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Abstract—In this paper we approach Split-spectrum (SS) 
automatic detection from a distributed detection perspective. The 
basic idea is to implement an energy detector at the output of 
every band-pass filter, and then to fuse all the detections to 
generate a final decision for every time index. The individual 
detectors are optimally designed by using the subspace matched 
filter theory (briefly, every band-pass filter is equivalent to the 
projection into a tuned subspace). The fusion is also optimized by 
using the well established theory of distributed detection. The 
proposed detection algorithms are applied to the analysis of the 
ultrasonic NDE of the inner layer structure of the vault of a 
Spanish basilica. The results show the interest of the proposed 
new detection schemes 

Keywords- Automatic, distributed, detection, monosensor, data 
fusion, decision, ultrasonic, NDE, consolidation, restoration, split-
spectrum 

I.  INTRODUCTION 
Detection of ultrasonic echo pulses embedded in a grain 

noise background is a classical problem in the area of non-
destructive testing (NDT) of materials. The simplest model of 
grain noise considers many randomly superimposed echoes due 
to the complex microstructure of materials. Under very general 
conditions, neglecting multiple scattering, this superposition 
model implies that the grain noise is a non stationary stochastic 
process, having a Gaussian [1] or a non-Gaussian [2], 
distribution. Non stationarity is mainly due to the attenuation 
dependence on frequency [1], [3], meanwhile Gaussianity or 
non-Gaussianity depends on the effective number of scatters 
contributing to the recorded signal in a given instant [2], or to 
the possible presence of regularities in the spatial distribution 
of the scatters.  

Let us stay the problem in the following terms. We want to 
determine the presence of a possible ultrasonic echo pulse p(n) 
in a segment of the recorded and sampled ultrasonic signal r(n). 
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With n=ns,…,ns+N-1, where ns , ns+N-1 are respectively the 
starting and the final sample numbers delimiting the segment, 
and gi(n) corresponds to the grain noise samples under 
hypothesis i.  

Determining the presence of p(n) implies some processing 
f[·] on the segment z(ns)= f[r], with r=[r(ns),…,r(ns+N-1)]T. If 
we move the value ns along the recorded signal we obtain the 
sequence z(ns), which is the output sequence obtained after 
processing the input sequence r(n).  

Depending on the application we can be required to detect 
the presence of p(n) in non-automatic manner, but, very often, 
automatic detection is a requirement. In the first case the usual 
goal is to maximize the signal to noise ratio enhancement 
(SNRE) factor. In the second case the output z(ns) is to be 
compared with a threshold t to make a sample by sample 
automatic decision on the two hypotheses of equation (1)  
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Maximizing the probability of detection (PD) for a given 
probability of false alarm (PFA), or minimizing the probability 
of error (PE) needs a proper selection of the processing 
function f[·], which is not necessarily the same which 
maximizes SNRE. Both goals can be joined by gating the input 
sequence, thus generating a new output sequence rout(ns)=r(ns) 
if decide H1, and rout(ns)=0 if decide H2. It can be easily shown 
(see for example [4], page 111) that the SNRE corresponding to 
rout(ns) when compared with r(ns) is SNRE=PD/PFA0.5. 

In this paper we assume that automatic detection (2) and/or 
gating post-processor are required, and, where possible, the 
Neyman-Pearson (N-P) criterion should be satisfied. Hence the 
basic problem faced in this paper is the optimum design of the 
processing function f[·]. This will be constrained by the a priori 
knowledge we could assume about the echo pulse and about 
the grain noise. Thus, the most classical situation (largely 
worked in [4]) is that of assuming: perfect knowledge of vector  
p; both {g1(n)} and {g2(n)} are locally stationary Gaussian  
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inside every  interval  [ns, ns+N-1] having the same (and 
known) power spectrum Sg(w). Then, the matched filter 
detector is the optimum solution [5], where Cg is the grain 
noise local covariance matrix of Sg(w). 
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However, in most practical applications of ultrasonic NDT, 
the assumed hypotheses for (3) to be optimum are far from 
being accomplished. The vector p depends on the pulse 
arriving to the possible reflector, hence knowledge of p can not 
be assumed in general. The spectrum of the grain noise Sg(w) 
are depth dependent [3]. However, the presence of a reflector 
produces variations in the vicinity of it, thus reducing the 
number of scatters. Finally, Gaussianity is not an adequate 
hypothesis for coarse grained materials [2], producing “spiky” 
grain noise records, or for materials exhibiting regular 
spreading of the scatters. 

