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Abstract— Time domain algorithms that solve the Khokhlov–
Zabolotzskaya–Kuznetsov (KZK) equation are described and
implemented. This equation represents the propagation of finite
amplitude sound beams in a homogenous thermoviscous fluid
for axisymmetric and fully three dimensional geometries. In the
numerical solution each of the terms is considered separately
and the numerical methods are compared with known solutions.
First and second order operator splitting are used to combine
the separate terms in the KZK equation and their convergence
is examined.

I. INTRODUCTION

Linear theory provides a suitable approximation for small
amplitude waves and short propagation lengths. Although in
many cases this approximation is sufficient, a higher order
description is necessary where large amplitudes or long prop-
agation lengths and small attenuation is involved. Examples
of such waves are beams with an amplitude large enough
to produce shock waves, such as those used in therapeutic
ultrasound for lithotripsy[1] or for harmonic imaging[2].

Several numerical methods have been implemented to solve
equations that describe nonlinear wave propagation[3–6]. Al-
though these methods are useful, significant challenges remain
in modeling certain pulses and geometries at the initial con-
dition surface.

Lee et al.[4] solved the axisymmetric Khokhlov–
Zabolotzskaya–Kuznetsov (KZK) equation in the time
domain using implicit centered differences and the Crank-
Nicolson scheme[7] for both the integral form of the
diffraction operator and the absorption, and a distorted time
solution for the nonlinearity. The propagation step was
combined for pulsed unfocused waves using a first order
operator split. Yang directly extended these methods to
three dimensions[6]. Here, in addition to these methods, we
consider solutions of the KZK equation in axisymmetric and
cartesian coordinates with a number of different numerical
techniques. The diffraction is solved using the differential
form of the operator for pulsed unfocused waves and focused
plane waves. The nonlinearity is solved with the Lax-
Friedrichs and Lax-Wendroff methods[7]. These are applied
separately to each term in the equations and compared to
known solutions for pulsed unfocused waves and continuous
focused waves or to frequency domain solutions. Then the
combined effect for first and second order operator splitting
are determined and compared.

II. BASIC EQUATIONS

The nonlinear parabolic KZK wave equation describes the
effects of diffraction, absorption, and nonlinearity. Its axisym-
metric form in terms of pressure can be written as[8]
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where t′ = t− z/c0 is the retarded time, z is the direction of
propagation. The first term on the right hand side represents
diffraction, with c0 as the small signal speed of sound. The
second term accounts for thermoviscous attenuation with δ as
the diffusivity parameter. Nonlinearity is described in the third
term with β = 1+B/2A as the coefficient of nonlinearity and
ρ0 as the ambient fluid density. The quotient B/A is derived
from the expansion of the equation of state for the fluid.

Equation 1, describes directional sound beams[5, 9] and is
valid when ka � 1, where k is the wave number and a is the
characteristic width of the source. For focused sources Eq. 1
can be nondimensionalized as[9, 10]:
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with scaling,

P = p/pp, σ = z/d, R = r/a, τ = ω0t
′ (3)

The dimensionless parameters in Eq. 2 are

G = d/z̄, N = d/z̄, A = α0z̄ (4)

where z̄ = ρ0c
3
0/βppω0 is the plane wave shock formation

distance for the pressure pp, α0 = δω2
0/2c3

0 is the thermo-
viscous attenuation coefficient at a frequency w0, and d is
the characteristic focusing length. The parameters G,N,A,
respectively represent the small-signal focusing gain, nonlin-
earity, and thermoviscous absorption.

Equation 1 can be similarly nondimesionalized for unfo-
cused sources. These equations are easily extended to 3D by
transforming the transverse Laplacian to cartesian coordinates.

