
Our Recent Strain-Measurement-Based 
Shear Modulus Reconstruction 

Chikayoshi Sumi 
Department of Electrical and Electronics Engineering, Faculty of Science and Technology 

Sophia University Tokyo 102-8554 Japan 
c-sumi@sophia.ac.jp 

 
Abstract— As a differential diagnosis technique of living soft 
tissues, we are developing ultrasonic strain measurement-based 
shear modulus reconstruction methods. In this report, to stabilize 
the 3D and 2D reconstruction of shear modulus, Poisson’s ratio 
and density, we propose to deal with the mean normal stress as 
unknown. Moreover, we propose two new methods for measuring 
multidimensional displacement vector with high accuracy, i.e., 
the multidimensional autocorrelation method and the 
multidimensional Doppler method. Respective displacement 
vector measurement methods are combined with our previously 
developed useful lateral modulation method, i.e., the lateral 
Gaussian envelope cosine modulation method (LGECMM). 
Effectiveness of these methods are verified by simulations and 
phantom experiments. Our previously developed real-time 1D 
reconstruction method is also reviewed and in vivo results are 
also presented. 

Keywords-Shear modulus, reconstruction, differential-type inverse 
problem, strain tensor, displacement vector, measurement, 
multidimensional autocorrelation method, multidimensional Doppler 
method, multidimensional cross-spectrum phase gradient method,  
regularization 

I.  INTRODUCTION 
As a differential diagnosis technique of living soft tissues 

(breast, and liver, etc.), we are developing ultrasonic strain 
measurement-based 3D, 2D and 1D shear modulus reconstruction 
methods [1]. The shear modulus distribution µ  is reconstructed by 
solving PDEs (equilibrium equations) using the reference shear 
moduli (i.e., initial-value problem). Recently, we have also verified 
the usefulness as decision tool of effectiveness of various treatments 
(chemotherapy, cryotherapy, thermal therapy) [1]. Meanwhile, we 
reported a reconstruction method utilizing a typical Poisson's ratio. 
However, as reconstruction errors were confirmed due to the 
difference between the original value and the set value of the 
Poisson's ratio [1], we proposed a method to reconstruct the Poisson's 
ratio as well by dealing with the Lame's constants λ  and µ  as 
unknown [2]. Furthermore, we proposed to reconstruct the density as 
well to allow dealing with dynamic deformation (i.e., motion 
equations) [2]. 

In this report, to stabilize the reconstruction of these mechanical 
properties even when the target tissue is incompressible, we propose 
to use the mean normal stress as unknown instead of λ  [3]. As we 
utilize our previously developed regularized implicit-integration 
approach using the iterative method (conjugate gradient method) to 
solve the PDEs, when neither Poisson's ratio nor mean normal stress 
is target, their references are needless (reconstructions of the 
Poisson's ratio and the mean normal stress become dependent on 
respective initial estimates of the iterative method). Thus, this method 

is also useful when neither reference Poisson’s ratio nor reference 
mean normal stress can be set. 

Realizing high accuracy in measuring tissue strain tensor can be 
achieved by the use of a lateral modulation method [4] and a 
displacement vector measurement method that provides simultaneous 
axial and lateral measurements, e.g., our previously developed cross-
spectrum phase gradient method (CSPGM) [5,6]. In this report, two 
new methods are also described for such simultaneous measurements 
using an instantaneous ultrasound signal phase, i.e., the 
multidimensional autocorrelation method and the multidimensional 
Doppler method [7-9]. High measurement accuracy is achieved by 
combining respective methods with our developed lateral Gaussian 
envelop cosine modulation method (LGECMM) [8,9]. These 
methods can also be used for measurements of blood flow, sonar data 
and other target motion. 

Shear modulus reconstruction obtained by the new shear 
modulus reconstruction method and the new displacement 
measurement method is shown for an agar phantom. 

