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ABSTRACT 

 We developed a compact, single-cell imaging system 
for measuring red blood cell (RBC) concentration from 
diluted, whole blood samples. Key element of the design 
is the integration of a microfabricated lens array with a 
commercial haemocytometer. To image large areas and 
therefore a larger number of cells, the field of view (FOV) 
can be adjusted by simply increasing the thickness of the 
haemocytometer coverslip. We used a FOV = 200 μm, 
corresponding to a resolution of 0.53 μm, to demonstrate 
RBC counting: counts obtained from our system were in 
excellent agreement with counts obtained from standard 
microscopy and flow cytometry over a range of dilution 
factors.   
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INTRODUCTION 

Red blood cell (RBC) count, quantified as the number 
of cells per unit of blood volume, is an important clinical 
test that provides critical information about a patient’s 
health status [1].  RBC in adults should be on the average 
of 4.2-6 million/μL. High RBC count (>6 million 
RBCs/μL) can be the result of a chronic condition such as 
lung (pulmonary) disease, kidney cancer, or even 
smoking. Low RBC count is a typical sign of anemia 
which can be the result of internal bleeding, leukemia, 
bone marrow failure or even iron deficiency [1-2].  

The most common methods for measuring 
concentration of RBCs in blood are based on flow 
cytometry and light microscopy. Flow cytometers, 
although extremely accurate, they are expensive, bulky 
instruments that require regular maintenance. On the other 
hand, light microscopy is an easy-to-use and cheap 
alternative that relies on the use a reusable device, called 
the haemocytometer that allows direct cell visualization. 
Haemocytometers cannot provide reliable counts as they 
suffer from human errors during the RBC counting 
process which is performed manually. Therefore a 
portable and accurate imaging system could make a 
significant contribution in monitoring pathological 
conditions that require RBC or other cell type counting, 
especially in resource-limited settings [3-5] . 

Several groups have been developing compact 
imagers for visualizing/counting biological samples over 
the last decade.  Zhu et al. [6]  demonstrated a cell phone-
based fluorescence and dark field imager. The resolution 
of their system was in the range of 10-20 microns. Heng 
et al. [7] demonstrated a compact optofluidic microscope 
with high resolution that requires the sample to be 
scanned over a specially fabricated mask. Demirci et al. 

[8-9] developed a lensless shadow imaging system for cell 
counting. 

 Here, we demonstrate a compact, high-resolution, 
optofluidic imaging system for visualizing and counting 
RBCs (Fig. 1). We call it ‘optofluidic’ because the core 
imaging unit is an array of microfabricated oil-immersion 
ball lenses. Its use is not limited to RBC counting: it can 
potentially be an ideal tool for imaging biological 
specimens in a resource limited setting or at the doctor’s 
office, replacing bulky microscopes. Our portable system 
has a footprint of 7 cm x 7 cm and a total height of 6 cm.  

 
 

Figure 1. (A) The compact imaging system. (B) Schematic 
cross-section of the μOIL chip on top of a 
haemocytometer. Scale bar in (ii), 3 cm. (C) Pictures of 
the μOIL chip (i) and the μOIL chip/ haemocytometer 
assembly (ii). Scale bars, 5 mm in (i), 1 cm in (ii).    
 
METHODS 
The μOIL System 

 Our imaging system operates in bright field 
(transmission) mode and it consists of (Fig. 1A): (i) an 
array of Microfluidic-based Oil Immersion Lenses 
(termed ‘the μOIL chip’) [10], (ii) a commercially 
available haemocytometer, (iii) a low cost 5MP CMOS 
sensor (2.2 x 2.2 μm pixel size) and, (iv) a blue LED. The 
haemocytometer is thick glass slide which forms a 100 
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μm deep cell counting chamber (known as the Neubauer 
chamber) when a glass coverslip is placed on top of it. A 
custom-made plastic housing was manufactured to secure 
all those components in place except the haemocytometer 
that is manually inserted into the housing from the side. 