Split-spectrum algorithms offer a practical alternative to 
matched filter detectors for those cases where the mentioned 
hypotheses fail. They take advantage of the tuning frequency 
sensitivity of grain noise, when it is filtered by band-pass filters 
tuned along the grain noise bandwidth. It is assumed that 
presence of an isolated echo p due to a given reflector is not 
sensitive to the tuning frequency, and a constant amplitude 
shifting is induced in all the filter output levels, the general 
expression for the split-spectrum processing is  

 ( ) ( ) ( ) ( )vHrr nlnls fffnz ===  (4) 

where the rows hi, i=1…N, of matrix H (LxN) correspond 
to the finite impulse responses  of the band-pass filters.  fnl(·) is 
a nonlinear function. Typical alternatives for fnl(·) are 

• z(ns)=fnl(·)=min[vi], minimization algorithm  [6] 

• z(ns)=fnl(v)=order statistic (vi), [7]  

• z(ns)=fnl(v)=number of positive values in real part  of 
v, polarity thresholding algorithm [4], [8] 

Split-spectrum algorithms based upon (4) may produce 
significant improvements in PD, and so in SNRE, when 
compared with just a gating of the original signals. They do not 
need knowledge of p or of Sg(ω). However, fitting the 
threshold t in (2), requires knowledge of the probability density 
function (pdf) of z(ns). On the other hand, the achieved PD will 
depend on the joint pdf of the elements of v under H1. 

 Some PD-PFA analysis of minimization [6] and polarity 
thresholding [8], algorithms assume uncorrelated multivariate 
Gaussian distribution under both hypothesis 
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where m is a mean vector due to the (assumed) shifting m 
produced at every filter output by the presence of p and σ2

Hgis 

the variance due to the noise component Hg in vector 
v=Hr=Hp+Hg.  

Assuming the model (5) for PD-PFA analysis of split-
spectrum algorithms is controversial. If model (5) is adequate, 
then the optimum detector which maximizes PD is a matched 
(to m) filter: z(ns)=1THr=r(ns), (a simple gating of the original 
signal). In practice when using split-spectrum algorithms, we 
have to question model (5): the vector mean shift m is a too 
simple model; grain noise statistics, (the variance), should be 
different for every hypothesis, reducing the grains contribution 
under H1.  

We propose in the next section a general split-spectrum 
scheme based on the use of distributed detection. They include, 
as particular cases, the minimization and order statistics 
algorithms, thus an indirect result of the work is a better 
understanding of why and when split-spectrum algorithms can 
improve trivial detectors. Experiments with simulated and real 
ultrasonic signals are considered in section 3. 

II. SPLIT-SPECTRUM DISTRIBUTED DETECTION 
ALGORITHMS 

A. Proposed scheme 
From the foregoing discussions we are going to consider a 

different model than (5), namely: 
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with σ2
Hg1<< σ2

Hg2 where grain noise variance reduces in a 
significant manner when the pulse is present, where Dg is a 
matrix having its main diagonal normalised. 

The optimum detector corresponding to model (6) is much 
dependent on the knowledge we have about p. Let us assume 
that pC 2

1
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whitened observation vector rC 2
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on that subspace. 
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We propose the scheme of figure 1. Instead of making only 
one decision, as in equation (2), distributed decisions are made 
at the output of every band-pass filter (ui(0 or 1)), which are 
fused to make the final decision (u0 (0 or 1)), using an optimum 
fusion rule rule(u1,…, uL) that maximizes the final probability of 
detection PDfinal. 
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Figura 1. Example of Scheme of split-spectrum distributed detection 
algorithm (SSDD) 

When DFT is used to implement the band-pass filters, twice 
the subspace energy follows a central chi-squared distribution 
with two degrees of freedom. Hence we have an easy way to 
finding the adequate threshold ti at every filter output to obtain 
a desired probability of false alarm PFAi, this in turn implies an 
easy way for fitting the final probability of false alarm PFAfinal 
after fusion is done. 

The SSDD algorithm assumes that the presence of the pulse 
“injects” energy along a given number of subspaces, but a 
minimum amount of energy is required in every subspace to 
guarantee detection. This suggests the convenience of some 
type of normalization in SSDD to actually make detection only 
dependent on the energy subspace distribution property of the 
pulse, and not on the pulse level. Thus we arrive to the 
normalised SSDD (NSSDD), where every filter output value is 
divided by the maximum of them. Then we could make a 
decision at every filter output. 

 ( )
T

g
H
jjg

T

j

T
g

H
iig

T

si nz
rChhCr

rChhCr

2
1

2
2
1

2

2
1

2
2
1

2

max
−−

−−

=  (9) 

We have to consider the optimum design of the fusion rule. 
The optimum fusion rule for general models of correlated 
decisions has been derived in [9]. Calling m to the number of 
zeros in vector u, we must consider the particular case of 
uncorrelated decisions under H2 and pair wise correlations 
under H1. Particularizing the general expression given in the 
equation (79) of [9] (ρH1=ρ and ρH2=0). It can be shown, if 
∆(m) is a non-increasing function of m, we can write the N-P 
optimum fusion rule [9] 
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III. EXPERIMENTS WITH SIMULATED AND REAL DATA 

A. Simulated detection analysis 
We generate a number of records of simulated grain noise 

where some randomly distributed pulses to be detected have 
been inserted. Every simulated record is obtained by 
convolving zero-mean white noise records with an impulse 
response having the same waveform than the pulses to be 
detected.  