Finally, we review our developed real-time 1D reconstruction 
methods [5,10,11]. Since the 2D and 3D reconstruction require a 
special US data acquisition system to accurately measure the strain 
tensor field, 1D reconstruction utilizing standard US imaging 
equipment is considered to be still clinically useful. When the axial 
strain can be measured with high accuracy, for 1D reconstruction, the 
calculated ratio of the strains generated in the direction of 
predominant deformation along the direction can be used as the final 
estimate of the target’s shear modulus at a normal position where no 
singularity occurs (change of the sign of strain or numerically 
infinitesimal absolute strain sometimes occurs at stiff region) [1], and 
then 1D implicit-integration is performed only at the singular 
positions (i.e., partial implicit-integration) which substantially 
reduces computation time. The shear modulus distribution resulting 
from calculated ratio of the measured strains is also utilized as an 
initial estimate in 1D, 2D, and 3D implicit-integration (when 
measured strain is inaccurate, reconstruction should be sufficiently 
regularized with utilization of a uniform initial estimate as performed 
for monitoring of thermal treatment) [1].  

II. MULTI-DIMENSIONAL SHEAR MODULUS 
RECONSTRUCTION 

A. Method 
As living soft tissues deform in 3D space due to arbitrary 

mechanical sources, multidimensional signal processing [5-9] 
realizes high accuracy deformation measurement (acceleration vector 
and strain tensor) and mechanical properties reconstruction. 

By measuring the acceleration vector iα (i = 1-3) and the strain 
tensor ijε  (i,j = 1-3) throughout the 3D ROI (region of interest), 

motion equations are dealt with as the simultaneous first order partial 
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differential equations (PDEs) for unknown distributions of the 
Lame’s constants µλ  ,  and the density ρ , i.e., 

,22}{}{ j,ijj,ijj,ijj,iji µε+µε+λδε+λδε=ρα αααα  

ratio. sPoisson' : modulus,shear  : ,
21

2 where νµµ
ν−

ν=λ  

Provided that the references of the Lame’s constants or density 
are given in the ROI, this reconstruction problem becomes an initial-
value problem for the unknown distributions [2]. 

In this report, by dealing with the mean normal stress p (product 
of λ  and ααε ) as unknown, we stabilize shear modulus 
reconstruction [3]. To reconstruct the distribution of the shear 
modulus, Poisson’s ratio (or mean normal stress) and density, the 
following reference (initial) values must be given in the ROI, i.e., the 
references of Poisson’s ratio (or mean normal stress) and either shear 
modulus or density. When neither Poisson’s ratio nor mean normal 
stress is target, their references are needless. In this case, as we utilize 
the iterative method to solve this problem, reconstruction of the mean 
normal stress is dependent on the initial estimate of the iterative 
method. We utilize the conjugate gradient method. 

When dealing with the static equilibrium case, only the shear 
modulus and the Poisson’s ratio (or mean normal stress) are targets. 

In order to uniquely obtain the stable reconstructions, proper 
configurations of mechanical sources and reference regions should be 
realized such that the reference regions widely extend in directions 
crossing the predominant tissue deformation [12]. 

In order to further stabilize reconstruction, regularization [1,13] 
is respectively applied to the shear modulus, mean normal stress and 
density using different regularization parameters. 

On 2D reconstruction, when the number of the unknown 
distribution is larger than 2, independent deformation fields must be 
measured. 

B. Simulation 
First, reconstruction of the shear modulus and Poisson’s ratio is 

shown by dealing with a static equilibrium case [3]. A simulated 
inhomogeneous cubic phantom (50.0 mm sides) was uniformly 
compressed in the axial direction (x-axis) with a displacement of 0.25 
mm. The phantom includes a spherical inclusion at a depth x = 25.0 
mm (5-mm radius) having twice as high a shear modulus as that of 
the surrounding medium, i.e., 2.0 ×  105 N/m2 versus 1.0 ×  105 
N/m2. The Poisson’s ratio of the inclusion is 0.4, while the value of 
the surrounding medium is 0.47 (Phantom 1). The resultant internal 
displacement vector field was calculated by the successive over 
relaxation (SOR) method. A cubic ROI (30.0 mm sides) is set at the 
center of the phantom, which has the spherical inclusion at the central 
part. The reference region is set (30.0 mm ×  30.0 mm) at the upper 
surface of the ROI. 

