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ABSTRACT 

This work is the first investigation of a bi-state control 
technique capable of servoing on the falling edge of the 
microelectromechanical Duffing resonant bifurcation 
setpoint.  The Duffing microresonator, fabricated in an 
SOI-MEMS process, features a sharp jump in oscillation 
amplitude at the bifurcation and is, therefore, ideal for 
ultrasensitive detection of mass or stress shifts that modify 
the resonance frequency and hence the jump frequency.  
The resonator “instability tongue” is characterized to 
identify the bifurcation points as a function of drive gain.   
The control system states are set through the AC drive gain 
while operating at a fixed drive frequency such that one of 
the system states is within this instability tongue whereas 
the second state resides outside of this tongue.  The 
amplitude servo point is chosen at the maximum “on” 
amplitude prior to the jump event.  The states are driven by 
300 kHz pulse width modulation that is set much faster 
than the amplitude response dynamics and inhibits the 
system from latching off as would happen in static 
operation. 
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INTRODUCTION 

Duffing resonance featuring bifurcation behavior is 
capable of gauging small resonance changes.  These 
variations in the resonator characteristics are generally 
modified by the resonant mass or suspension spring 
stiffness.  By probing the shifts in the bifurcation point, 
sensitive gravimetric and stress detectors can be built.  
Bifurcation-based detectors provide an ultrasensitive 
approach to reveal these small changes if a control 
approach is designed to servo at the bifurcation point.  
However, the system exhibiting bifurcation behavior is 
difficult to control because of the slow time manifold the 
system trajectory has to travel before the bifurcation [1].  
The nonlinear system also suffers from hysteresis [2]-[3] 
due to the necessary nonlinearity in the device.  These two 
artifacts render the classical control possibilities difficult to 
implement.  One analog control scheme at the onset of the 
bifurcation by [4] is to observe the variance of the signal 
phase and keep the amplitude very small to avoid the 
bifurcation jump event such that the long settling time and 
hysteresis are avoided. Its implementation in a 
field-programmable gate array to observe the phase 
statistics limits its on-chip integration. An improved 
controller with vibration amplitude as the controlled 

variable is reported in [5].  The technique settles at 
relatively small amplitude of below 1.5 nm, with a low 
signal-to-noise ratio (SNR), making it unsuitable for robust 
control applications.    

This paper proposes a bi-state servo of a MEMS 
Duffing resonator that controls on the maximum amplitude 
“on” point prior to the bifurcation jump.  In addition to 
addressing the issues of limit cycling and instability, this 
new approach also achieves a high SNR with much higher 
controlled amplitude (e.g., 4.8 μm). 

 
DEVICE 

Shown in Figure 1 is the 15 µm-thick SOI-MEMS 
Duffing resonator reported in [6] as the control plant, with 
a perspective view of the lateral capacitive comb electrode 
geometry.  The capacitive combs are symmetrically placed 
on both sides of the shuttle mass; the left set serves as the 
drive electrode and the right set serves as the capacitive 
pick-off sense electrode.  The perforated shuttle mass is 
suspended by four symmetric crab-leg springs. The 
nonlinearity inherent in the system stems from the 
suspension and the electrostatic spring constants from the 
comb drive.   
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Figure 1: Optical microscope image of the Duffing 
microresonator with zoomed-in SEM views of the drive 
comb and the crab-leg spring. 

 
DUFFING RESONANCE 

The typical measured frequency response of the 
Duffing resonator is plotted in Figure 2.  This class of 
nonlinear resonator exhibits a hysteresis effect when the 
frequency is swept bi-directionally.  The polarization  
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Figure 2: Hysteresis of the Duffing resonator at Vdc,set = 
10 V and Vac = 25 mV. ↑ symbolizes the frequency 
up-sweep; ↓ is the frequency down-sweep. 
 
voltage on the moving shuttle mass is Vdc,set = 10 V and the 
AC sinusoidal drive on the lateral capacitive comb rotor is 
Vac = 25 mV.  The test is performed in a vacuum of 
25 mTorr. Unlike the harmonic resonator, the resonance 
peak bends to the right, yielding multi-valued solutions for 
one frequency value around the resonance.  On the edge of 
the bent peak (point B), a jump in the resonance amplitude 
from 4.8 μm to 0 μm occurs.  The frequency at which the 
instantaneous jump occurs is called the “bifurcation 
frequency” fB, which equals 4167 Hz for the setpoint B in 
Figure 2.  For a reverse frequency sweep, the jump 
happens at a lower frequency from 0 μm to 1.0 μm (point 
A), indicative of hysteresis effect.  The region I between 
points A and B defines the region where a large amplitude 
response occurs.  To the right of point B (region II), the 
resonance amplitude reduces to zero.  
 