III. OPERATOR SPLITTING

Operator splitting applies numerical techniques to each of
the terms in the equation independently over a propagation
step[4, 7]. The KZK equation can be rewritten as

∂P

∂σ
= LD(P ) + LA(P ) + LN (P ) (5)
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where LD,LA, and LN are the operators for diffraction,
absorption, and nonlinearity. A first order operator splitting
scheme applies the numerical methods sequentially at each
propagation step thus approximating the solution:

P = SLN∆σ ◦ SLA∆σ ◦ SLD∆σ(P0) + O(∆σ2) (6)

where P0 is the initial condition and ∆σ is the step size in
the direction of propagation. A second order operator splitting
scheme can be constructed by solving for a half step with one
operator, then using that solution to propagate a full step in
another operator, and finally completing the calculation by a
half step in the first operator, i.e.:

P = SLD+A∆σ/2 ◦ SLN∆σ ◦ SLD+A∆σ/2(P0) + O(∆σ3) (7)

where the diffraction and absorption operator is combined.

IV. DIFFRACTION

Diffraction was determined by using the integral and differ-
ential forms of the operator. In the first case the equation
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was solved as described by Lee[4] using finite difference ap-
proximations for the derivatives and the trapezoidal rule for the
integral. Implicit centered differences and the Crank-Nicolson
methods were used. Since the Crank-Nicolson scheme is not
monotone[7] a numerical smoothing step was added to prevent
spurious numerical oscillations.

The diffraction step was also solved directly in its differ-
ential form as shown in Eq. 2 with both implicit centered
differences and Crank-Nicolson schemes applied to the entire
system thus obviating the need for an integration step. In order
to keep the entire method second order the first order temporal
derivative was differenced to second order:

∂P

∂τ

.=
3
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∆τ
(9)

where the index i references τ .

A. Focused Equations

The well-known solution to the source condition

P0 = e−R2
sin(τ + GR2), (σ = 0) (10)

is provided by the linear theory of diffracting beams and can
be found in[10].

Figure 1 compares the numerical solutions to the analytical
solution for the initial conditions shown in Eq. 10. The left
plot shows an axial slice (R = 0) of the nondimensionalized
pressure with respect to retarded time, τ at the focal point
(σ = 1). Methods that use the integral form of the diffraction
operator exhibit more amplitude error than their counterparts
for the differential form for nondimensional depths greater
than 0.7. The accumulation of phase error with propagation
is more pronounced for the integral method than it is for the
fully differenced method. Note that the stair-step patterns are
due to the discrete nature of the signals being compared.
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Fig. 1. Axisymmetric coordinates. Axial (R=0) nondimensionalized pressure
for a focused continuous wave (see Eq. 10) after propagating a distance of
σ = 1 (top). The phase error is shown between the analytical solution, the
integral method (Lee), and the differenced method (Pinton) as a function of
depth (bottom left). The root mean square error assuming no phase error
(bottom right).
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Fig. 2. Cartesian coordinates. Axial (R=0) nondimensionalized pressure for
a focused continuous wave (see Eq. 10) after propagating a distance of σ = 1
(top). The phase error is shown between the analytical solution, the integral
method (Yang) and the differenced method (Pinton) as a function of depth
(bottom left). The root mean square error assuming no phase error (bottom
right).
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Fig. 3. Axisymmetric coordinates. Axial (R=0) nondimensionalized pressure
for a focused continuous wave (see Eq. 11) after propagating a distance of
σ = 1. (top). The phase error is shown between the analytical solution, the
integral method (Lee), and the differenced method (Pinton) as a function of
depth (bottom left). The root mean square error assuming no phase error
(bottom right).

Figure 2 performs the same comparison as 1 but in 3D.
The numerical methods exhibit almost identical charactersitcs
though the discretization is more apparent due to the smaller
grid size.

B. Unfocused Equations

The initial condition for the unfocused equations represent
a circular source mounted on a rigid baffle. The pulse is given
by:

f(τ + R2) = exp

[
−
(

2(τ + R2)
ω0T

)2m
]

sin(τ + R2) (11)

The solution to this equation can be found in [4].
Figure 3 compares the numerical solutions to the analytical

solution for the initial conditions shown in Eq. 11. The left
plot shows an axial slice (R = 0) of the nondimensionalized
pressure with respect to retarded time, τ at the focal point
(σ = 1). Methods that use the fully differenced form have
less phase and less rms error across the depth range. Similar
results are obtained for the 3D case shown in 4.