Figure 1 shows 3D reconstruction, and both 2D reconstructions 
respectively obtained under the assumptions of 2D strain and 2D 
stress conditions. We considered the following three cases (i)-(iii), 
i.e., the mean normal stress is dealt with as unknown (i) with the 
reference (initial) values and (ii) without the reference values, and 
(iii) λ  is dealt with as unknown. 

Figure 1 shows 3D reconstructions with elevational position z = 
25.0 mm of shear modulus and Poisson’s ratio (2D reconstructions 
obtained under assumptions of 2D strain and 2D stress are omitted). 
Although 3D and 2D reconstructions were unstable when dealing 
with λ  as unknown, the reconstructions became stable by dealing 
with the mean normal stress as unknown. Figure 2a–2c respectively 
shows axial x-profiles, lateral y-profiles, and elevational z-profiles of 
the  reconstructions  of  shear  modulus  and  Poisson’s  ratio  passing 

   
Reference of p is not used. Reference p is used. 

λ  is unknown.  
Fig. 1. 3D reconstructions of shear modulus and Poisson’s ratio (Phantom 1). 

 
(a) Axial x-profiles 

 
(b) Lateral y-profiles 

 
(c) Elevational z-profiles 

Fig. 2. 3D reconstruction, both 2D reconstructions (2D strain and 2D stress 
assumptions) and 1D reconstruction of shear modulus and Poisson’s ratio 
(Phantom 1). 
 
Table I. Reconstructions of shear modulus and Poisson’s ratio (Phantom 1). 
Means at central square region (5.0 mm x 5.0 mm). 

 
 

through the center of the spherical inclusion. Table I shows the means 
of the shear moduli and Poisson’s ratios evaluated at the central 
square region of the inclusion (5.0 mm x 5.0 mm). Table II shows the 
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corresponding results obtained on Phantom 2 which has the Poisson’s 
ratio of 0.47 in the inclusion and 0.40 in the surrounding medium. 

Although 3D reconstruction was quantitative, both 2D 
reconstructions (2D strain and 2D stress assumptions) were less 
quantitative. Specifically, for both 2D reconstructions, the shear 
modulus of the stiff inclusion is estimated to be smaller than that of 
the original (for other phantoms, the shear modulus of the soft 
inclusion is estimated to be larger than that of the original, not 
shown). When assuming the 2D strain condition, the large Poisson’s 
ratio of the inclusion is estimated to be smaller than that of the 
original, while the small value of the inclusion is estimated to be 
larger than that of the original. When assuming the 2D stress 
condition, the large Poisson’s ratio of the inclusion is estimated to be 
much larger than that of the original, while the small value of the 
inclusion is estimated to be much smaller than that of the original. 

For phantom 1, 1D shear modulus reconstruction (Table I) as 
well as axial strain imaging is useless [3,11]. That is, the inclusion 
could not be detected. That is, it is difficult to detect a region having 
high shear moduli and low Poisson’s ratios and vice versa by using 
the axial strain image and the 1D reconstruction image. 

Regarding with the spatial resolution of the reconstructions of 
shear modulus and Poisson’s ratio, for both 2D reconstructions (2D 
strain and 2D stress assumptions), the size of the stiff lesion is 
estimated to be larger than those of both the original and 3D 
reconstruction (Fig. 2). 2D reconstructions are affected by 
inhomogeneity in neighboring planes. 

These are erroneous artifacts due to the low dimensionality of 
reconstruction. 