The haemocytometer containing the blood sample is 
illuminated by the LED (centered at 470 nm) from below. 
The transmitted light is collected by the high numerical 
aperture (NA) lenses of the μOIL chip and is focused on 
the CMOS sensor that is placed 3-4 mm above the μOIL 
chip (Fig. 1B). To achieve a sharp, well-focused image, 
the exact distance between the μOIL chip and the CMOS 
sensor is manually adjusted using a set of screws. Finally, 
the CMOS sensor is connected to a computer that acquires 
and analyzes the image.  

The μOIL chip (described in [10]) consists of 16 
sapphire, ball lenses (1 mm in diameter, refractive index 
of 1.77) integrated on top of a 4x4 array of oil-filled 
microwells (Fig. 1C (i)). The oil/ball lens assembly forms 
a doublet lens and resembles the hemispherical front lens 
of an oil-immersion objective. The μOIL chip is placed 
directly on top of the haemocytometer (Fig. 1C (ii)). To 
achieve a good contact between the μOIL chip and the 
haemocytometer coverslip (and therefore eliminate any 
gap between them), a flexible cable is used as a spring to 
push the μOIL chip against the coverslip. As a result, the 
distance between the μOIL chip and the sample in the 
Neubauer chamber is always fixed. 

The microfabrication of the µOIL chip is based on a 
two-step DRIE process for creating the microfluidic 
channels and the microwell array.  A 100 µm thick glass 
wafer is anodically bonded to the DRIE etched silicon. 
This extra microfbarication step has been added to the 
original microfabrication process [10] to eliminate chip to 
chip variations in the total thickness of the μOIL chip.   
 
Counting RBCs 

We performed RBC counts with fresh whole, diluted 
blood samples on a commercial haemocytometer (Hausser 
Scientific) covered with a 150 μm thick glass coverslip 
(Fig. 2A). The Neubauer chamber of the haemocytometer 
has a total volume of 6-7 μl and it has a square grid 
pattern to facilitate the cell counting (Fig. 2B).  

 

 
 

Figure 2. (A) The μOIL chip on top of the Neubauer 
chamber. Scale bar, 4 mm. (B) Schematic of the grid 
pattern that sits beneath the μOIL chip . The dark-colored 
boxes are 200 μm x 200 μm and represent the 5 regions 
where cells (red dots) are counted. 

To image the haemocytometer and count the RBCs, we 
used: (i) a microscope (Olympus-BX51WI) in epi-
illumination mode with a 50x objective (NA=0.5), 
connected to a 5 MP digital camera and, (ii) our compact 
imaging system with a field of view (FOV) of 200 μm and 
a NA of 0.54. In this case, the distance between the cells 
and bottom surface of the μOIL chip was ~250 μm (RBCs 
tend to settle at the bottom of the Neubauer chamber). In 
all our imaging experiments, we used a single lens from 
the μOIL chip for consistency in the image quality. 

Blood samples (~10 μL in volume, diluted by a 
factor of 50, 100 and 200) were pipetted into the 
haemocytometer and driven in the Neubauer chamber by 
capillary action. Images of the blood samples were 
captured from 5 different 200 μm x 200 μm square areas 
in the grid pattern of the Neubauer chamber (marked as 
dark boxes in Fig. 2B). The dilution and imaging 
procedures used in our experiments are the recommended 
ones for haemocytometer-based RBC counting [11-12].  
 
RESULTS AND DISCUSSION 
FOV, Resolution of the μOIL System 

For cell counting applications, the FOV of each lens 
in our system is an important feature as it determines how 
much blood volume (and therefore how many cells) can 
be imaged.  

 
 

Figure 3. (A) FOV and resolution versus sample/μOIL 
chip distance. The FOV is the diameter of the area that a 
single sapphire lens can visualize. (B) An image of RBCs 
as captured through our system for a sample/μOIL chip 
distance of 200 μm. Scale bar, 50 μm.  
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will significantly increase. We believe that the use of our 
system is not limited to cell imaging/counting but it can 
be expanded to imaging other biological samples such as 
bacteria, microbes, microorganisms and tissue samples as 
it provides excellent image quality that is comparable to 
the one obtained from high end microscopes.   
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