CONTROLLER DESIGN 
Bifurcation Diagram 

Adjusting the AC drive voltage Vac shifts the entire 
frequency response curve in Figure 2, thus resulting in 
changes in the bifurcation points A and B.  These shifts in 
A and B are graphically represented in Figure 3, which 
defines the “instability tongue” with the locus of the 
amplitude jump points.  The right curve is the up-sweep 
bifurcation frequency (analogous to point B in Figure 2) 
showing the falling edge of the instability; the left curve is 
the down-sweep bifurcation frequency (point A).  The DC 
voltage is fixed at 10 V.  

The changes in the drive voltages modify the system’s 
effective spring constant, which affects the bending of the 
resonance curve and the regions where the system enters 
instability.  In a typical nonlinear resonator, the drive 
voltage shapes the instability tongue.  The tongue width 

measured in frequency depends on the AC drive amplitude.  
The position of the tongue along the frequency axis is a 
strong function of the DC polarization voltage. 
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Figure 3: Measured bifurcation diagram of the regions I 
(“on” state) and II (“off” state). 

 
The red dots in Figure 3 identify the states for a 

bi-state control loop.  One of the states (“on” state) is inside 
the region I which has a large amplitude response; the other 
state (“off” state) resides in region II, outside of the tongue, 
representing a low amplitude response. The two states 
center around Vac = 25 mV and have the same fixed 
frequency at the bifurcation frequency fB for the Vac = 
25 mV setpoint. The two states are then on opposite sides 
of the bifurcation point in steady-state operation. 

 
Controller Schematic 

The control loop is schematically shown in Figure 4.  
The control setpoint of the loop is chosen at point B in 
Figure 1.  The AC drive frequency and the DC bias are 
fixed to values such that the system can be moved between 
instability and stability with appropriate bi-state values of 
AC amplitude |Vac|. In the experiment, the DC bias voltage 
Vdc,set = 10 V and the AC drive frequency is fB = 4167 Hz. 
The Duffing resonator is driven by Vac whose amplitude 
and frequency are set by the pulse-width-modulator 
(PWM) output and the lock-in amplifier (LIA), 
respectively.  A transimpedance amplifier followed by the 
LIA picks up the resonator velocity amplitude | xv~ |.  The 
loop tracks | xv~ | to a fixed setpoint Vthresh.  The error output 
is fed into a PID (proportional-integral-derivative) 
controller to generate the input signal to the PWM 
representing the pulse-train duty cycle.  The output of the 
PWM generates the bi-state signal that sets the AC drive 
amplitude. 

The Vac is controlled by the feedback and rapidly turns 
the oscillation on and off at 300 kHz to achieve the servo at 
the maximum “on” point without turning off the resonator.  
This avoids the long ring-down transient needed to settle 
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Figure 4: Block diagram of the bi-state Duffing controller with an SOI resonator as the plant and off-chip electronics. 
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from the “on” state to the “off” state.  This resettling time is 
inversely proportional to the damping and is on the order of 
1 s for the resonator operated under a vacuum of 22 mTorr. 

 
RESULTS 
Instability edge 

A time-domain transient frequency chirp test is 
performed to explore the edge of the instability.  The 
frequency is swept through the bifurcation frequency (fB = 
4167 Hz).  The initial swept frequency is backed off from 
the bifurcation frequency fB so the jump can be observed.  
As the frequency approaches fB, the oscillation amplitude 
drops from 4.8 μm to a very small displacement.  The 
displacement of 1.8 μm seen in the “off” state of Figure 5 
corresponds to a small voltage output (3.0 mV) from the 
capacitive pick-off circuit (Ap in Figure 4), which is due to 
the feedthrough from the Vac drive to the capacitive sense 
comb.   
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Figure 5: Turn-off transient of the Duffing resonator.  The 
resonator is turned off when the frequency is swept beyond 
the bifurcation frequency at 4167 Hz.   