B. Reconstruction of shear modulus, Poisson’s ratio, and 
density 

Next, reconstruction of the shear modulus, Poisson’s ratio and 
density is shown by dealing with a dynamic deformation case [3]. 

3D reconstructions were performed in four cases, i.e., reference 
of (i) only shear modulus, (ii) shear modulus and mean normal stress, 
(iii) only density and (iv) density and mean normal stress were used. 
The Phantom 2 was uniformly vibrated in the axial direction (x-axis) 
with a displacement of 0.25 mm and a frequency of 1. Hz. The 
density was uniformly set at 1.0 g/cm3. The same ROI was used. 

Figure 3 shows 3D reconstructions for case (ii) with elevational 
position z = 25.0 mm. In all cases, reconstructions were 
quantitatively obtained. Table III shows the means of the shear 
moduli, Poisson’s ratios and densities evaluated at the central square 
region of the inclusion (5.0 mm x 5.0 mm). 

III. MULTI-DIMENSIONAL DISPLACEMENT VECTOR 
MEASUREMENT 

A. Multidimensionalautocorrelation method and 
multidimensional Doppler method 
To realize measurement of 3D displacement vector 

( zyx u,u,u ), four or three 3D complex signals with different single 

octant spectra that extend analytic signal are calculated for pre- and 
post- rf-echo data, respectively [7-9]. The displacement vector 
( zyx u,u,u ) is obtained by solving the following simultaneous 

equations (four or three independent equations) derived from the 
complex signals. In (1) multidimensional autocorrelation method, an 
equation holds for the phase θ  of each autocorrelation signal 
obtained from a paired of complex signals, i.e., 

,0u
z

u
y

u
x zyx =θ

∂
∂+θ

∂
∂+θ

∂
∂+θ  

in (2) multidimensional Doppler method, an equation holds for the 

Table II. Reconstructions of shear modulus and Poisson’s ratio (Phantom 2). 
Means at central square region (5.0 mm x 5.0 mm). 

 

 
Fig. 3. 3D reconstructions (case ii) of shear modulus, Poisson’s ratio, and 
density obtained under the condition of 3D (x,y,z) stress (Phantom 2).  
 
Table III. Reconstructions of shear modulus, Poisson’s ratio, and density 
(Phantom 2). Means at central square region (5.0 mm x 5.0 mm). 

 

 
Fig. 4. Lateral Gauss envelop cosine modulation. Ultrasound speed 1,500m/s, 
US frequency 3.5MHz, depth 35mm, σ y 0.4mm, fy (1/ λ ) mm-1. Axial 
direction also Gaussian PSF with σ x of 0.4mm. (a) Apodization value. (b) 
PSF and spectrum when setting a=1, and 8. 

phase θ  of each complex signal, i.e.,  

,0u
z

u
y

u
x

t
t zyx =θ

∂
∂+θ

∂
∂+θ

∂
∂+∆θ

∂
∂  

where t∆  is the pulse repetition interval. tt ∆θ⋅∂∂ /  can also be 
obtained as phase θ  by evaluating each autocorrelation signal. 

When measuring 2D displacement vector, two 2D complex signals 
with different single quadrant spectra are calculated, and 
correspondingly derived simultaneous equations (two independent 
equations) are solved. 

Large displacements are dealt with by combining the CSPGM or 
the cross-correlation method. To improve measurement accuracy, 
phase matching [5] is also performed. 

B. Lateral Gaussian Envolpe cosine modulation (LGECM) 
This modulation method is comprised of the processes of 

apodization and focusing [8,9]. In Jensen’s method [4], the finite 
width aperture must be apodized using the sinc functions. 
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With this in mind, we realize the Gaussian type point spread 
function as the lateral-elevational (yz) point spread function, i.e., 

),zf2cos()yf2cos()
2
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−  

where 
yf  and 

zf  are respectively the lateral y and elevational z 

modulation frequencies, and 
yσ  and zσ  respectively correspond to 

the lateral y and elevational z beam widths. Based on the 
Fraunhofer’s approximation, for apodization of the depth x, the 
following apodization function is utilized, i.e., 
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where λ  is the ultrasound wavelength, af  and bf  are respectively 
parameters introduced to regulate the lateral y and elevational z 
modulation frequencies, and a and b are respectively parameters 
introduced to regulate the lateral y and elevational z bandwidths. 

