For normalized cross correla-
tion there is little benefit in interpolating the RF data beyond a
factor of three. Loupas’ algorithm is comparable to normalized
cross correlation except at small SNR. Kasai’s algorithm has
significantly more jitter than other methods. An interpolation
factor of three is used for the rest of this paper.

B. Displacement

Figure 2 shows the jitter (top) and bias (bottom) for an
SNR of 30dB as the scatterer displacement is varied. Nor-
malized cross correlation has the smallest jitter across the
displacement range, followed by Loupas’ and then Kasai’s
algorithm. Loupas’ algorithm develops an increasing bias
toward overestimation as the displacement increases. Kasai’s
algorithm follows an opposite and more significant trend
toward underestimation of displacement.

C. Step Displacement

Algorithms that use a smaller axial extent are able to discern
the step displacement with a steeper slope. Figure 3 plots the

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Scatterer displacement (µm)

Ji
tte

r 
(µ

m
)

Displacement and jitter for 30dB SNR

Ncorr
Kasai
Loupas

0 5 10 15 20 25 30 35 40 45 50

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Scatterer displacement (µm)

B
ia

s 
(µ

m
)

Displacement and bias for 30dB SNR

Ncorr
Kasai
Loupas

Fig. 2. Jitter (top) and bias (bottom) for varying scatterer displacement.

displacement for various axial extents (expressed as fractions
of the pulse wavelength). Normalized cross correlation and
Loupas’ algorithm have comparable performance in resolving
the step displacements for an axial extent of 1.5λ and 3λ but
the performance of Loupas’ algorithm is significantly degraded
for 0.5λ. Kasai’s algorithm exhibits the largest amount of jitter.

D. Bandwidth

Figure 4 shows how the signal bandwidth affects phase shift
estimators to a larger degree than normalized cross correlation.
Loupas’ algorithm performs well except for a broadband
signal. Kasai’s algorithm exhibits a more regular increase in
jitter with bandwidth.
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Fig. 3. Comparison of step displacement tracking between the time delay
algorithms for varying kernel lengths.
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Fig. 4. Jitter comparison between the time delay algorithms with different
different fractional bandwidths.

E. Down-sampling

Figure 5 shows effects of downsampling on the jitter
(top) and bias (bottom) for the time delay algorithms. A
demodulated RF signal normally has a sampling frequency
that is much higher than the Nyquist frequency so the data
can be down-sampled without aliasing. The jitter for Loupas’
algorithm on the down-sampled I/Q increases dramatically
with down-sampling factor until it reaches an axial extent
of one sample and matches Kasai’s algorithm. This suggests
that given an insufficient number of samples the frequency
correction of Loupas’ algorithm becomes inaccurate. However
by allowing Loupas’ algorithm to operate on more elements
by up-sampling the down-sampled I/Q a close match with
normalized cross correlation can be achieved. For a small
displacement of 4.8µm, normalized cross correlation on the
remodulated RF data often has a higher bias toward underes-
timation than the phase shift algorithms.

F. Ex Vivo Liver Ablation

ARFI images of an ex-vivo liver ablation with the dis-
placement shown in microns. On the top rows are images
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Fig. 5. The effects of down-sampling on jitter (top) and bias (bottom) for
normalized cross correlation on the remodulated signal (Ncorr RM), Kasai’s
phase shift estimation algorithm on the down-sampled (Kasai DS), and up-
sampled I/Q (Kasai US), and Loupas’ phase shift estimation algorithm on the
down-sampled (Loupas DS), and up-sampled I/Q (Loupas US).

generated from the original data. In the middle row, the phase
shift estimators are applied to the down-sampled I/Q data.
On the bottom row, the images are generated with the down-
sampled, then up-sampled data (down-sampling factor of 8).
The lesion can be observed as the stiffer (less displaced) region
at the center right of each image. Figure 7 shows a degassed
bovine liver after 12 minutes of preprogrammed ablation.
Images generated by normalized cross correlation or Loupas’
algorithm appear less noisy, have better edge definition, and
a higher CNR. Loupas’ algorithm appears to be more noisy
than normalized cross correlation in the bottom portion of the
images where the SNR is low. However the difference between
the two is almost indistinguishable on the up-sampled images.
The phase shift estimators applied to the down-sampled I/Q
generate noisy images with poor edge definition.

G. Real-time Implementation

A Siemens Antares scanner ports the raw 40 MHz RF data
to an adjacent Beowolf cluster via a 100 Mbit Ethernet link.
The cluster consists of 8 Dell Optiplex SX270 compute nodes.
Each node has a 3.0 GHz Pentium 4 processor and 1 GB of
RAM. The nodes are connected via gigabit ethernet to a Dell
PowerConnect 5224 switch. All the systems run CentOS 3.3, a
free version of Red Hat Enterprise Linux 3. Parallel processing
and internode communication is handled with version 6.5.9 of
the LAM/MPI toolkit. The algorithms were implemented with
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Fig. 6. ARFI images of an ex-vivo liver ablation with the displacement shown
in microns. On the top rows are images generated from the original data. In
the middle row, the phase shift estimators are applied to the down-sampled I/Q
data. On the bottom row, the images are generated with the down-sampled,
then up-sampled data (down-sampling factor of 8). The lesion can be observed
as the stiffer (less displaced) region at the center right of each image.

a combination of Fortran77 and C.

H. Computational Time

To reduce the computational load, the algorithms are cal-
culated using a sliding window scheme for the numerators
and the denominators. Loupas’ and Kasai’s algorithms are less
computationally intensive than normalized cross correlation
but have a similar slope or order. There is little difference in
the computation times for different window sizes when a small
overlap is used. However, with increasing overlap it becomes
more costly to use larger windows. There is a negligible effect
of window size on the phase shift estimators.

IV. CONCLUSION

We have shown the performance differences between nor-
malized cross correlation, Loupas’ and Kasai’s algorithms in
terms of displacement errors in the form of jitter and bias
and parameter selection such as kernel size, signal bandwidth,
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Fig. 7. Computational time to determine the scatterer displacement as
a function of the number of RF samples. The top three curves (crosses)
show normalized cross correlation with full overlap and window sizes of
0.75λ (solid), 1.5λ (dashed), 3λ (dash-dotted), indicating larger windows
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TABLE I

TYPICAL ARFI COMPUTATIONAL TIMES

Single line Serial image Parallel image

Kasai 0.21 ms 51 ms 14 ms

Loupas 0.39 ms 58 ms 17 ms

Correlation 2.25 ms 204 ms 40 ms

and interpolation factors. Kasai’s algorithm generally has the
worst performance and the fastest computation time. Loupas’
algorithm performs almost as well as normalized cross cor-
relation except for cases where the axial extent is small and
the SNR is low or when the bandwidth is large. We have
shown how to accurately reconstruct displacement calculations
using down-sampled I/Q data. Finally, the optimal algorithmic
parameters were used in a parallel program to implement a
real-time ARFI imaging system on a computer cluster and an
associated ultrasound scanner.
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