 
Turn-on Transients 

Figure 6 is the turn-on transient of the closed-loop 
controller with an initial approaching phase. During 
region (1), the resonator is off.  After (2), a sinusoidal 
voltage at 4123 Hz is applied to the resonator drive fingers, 
resulting in a step turn on of the displacement amplitude to 
a non-zero value due to the capacitive feedthrough.  The 
choice of the initial frequency ensures the resonator is 
within its “off” state (to the left of point A in Figure 2).  
Region (3) is the necessary “approach” stage when the 
resonator is turned on to the maximum displacement 
operation point (point B in Figure 2) by increasing the 
drive frequency from 4123 Hz to 4167 Hz. The PID 
controller threshold Vthresh is set in (4) after reaching this 
maximum operation point, turning on the servo, after 
which time the PWM output rapidly changes between 
0.3 V and 3.4 V, with duty cycle centered on 0.5. At (5), 
the servo is switched off by turning off Vac. The phase is 
well-defined during the time the controller is on and loses 
track of the input Vac when the controller is turned off.  
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Figure 6: Turn-on transient of the bi-state control loop. 
The drive AC voltage is turned on at 15 s, followed by an 
approach phase when the frequency is increased from 
4123 Hz to 4167 Hz.  The controller is turned on 
afterwards.  At 75 s, the controller is turned off by 
switching off Vac. 

 
Off-State Dynamics 

A detailed analysis of the dynamics on the edge of the 
bifurcation jump provides information on how fast the 
controller should switch between two states to guarantee 
successful recapturing of the “on” state.  These “off-state” 
dynamics are characterized in Figure 7 and Figure 8.   

In open-loop operation, a step change in Vac is 
introduced from 25.6 mV to 24.1 mV, at which voltage the 
resonator is not fully in the off state but rather just starting 
to turn off.  Vac is then turned back to 25.6 mV after a 
prescribed amount of time Г.  When Г is less than 
394.6 ms, the Duffing resonance is successfully recaptured 
as presented in Figure 7.  When Г is larger than 395.0 ms, 
the resonance falls back to the “off” state.  The critical 
off-state time Г at which the resonance is on the edge of 
being recaptured is 394.6 ms. 

For both figures prior to t = 0 (point F), the system 
operates at its maximum “on” state.  After point F, the 
resonator starts to turn off and provides the initial condition 
for later step turn-on (point N).  At point N, the system 
exhibits a step response due to the step turn-on in the drive 
amplitude Vac.  Depending on the length of the “off-state” 
time (the time between points F and N), the system can 
either recover from the decreased amplitude (Figure 7) or 
completely turns off (Figure 8).  The bi-state signal must 
operate at a rate much higher than the critical off-state time 
to avoid the ringing.  The recapture dynamics in Figure 7 
gauge the “slow time” (i.e. time scale that is much longer 
than the resonance period) behavior of the Duffing 
resonator and thus provide the root-locus information for 
later optimization of the PID coefficients. 

1705



0
20
40

∠
 x

 (d
eg

)

-2 0 2 4 6 8
time (s)

V ac
 (m

V
)

4

4.5

5
|x

| (
μ m

)

25.6

24.1

on on

F N

 
Figure 7: Successful recapture of the Duffing resonance by 
rapidly switching back to the “on” state. The critical 
off-state time is 394.6 ms. 
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Figure 8: Turn-off of the Duffing resonance by increasing 
the off-state time beyond the critical off-state time. The 
turn-off time is 395.0 ms. 

 
Allan Variance 

The Allan deviation of the normalized velocity 
amplitude xv~  is plotted in Figure 9 quantifying the 
stability of the loop.  The control system output is sampled 
at 14.1 Hz for 14.2 hr.  The vacuum level is maintained at 
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Figure 9: Allan deviation plot of the control system 
normalized velocity amplitude quantifying the stability. 

22–24 mTorr.  The output is normalized to the steady-state 
amplitude of 4.8 μm.  No temperature compensation is 
performed in the post-processing of the data due to the 
absence of a temperature sensor in the current vacuum 
testbench.  The minimum detectable displacement is 
0.7 nm at the integration time of 321 s.  Further 
investigation of the two minimum peaking is slated. 

 
CONCLUSIONS 

A bi-state bifurcation-based controller is successfully 
implemented to servo at the maximum “on” point prior to 
the bifurcation jump.  The operation of the control loop is 
experimentally verified using a Duffing resonator 
fabricated in a 15 μm-thick SOI process as the control 
plant.  The close-loop control avoids the necessary setup 
and ring-down time that is required to settle between the 
“on” state and the “off” state.  The bi-state servo technique 
provides a novel approach to track the bifurcation jump 
point at the maximum displacement amplitude, thus 
significantly increases the SNR compared to the 
state-of-the-art.  The capability to servo on the edge of the 
instability promotes future implementation of an 
ultrasensitive bifurcation-based mass or stress detector. 
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