In Fig. 4a, the apodization function only for lateral y modulation 
is shown, where at depth x = 35. mm, 

yf  and 
yσ  are respectively set 

to )/1( λ  mm-1 and 0.4 mm when the ultrasound velocity and the 
ultrasound frequency are respectively 1,500 m/s and 3.5 MHz. 
Simply, here, the point spread function and the spectrum are shown 
when transmitting plane waves (Fig. 4b, a = 1 and 8). The axial point 
spread function is realized using the Gaussian type point spread 
function (standard deviation, 0.4 mm). As shown, the bandwidth 
became narrower than the designed bandwidth (a = 1.). It is needless 
to say that the inappropriateness of the approximation causes the 
difference. The difference might be compensated by using the 
parameter a (a = 8.). In addition, the lateral modulation might also be 
compensated by using 

af . However, our developed multidimensional 

autocorrelation method and multidimensional Doppler method 
estimate the ultrasound frequency and lateral modulation frequency 
and these methods do not use bandwidths. Furthermore, the CSPGM 
[5,6] do not needs these values. In addition, all these methods are 
robust to the frequency modulations due to scattering and attenuation. 

C. Simulations 
Here, simply, 2D displacement vector measurements were 

simulated [8,9]. The distributions of displacement vector (0.01 mm, 
0.01 mm) were evaluated. Pre- and post- 2D echo data were 
simulated by convolving the 2D Gaussian type point spread function 
( σ x = σ y = 0.4mm) with white data. The measurement accuracy 
(SNR) was evaluated by changing the lateral modulation frequency 
and beam width ( σ y) when setting the ultrasound frequency at 3.5 
MHz. The ultrasound speed was set at 1,500 mm/s, and sampling 
frequency was set at 15. MHz, and the beam pitch was set at 0.05 
mm. White noises were added to the pre- and post- echo data. The 
results were shown when the echo’s SNRs were 20 dB and ∞  dB (no 
noise). 

Figure 5 shows the SNRs versus the lateral modulation 
wavelength obtained when setting the spatial moving average width  

 
Fig. 5. Lateral wavelength versus SNRs of axial and lateral displacements 
measured using multidimensional autocorrelation method and 
multidimensional Doppler method (echo data SNRs ∞  dB and 20 dB). 
Moving average width  64 ×  64. 

 
Fig. 6. Lateral displacement measurement results using multidimensional 
autocorrelation method and multidimensional Doppler method (echo data 
SNRs  dB and 20 dB). Moving average width 64 ×  64. 
 