V. NONLINEARITY

The nonlinear step can be performed as described by Lee[4]
by interpolating the pressure on a distorted time. In addition
to this method, the nonlinearity was solved using a first
order Lax-Friedrichs scheme and a second order Lax-Wendroff
scheme. For the equation
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Fig. 4. Cartesian coordinates. Axial (R=0) nondimensionalized pressure for
a focused continuous wave (see Eq. 11) after propagating a distance of σ = 1.
(top). The phase error is shown between the analytical solution, the integral
method (Yang) and the differenced method (Pinton) as a function of depth
(bottom left). The root mean square error assuming no phase error (bottom
right).

The Lax-Friedrichs scheme on a uniform axial and temporal
grid can be written as

P
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The Richtmeyer two-step Lax-Wendroff scheme can be ex-
pressed as
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The nonlinear and absorption operators together form the well-
studied Burgers’ equation which can be solved numerically
using methods for scalar hyperbolic conservation laws[7] or
frequency domain techniques [9]. By assuming a periodic
plane wave solution the equation
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can be approximated by
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where M is the number of harmonics retained which also
corresponds to the size of the dense system of coupled ordinary
differential equations required to solve Burgers’ equation.
These ODE’s can be solved with standard methods such as
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Fig. 5. Nonlinear propagation. Propagated pulse (top) and the rms error
with propagation depth (bottom). The known numerical solution of Burgers’
equation is compared with the distorted time method (Lee) and nonlinear
hyperbolic partial differential equation finite difference methods. The initial
conditions for the pulsed plane wave are given in Eq. 11 with ω0T = 6, m =
3, R = 0 and N = 1, A = 0.

fourth order Runge-Kutta. The first summation in Eq. 18 repre-
sents the sum-frequency generation and the second summation
difference frequency generation.

Figure 5 compares the frequency domain pulsed plane wave
solution with the previously described time domain numerical
techniques. On the top plot the nonlinearly propagated pulse is
shown using the previously described methods. The solutions
are propagated to a value of σ = 0.5 with a nonlinearity
N = 1. The top shows the pressure waveform and the
bottom plot shows the log of the root mean square error. The
Lax-Friedrichs scheme and the distorted time solutions have
an error that increases with propagation whereas the Lax-
Wendroff scheme has a constant, if not slightly decreasing
error.

VI. CONVERGENCE

There is no analytical solution to the KZK equation but
the convergence of the combined methods can be examined
by comparing solutions for a given ∆σ with that obtained
with a highly refined grid. Figure VI shows the root mean
square error as a function of step size with a reference of
∆σ = 10−4. These curves were obtained for a first and second
order operator split on the integral form of the Crank-Nicolson
scheme with the Lax-Wendroff scheme for the nonlinearity and
a focused plane wave initial condition. The other differencing
schemes have similar convergence plots.
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Fig. 6. Convergence of first and second order operator splitting methods.
The reference step size is ∆σ = 10−4

VII. SUMMARY

Several time domain algorithms to solve the KZK equation
in axisymmetric and cartesian coordinates were described and
implemented. Results were compared with solutions for con-
tinuous focused waves and pulsed unfocused waves. The inte-
gral formulation had less phase error for narrowband pulses.
At large nondimensional depths the differential formulation
had less rms error. Time domain techniques are perhaps better
suited to model narroband pulses. In this case the differential
formulation had less phase and less rms error for all depths.
Methods for the nonlinear step were analyzed with reference
to the frequency domain solution. The Lax-Wendroff scheme
had the least amount of error. Second order operator splitting
had a faster convergence to the solution though the slope was
the same as first order splitting.
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