 

Figure 2. Raw ROC curves for the three alternatives 

We know a priori the locations of the pulses to be detected, 
so we can count the number of detected and missed pulses, as 
well as the number of false pulse detections. A comparison 
among three detectors is done: SSDD, NSSDD and what we 
call trivial detector, which is just a gating of the prewhitened 
recorded signal. In figure 2, we show raw ROC curves 
computed from the number of true and false pulse detections. 
We conclude the superiority of NSSDD with respect to the 
trivial detector and SSDD. In particular SSDD seems to be very 
sensitive to the presence of some amount of grain noise in the 
time interval where the pulse appears. The results of the 
detection analysis indicate that conventional split-spectrum 
algorithms are severely limited for use in an automatic 
detection framework. 

B. Real data detection analysis 
To complete the experimental part of the paper we present 

some real data results corresponding to the ultrasonic analysis 
of the first layer profile of a basilica´s cupola 1:1 scale model. 
The ultrasonic analysis was made with the aim of showing the 
viability of ultrasonic non-destructive testing techniques to help 
in the process of restoration of heritage historical buildings.  

The first layer of the cupola is a 0.3 cm stratum of mortar, 
and the second one is a 1.2 cm width stratum of plaster. The 
objective is to trace the interface profile between the first and 
second layers. This tracing gives valuable information to the 
restores. Thus, we have made non-destructive ultrasonic 
analysis using echo-pulse inspection mode with ultrasonic 
pulse generation with 5MHz transducer. 

We have collected 75 A-scan of 100 µs along a vertical 
array of locations. On the other hand we obtained in laboratory 
an estimate of the expected delay between echoes form the 
interface (1.92 µs). That means that a possible first reflection 
from the interface should arrive at 3.84 µs, a second one at 
2x3.84=7.68 µs, a third one at 11.52 µs and so on.  

We have applied the three algorithms: trivial detector, 
SSDD and NSSDD, to the original signals considering the 
interval 4-20 µs, thus avoiding the initial idle time interval of 
the receiver (figure 3). Then we look for possible interface 
profiles outlined by the reflections of order greater than one 
(second, third and so on).  
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Figure 3. a) Original B-scan (75x4000) b) Trivial c) SSDD d) NSSDD 

In figure 3b, 3c and 3d we show respectively the results for 
the trivial, SSDD and NSSDD. We show 2-D grey 
representations with black indicating detection. In the three 
cases the profile corresponding to the third reflection is 
“uncovered” by the processing. The second reflection is too 
much corrupted by multiple surface and inner reflections to 
allow reconstruction of the profile. A possible fourth reflection 
seems to be too attenuated to appear. However the third 
reflection is outlined by the three methods. 

Apparently, the best results are obtained with SSDD 
algorithm, followed in this order by the trivial detector and 
NSSDD. Surprisingly, NSSDD seems to exhibit the largest 
number of false alarms, which is in contradiction with the 
superior performance predicted by theory and observed in 
simulations. But it should be considered that mortar is a 
material composed by sand and paste of cement. Two essential 
parts of its microstructure are air pores (sizes may vary from 
10-10 to 10-4 m) and sand grains (10-4 to 10-3 m). The 
wavelength corresponding at 5 MHz, λ=0,312·10-3m, which of 
the order of the sand grains. Thus, in this case, together with 
the microstructure grain noise we have also isolated echoes 
from sand grains. Moreover, at 5 MHz we are also sensitive to 
surface irregularities, which add more isolated echoes to the 
recorded signal. As NSSDD is amplitude independent, it is able 
to detect not only echoes from the interface but also from the 
sand grains and the surface irregularities. On the other hand 
SSDD and the trivial detector are amplitude sensitive methods 
so that they filter out many of the (low level) isolated echoes. 
In this sense we can say that in NSSDD, we do not have more 
false alarms, but “too many detections”.  

IV. CONCLUSIONS 
We have proposed new SSP algorithms for automatic 

detection of ultrasonic echoes in a grain noise background. The 
algorithms are derived in the framework of optimum 
distributed detection, so that control of PFA and maximization 
of PD are achieved. They give us insights into the SSP 

algorithms limitations, as the new ones are extensions of 
previous algorithms based on order statistics. In general terms 
we can say that SSP based algorithms are adequate to detect 
“isolated” echoes preceded and followed by important levels of 
grain noise.  

We have shown that incorporation of a prewhitening 
(another novelty with respect to previous SSP algorithms) is 
inherent to the desired optimality. Some good results may be 
obtaining even from what we have called “trivial detector”. We 
have also shown that approaching the algorithms in the 
framework of algebraic subspaces, thus exploiting the formal 
equivalence between a “tuned” filter and a band-pass “tuned” 
subspace is a powerful way to obtain optimal detectors at every 
filter output. 

Finally, the simulated and real data experiments have 
demonstrated the interest of the proposed scheme. In particular, 
the application to the detection of the echoes due to the first 
layer of a cupola wall, had afforded good results. 
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