at 64 ×  64 points (3.2 mm ×  3.2 mm) for calculating the phase and 
the spatial derivatives. Here, we should keep in mind that the phase 
of the autocorrelation signal evaluated from the spatio-temporal 
moving-averaged real and imaginary components yields accurate 
displacement vector measurement than the spatio-temporal moving-
averaged phase (results omitted) [7]. For the autocorrelation method 
the spatial derivatives of the autocorrelation signal phase can be 
obtained from the phases by finite-difference approximation or 
differentiation using differential filters with cutoff frequencies, while 
for the Doppler method the spatial and temporal derivatives of the 
complex signal phase can be obtained by spatio-temporal moving-
averaging the derivatives of the raw phase or by differentiating the 
spatio-temporal moving-averaged phase (finite-difference 
approximation or differential filter is used). Here spatial moving-
averaging was performed and the finite difference was employed. 
The phase tt ∆θ⋅∂∂ /  was obtained from autocorrelation signal. The 
measurement accuracy of the axial displacement was sufficiently 
high regardless the lateral modulation frequency. When SNR is 
20dB, both methods yield higher SNRs than 30 dB. However, the 
accuracy of the lateral displacement degrades compared to that of the 
axial displacement when the lateral modulation wavelength is longer 
than the half of the ultrasound wavelength. The accuracy of the 
multidimensional autocorrelation method was higher than the 
multidimensional Doppler method, whose calculation amount is less 
than that of the autocorrelation method. When not laterally 
modulating the echo, if the echo data is noiseless, the measurement 
accuracy of the lateral displacement was sufficiently high (higher 
than 40 dB). However, the accuracy considerably degrades when the 
echo’s SNR becomes low. The results obtained when setting the 
moving average width at 32 ×  32 (1.6 mm ×  1.6 mm), 16 ×  16, 8 ×  
8 points are omitted. The moving average width being set smaller, all 
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the measurement accuracy degrades. Particularly, it was remarkable 
for the multidimensional autocorrelation method at long lateral 
wavelength. Specifically, the accuracy of the lateral displacement 
becomes lower at 32 ×  32 (20dB) than the multidimensional 
Doppler’s method, and the accuracy of axial displacement becomes 
lower at 16 ×  16 (20 dB) than the multidimensional Doppler’s 
method. At 8 × 8, both the accuracy becomes lower at all the lateral 
wavelength. These two methods allow more accurate measurement 
than the CSPGM using a window having the same size as that of 
moving average (results omitted). Moreover, these methods realize 
less calculation amount than the CSPGM. When setting the 
respective lateral modulation frequency and σ x at (2/ λ ) mm-1 and 
0.4 mm, and changing σ y from 0.4 mm to larger value (6.4 mm) 
under a constant SNR of echo data, the accuracy of the axial and 
lateral displacement measurements slightly degrade (results omitted). 

Next, 2D displacement vector measurements were simulated when 
stain exists, i.e., the axial and lateral strains of 0.12 percent. The 
ultrasound frequency was 3.5 MHz, and the lateral modulation 
frequency was (2/ λ ) mm-1. White noises were added to the echo 
data. Figure 6 shows for the moving-average width of 64 ×  64 the 
measured lateral displacement distributions when echo’s SNR were 
∞  dB and 20 dB (32 ×  32, 16 ×  16; 8 ×  8, omitted). When setting 
the moving average width small, the measurement became unstable 
and the measurement accuracy degrades. 

To realize high measurement accuracy, the lateral modulation 
frequency and ultrasound frequency should be set higher if echo SNR 
is same. Moreover, the beam width and pulse length should be set 
narrower and shorter, respectively. These conditions yield high 
spatial resolution measurement as well. Utilization of the large 
moving average width stabilizes measurement at trade off with 
spatial resolution. However, phase matching [5,6] and echo 
compression/stretching allows heightening the spatial resolution as 
well as the measurement accuracy. 

IV. PHANTOM EXPERIMENTS 
Phantom experiments were performed. The target agar-graphite 

phantom has a stiff cylindrical inclusion (dia., 10 mm, 2.95 x 106 
N/m2 vs. 1.43 x 106 N/m2). Fig. 7a and 7b respectively shows the 
axial and lateral strain images (ROI, 12.6 mm x 14.2 mm) measured 
by the 2D autocorrelation method. We previously confirmed that the 
regularization method was effective to stabilize the displacement 
vector measurement when using the CSPGM [13]. Briefly, the 
effectiveness of the regularization was also verified for the 
multidimensional autocorrelation method. Fig. 7c shows a stable 
lateral strain image obtained when regularizing only lateral 
displacement (L2-norm of Laplacian was used as a penalty term). 
Simultaneously obtained axial strain image is similar with Fig. 7a. In 
contrast, Fig. 7d shows a low-pass filtered lateral strain image of Fig. 
7b. Fig. 7e shows the regularized shear modulus reconstruction image 
obtained using the regularized strains. The shear modulus of the stiff 
inclusion was estimated to be 1.71 x 106 N/m2. Due to low 
dimensionality of reconstruction, non-modulation and regularization, 
the shear modulus was estimated to be lower to the original value 
though the stable reconstruction was obtained. 

