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ABSTRACT 

This paper reports on a microfluidic impedance 
cytometer permitting dielectric characterization of single 
cells at frequencies up to 500 MHz. This represents a 
more than ten-fold frequency increase compared to other 
devices and enables to study both, low and high frequency 
dielectric properties in parallel. The increased range 
potentially allows for characterization of subcellular 
components in addition to the properties that are visible at 
lower frequencies, such as cell volume and membrane 
capacitance. We demonstrate the capabilities of the 
cytometer by discriminating wild-type yeast from a 
mutant, which differs in size and distribution of vacuoles 
in the intracellular fluid. The discrimination is based on 
the differences in dielectric properties at frequencies up to 
200 MHz. 
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INTRODUCTION 

Impedance spectroscopy is a non-invasive technique 
for characterizing the dielectric properties of materials 
and their interfaces. The technique has found use in areas, 
such as electrochemistry [1] and materials science [2], 
where it is used to study systems with solid-liquid and 
solid-solid interfaces. Examples of applications include 
the characterization of fuel cells [3], rechargeable 
batteries [4], and corrosion phenomena [5]. It has recently 
also gained relevance for the characterization of 
biological tissues and cells, as reviewed in [6]. The 
dielectric properties of cells reveal information on 
membrane resistance, membrane capacitance and 
cytoplasmic conductivity at frequencies below 10 MHz 
[7]. However, the investigation of subcellular 
components, such as vacuoles, can only be performed at 
much higher frequencies [8]. 

Typically, cells have been characterized using bulk 
suspensions [9], and the results, therefore, represent a 
population average [10]. A population average does not 
reveal important details of heterogeneity of individual 
cells, details, which are needed to develop mathematical 
descriptions of cellular behavior [11]. Analysis techniques 
with single-cell resolution have, therefore, become 
increasingly important to address such questions [12]. 

The combination of impedance spectroscopy with a 
microfluidic flow cytometer results in a lab-on-chip 
device, capable of label-free impedance characterization 
of single cells [14].  Cells or particles are dispersed in a 
liquid, typically an electrolyte, such as phosphate-buffered 
saline (PBS), and pumped through a microfluidic channel. 
The channel has two pairs of planar electrodes patterned 

at the top and bottom. An impedance spectroscope applies 
an AC voltage to the electrodes, which causes a current to 
flow between them. The current change upon passage of a 
cell or particle between the electrodes is differentially 
measured and then analyzed to determine the dielectric 
properties. 

Hoffman et al. demonstrated a flow cytometer, 
capable of detecting both, low and high frequency 
impedance changes produced by single cells traversing a 
sensing orifice [13]. They introduced the concept of 
opacity as the ratio of the impedance magnitude at a high 
frequency to that at a low frequency. This is useful for 
normalizing the data for cell size and position between the 
measurement electrodes as shown by Gawad et al. [15]. 
They demonstrated impedance measurements of single 
cells using a microfluidic device with coplanar electrodes. 
Their investigations of the influence of different cell 
properties on the impedance showed that the cell size 
contributes to the response at all frequencies, the 
membrane capacitance at frequencies around 1 MHz, and 
the cytoplasm conductivity at frequencies approaching 
10 MHz. An improved device with parallel facing 
electrodes was used by Cheung et al. to discriminate 
beads from red blood cells, red blood cells fixed using 
glutaraldehyde, and red-blood-cell ghosts [16]. They 
analyzed the impedance spectrum at two frequencies 
simultaneously, and found a difference in opacity between 
normal and fixed red blood cells, as well as a difference in 
phase between normal cells and ghosts.  Schade-
Kampmann et al. used an impedance device for 
discriminating different cell types, as well as for 
analyzing viability and apoptosis of Jurkat cells [17]. 
Holmes et al. used the method for discriminating different 
leukocytes in human blood [18]. They were able to make 
a differential white blood cell count with results that 
correlated well to those of commercial blood analyzers.  
Impedance work of other authors has been reviewed by 
Sun et al. [19]. 