IV. REAL-TIME SHEAR MODULUS RECONSTRUCTION 
Other erroneous artifacts for 1D reconstruction were found for 

other phantoms (having uniform  Poisson’s  ratio  and  a  stiff  or  soft 
inclusion) are described in [1]. Summarizing the artifacts, i.e., (1) 
Quantitativeness  is  degraded,  i.e.,  the  stiff  region  and  the  stress 

 
(a)                     (b)                   (c)                     (d)                    (e) 

Fig. 7. Agar phantom experiments (ROI, 12.6 mm ×  14.2 mm). (a) Axial 
strain image, (b) lateral strain image (nonregularized), (c) regularized lateral 
strain image, (d) low-pass filtered lateral strain image and (e) regularized 
shear modulus reconstruction image. Axial strain image ranges from –1.6 x 
10-2 to 0. Lateral strain image ranges from 0 to 1.6 x 10-2. Shear modulus 
image ranges from  0.70 x 106 N/m2 to 1.71 x 106 N/m2. 
 
concentration in front of and behind the stiff region is estimated to be 
softer, while the soft region and the stress weak region in front of and 
behind the soft region is estimated to be stiffer. (2) The lateral and 
elevational sizes are estimated to be larger than the original sizes.  

A 59-year-old female volunteer with a scirrhous carcinoma was 
supinely positioned [10]. To obtain absolute shear modulus 
reconstruction, an agar phantom with a shear modulus of 1.4 ×  106 
N/m2 was used as reference (a block of 40 mm (axial) ×  80 mm ×  
80 mm). Although the block of reference should be thinner, the 
occurrence of multiple reflection using an agar phantom prevents us 
from utilizing a thin block. Fig. 8a shows a B-mode image of an ROI 
of 29.0 mm ×  44.6 mm at a depth of 36.1 mm from the transducer 
(skin surface). The reference line was set at the upper borderline of 
the ROI (depth, 36.1 mm) existing in the agar phantom. During 
compression, rf echo data frames were successively acquired. The 
interrogating ultrasound had a US nominal frequency cf of 7.5 MHz 

and was sampled at a rate sf  of 30 MHz in 12 bits. An axial strain 
image is shown in Fig. 8b in a linear gray scale obtained using the 
CSPGM [5,6] (local region size, 0.8 mm ×  3.8 mm) and a 
differential filter with a cutoff frequency of 0.82 mm–1. 

Figures 9a and 9b respectively show reconstruction images of 
the shear modulus and the inverse of the shear modulus obtained by 
calculating the ratio of strains. In these images, the structures of the 
scirrhous carcinoma and the surrounding normal tissues are 
quantitatively visualized, although the erroneous artifacts might be 
present in that the shear modulus image could have variations in 
neighboring planes. The carcinoma was estimated to have 
considerably high shear moduli. Where singular regions occurred (i.e., 
stiff regions), they were respectively given an upper bound and a 
lower bound determined by a relative shear modulus (= 10.0). These 
images are confirmed to be laterally unstable (e.g., arrows at a lateral 
position of 22.5 mm in Figs. 9a and 9b). Figures 9c and 9d 
respectively show low-pass-filtered reconstructions of the shear 
modulus (9a) and the inverse of the shear modulus (9b). By low-pass 
filtering, the reconstructions become laterally stable. However, the 
spatial resolution of the low-pass-filtered reconstruction of the shear 
modulus becomes substantially low. Empirically, low-pass filtering 
should be applied to the inverse of the shear modulus. Figures 10a 
and 10b respectively show profiles of the low-pass-filtered 
reconstructions of the shear modulus and the inverse of the shear 
modulus at a lateral position of 22.5 mm. Figure 9e shows the shear 
modulus reconstruction obtained by inverting the low-pass-filtered 
reconstruction of the inverse of shear modulus (9d). 

Next, the stably obtained reconstructions of the shear modulus 
and the inverse of the shear modulus are shown in Figs. 9f and 9g 
using strains with a low spatial resolution in the reference region. 
Here, the strains are moving-averaged though they can also be low- 
pass  filtered.  Both  reconstructions  of  the  shear  modulus  and  the 
inverse of the shear modulus are evaluated at high spatial resolutions. 
Although  the  stably  obtained  reconstructions  of the shear modulus 
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Fig. 8. In vivo human breast scirrhous carcinoma tissue. A block of reference 
material (thickness: 40 mm) of known shear modulus (= 1.4 ×  106 N/m2) 
was placed between the ultrasound transducer and the patient’s breast. The 
ROI (29.0 mm ×  44.6 mm) was set at a depth of 36.1 mm. (a) B-mode image 
and (b) strain image. 

 
Fig. 9. 1D shear modulus reconstructions obtained by calculating strain ratio. 
References are taken at points on the line of 36.1 mm depth (reference line). 
(a) Shear modulus. (b) Inverse of shear modulus. (c) Low-pass-filtered (a). (d) 
Low-pass-filtered (b). (e) Inverse of (d). (f) Shear modulus obtained using 
moving-averaged strains at the reference line. (g) Inverse of shear modulus 
obtained using moving-averaged strains at the reference line. 

(a)  (b)  
Fig. 10. Low-pass-filtered and nonfiltered reconstruction profiles at lateral 
position of 22.5 mm of (a) shear modulus and (b) inverse of shear modulus. 
 
 (9f) and the inverse of the shear modulus (9g) are evaluated at high 
spatial resolutions respectively compared to reconstructions (9c) and 
(9d), they are possibly less quantitative if the reference region is set 
at stress concentration [10]. Then, implicit integration should be 
performed using the reconstruction (9f) and (9g) as the initial 
distributions (shown in [10]). The quantitativeness of reconstruction 
is significantly improved. 

Summarizing, the calculation of strain ratio and the imaging is 
useful when the strain is accurately measured. Low-pass filtering 
should be applied to the inverse of the shear modulus distribution. 
Evaluation of strain with low spatial resolution at reference regions is 
effective except when the reference is set in stress concentration 
regions and stress weak regions in front of and behind stiff and soft 
regions. Implicit-integration yields an acceptable, stable 
reconstruction by utilizing a priori knowledge. Partial implicit-
integrations is also useful when the measured strain is accurate. Thus, 
the shear modulus value can be obtained throughout a ROI from the 
reconstruction  image  obtained  in  real-time  of  which  erroneous 
artifacts are reduced and singularity is treated. 

V. CONCLUSIONS 
In this report, we proposed a new shear modulus reconstruction 

method using the mean normal stress as unknown. We showed 
through simulations that this reconstruction method yields stable 
reconstructions of the shear modulus, Poisson’s ratio and density. It is 
considered that it is difficult to set the reference values of the mean 
normal stress and the Poisson’s ratio. This reconstruction method is 
also useful in these cases. Furthermore, we proposed new two 
displacement vector measurement methods, i.e., the multidimensional 
autocorrelation method and the multidimensional Doppler method. 
Furthermore, their measurement accuracies were evaluated through 
simulations. Feasibility of the combined multidimensional strain-
measurement-based shear modulus reconstruction was confirmed 
through phantom experiments. The effectiveness of the regularization 
method will be more specifically evaluated together with the methods 
for setting the regularization parameters [13-15]. 

Real-time 1D reconstruction methods were also reviewed. 
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