In this paper, we report on a novel microfluidic 
impedance cytometer that covers a frequency range from 
DC to up to 500 MHz. The increased frequency range will 
allow for characterization of subcellular components, such 
as vacuoles and cell nuclei, in addition to the properties 
detectable at lower frequencies. The cytometer consists of 
a custom-built impedance spectroscope, combined with a 
simple microfluidic device with parallel facing electrodes. 
The impedance spectroscope is based on a flexible FPGA 
platform, which interfaces to the microfluidic device and 
features high-speed data converters and a trans-impedance 
amplifier, built from off-the-shelf components. We 
demonstrate the capabilities of the cytometer by 
discriminating wild-type yeast cells from that of a mutant, 
which differs in size and distribution of vacuoles. The 
discrimination is based on the difference in dielectric 
properties at frequencies up to 200 MHz. 
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The microfluidic device (Figure 3) has been 
fabricated as described in [20]. It consists of two glass 
plates with 200-nm-thick and 18-µm-wide platinum 
electrodes. The two plates are bonded face to face using a 
10-µm-thick lithographically structured layer of SU-8 
3000 as spacer that defines the channel dimensions. The 
final channel cross-section in the sensing region is 
40×10 μm². 

Two different strains of yeast cells (S. cerevisiae, 
Euroscarf) were used: a B4741 wild-type strain, which 
has 1 to 4 normal-size vacuoles, and a B4741 
vac8Δ::kanMX strain, which has 2 to 10 small vacuoles. 
Cells of each strain were separately dispersed in PBS 
together with 5-μm polystyrene beads (Life Technologies 
Ltd, UK) and driven through the channel in the 
microfluidic device by means of a neMESYS syringe 
pump (Cetoni GmbH, Germany) at a flow rate of 
2 μl/min. 

The impedance was analyzed within a frequency 
range between 500 kHz and 200 MHz. The time-domain 
signals from the lock-in amplifier were recorded using 
custom software (Zurich Instruments AG, Switzerland). 
The complex peak-to-peak voltage signals of beads and 
cells were then extracted using MATLAB (MathWorks, 
Inc., USA). Opacity values were calculated by 
normalizing the results at each frequency with the cell 
volume measured at 500 kHz. 

 
RESULTS AND DISCUSSION 

The opacity magnitude spectrum (Figure 4a) shows 
relatively constant values for the beads at all frequencies. 
This indicates that their impedance, compared to the 
surrounding medium, is independent of the frequency, 
which is expected, since beads consist of a uniform low-
conductivity material. In contrast, the opacity of the cells 
decreases with increasing frequency as a consequence of 
their complex internal structure, which includes 
organelles, such as nucleus and vacuoles that are 
separated from the cytoplasm by membranes. Membrane 
capacitances become increasingly transparent with 
increasing frequency so that the high-conductivity media 
of the cytoplasm and, at higher frequencies, of the 
organelles contribute to the dielectric properties. A 
discrimination of the two yeast strains becomes possible 
at frequencies beyond 50 MHz, as a consequence of the 
presence of larger vacuoles in wild-type cells. Vacuoles 
have a large concentration of charged proteins and 

feature, therefore, higher conductivity values, which 
results in lower opacity values. The opacity phase 
spectrum (Figure 4b) also shows a difference between the 
two strains. The wild type shows a slightly larger phase 
shift, due to a larger capacitance, which is, however, not 
pronounced enough for reliable discrimination. 

 
CONCLUSIONS 

We have presented a novel microfluidic impedance 
cytometer, capable of simultaneous analysis at four 
frequencies between DC and 500 MHz. This represents a 
more than ten-fold increase in the frequency range in 
comparison to other devices. We have demonstrated that 
the instrument can measure relevant impedance 
characteristics for single cells as well as for beads up to a 
frequency of at least 200 MHz. We have shown that it is 
possible to discriminate between wild-type yeast and a 
mutant strain, which differs only in subcellular 
morphology, namely the size and distribution of vacuoles. 
The discrimination was based on opacity values at 

Figure 3: Micrograph of the microfluidic device. The
electrodes are 18 µm wide with a center-to-center spacing
of 36 µm. Channel width is 40 µm in the sensing region. 

Figure 4: (a) Opacity magnitude spectrum for the two 
yeast strains, wild-type and vac8Δ::kanMX, as well as 5-
μm beads. The beads were measured together with the 
wild-type (1) and vac8Δ::kanMX strains (2). The two 
strains only differ in subcellular features, i.e, the number 
and size of vacuoles, and can, therefore, only be 
discriminated at frequencies higher than 50 MHz. 
(b) Opacity phase spectrum for the two yeast strains, 
wild-type and vac8Δ::kanMX, as well as 5-μm beads. The 
results show that the phase information alone is 
insufficient to discriminate the two strains at any applied 
frequency. 

(b)

(a)
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frequencies above 50 MHz. 
Current work includes the use of the high frequency 

capabilities of the cytometer to characterize yeast cells 
with other mutations that affect their subcellular 
morphology. 
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