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ABSTRACT 

This paper reports on development of AFM-like ac-
tive CMOS-MEMS conductive probes and arrays. The 
active probes are aimed for scanning tunneling micro-
scopy (STM) imaging and field-emission (FE) assisted 
nanostructure formation. Two kinds of STM tip ap-
proaches compatible with CMOS-MEMS process — 
Electron-Induced Beam Deposition (EBID) and Spindt 
tip method — are presented, and their functionality is 
examined. Atomic-level resolution is achieved using tips 
in an ultra-high vacuum (UHV) STM. The MEMS probe 
working in ambient STM is also demonstrated. The active 
probe is equipped with a transimpedance amplifier (TIA) 
for tip FE current measurement around a nominal value of 
1 nA. 
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I. INTRODUCTION 

Scanning Probe Microscopy (SPM) techniques, such 
as Scanning Tunneling Microscopy (STM) and Atomic 
Force Microscopy (AFM), are powerful tools to study 
local surface properties with atomic resolution. SPM also 
allows nano-scale modification of surface topography, 
such as the famous IBM individual atomic manipulation 
[2]. These developments motivate SPM-based bottom-up 
tools for nanofabrication, where probes are mechanically 
moved across the surface, and the nano-patterns are 
formed by highly spatially confined reactions, physical or 
chemical, depending on the specific sample materials, 
between the stylus and substrate, with the smallest feature 
size down to 4 nm [3-4]. In these applications, however, 
nanofabrication is discrete and of low throughput. Rapid, 
direct fabrication of nanostructures becomes possible by 
implementing a batch fabricated AFM-like nanofabrica-
tion probe array (e.g., the IBM ‘Millipede’ probe array for 
data storage [5]).  

In our work, we envision STM-based nanofabrication 
using an array of probes. This approach makes use of 
tip-directed, field-emission (FE) assisted reaction to lo-
cally modify the materials surface (e.g., by oxidation, 
deposition, or removal) where the nanostructure geometry 
is controlled by FE beam size, and can be real-time ex-
amined via in situ SPM imaging using the same tip. 
Above all, a compact multi-probe array offers the possi-
bility for parallel device fabrication: each probe has its 
own servo control and thus is individually addressable, 

which is of greatest significance in terms of allowing 
sub-nanometer control for each tip to substrate gap. 

For this independent probe control, on-chip servo 
circuitry approach has been adopted [6], to significantly 
relieve the need for large numbers of off-chip intercon-
nections and the associated parasitic effects. This is par-
ticularly important when operating in an ultra-high va-
cuum system, where only a handful of electrical inter-
connections are possible (6 for our system). In our work, a 
CMOS-MEMS process is used to fabricate the probe 
array. This technique promises to support a high level of 
integration on a single chip with actuation, sensing and 
feedback control circuitry as well as the mechanical 
structure, and hence greatly reduces the external wiring. 
Further, while most probe array research up to now is 
limited to AFM mode, the CMOS-based multi-probe 
array is intended for STM application featuring an order 
of magnitude smaller scale manipulation than AFM, and 
where the MEMS integration with CMOS minimizes the 
design complexity of external controller and system setup 
in conjunction with a traditional STM.  

The present work describes an improved design of 
active CMOS-MEMS conductive probes and probe ar-
rays. Our last designed probes [1] suffer snap-in issues 
during STM imaging due to strong attractive electrostatic 
(ES) forces between the probe cantilever and the scanned 
surface. This is addressed by having a stiffer probe 
structure and adding electrostatic shielding. Nanome-
ter-sized tips are integrated on active probe array and are 
applied in an STM system for imaging. A preliminary 
on-chip TIA for current measurement is also designed and 
characterized.  

 
II. PROBE DESIGN AND CHARACTERIZATION 
Probe and Array Design 
The designed active CMOS-MEMS probe array is shown 
in Fig. 1. A 1-D array of 5 cantilevers is designed on one 
side of the 2.4 mm by 2.4 mm chip (Fig. 1(a)). The probes 
are designed identically for the purpose of matching the 
curl-up height among the probe array after structure re-
lease of the residual stress. Each probe is equipped with 
vertical z-axis electro-thermal (ET) actuation and thermal 
isolation structures (TIS) for high driving efficiency. 
Each probe has a separately driven actuator dedicated 
bond pads. The 5 µm-diameter circular tip platform made 
from top-most CMOS metal-4 (m4) provides a flat area 
on which a platinum tip is located. For the current gener-
ation of probes, one on-chip TIA is connected to a single 
probe to test its current sensing ability.  
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Fig. 1:  Active probe array design: (a) 5x1
Probe top view; (c) Probe tilted view; (d) Pro
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where the two main snap-in forces that can cause inelastic 
instability, the Van Del Waals force and ES force, are 
proportional to tip radius and related to tip shank shape 
[8]. With a probe stiffness of 40 N/m, necessary tip radius 
is calculated to be smaller than 20 nm. Here we present 
two approaches of fabricating a nanometer-sized plati-
num tip on CMOS-MEMS probes. The focused Elec-
tron-Induced Beam Deposition (EBID) method has great 
precision and is suitable for rapid prototyping; the Spindt 
tip process is able to batch fabricate tips and will be ne-
cessary for large probe arrays. 

 
EBID Tip Process 

Focused EBID is a widely used technique for fabri-
cating nanostructures of various kinds, such as the tip end 
of tungsten cold field emitters, nanosoldering and nano-
structuring, and plasmonic gold nanopatterns for optical 
application [9-10]. We applied this approach to make 
STM probes on CMOS chips.  Fig. 5(b) shows a series of 
EBID Pt tips made with different e-beam scanned area. 
Tips with radius of 10 nm are obtained. To obtain a high 
aspect-ratio tip, we adopt a “layer-by-layer” technique: a 
circular Pt layer of several µm2 is first deposited on the 
m4 tip platform followed by a series of depositions on the 
same location, each with gradually shrinking e-beam 
scanned area, also illustrated in Fig. 5(b).  

 

 
 
Spindt Tip Process on MEMS Probes 

An initial Spindt tip process was reported in [1]. A 
Spindt nickel tip is firstly made on the Al m4 tip platform, 
and Pt coating of tips is performed after structure release. 
Ni tips have been made with tip radius down to 10 nm. 
However, the subsequent dielectric oxide etching blunts 
the tips, but with different severity depending on the etch 
approach. The original 4-5 hr long RIE oxide in a Plas-
maTherm 790 system resulted in substantial milling and 
dulling of the tip (Fig. 6(b)). Advanced Oxide Etch (AOE) 
in an STS ICP system requires 30 to 40 min to etch the 
9 µm thick CMOS dielectric stack. The resulting Ni tip 
sharpness is thus little changed in AOE (Fig. 6(a)). 
However, all of the AOE tips were detached after the 
following Si DRIE MEMS release etch. The Ti adhesion 
layer between nickel tip layer and CMOS aluminum is 
attacked by the SF6 DRIE plasma. A different adhesion 
layer, such as chromium, must be used in a future mod-

ification to the process that is expected to lead to viable 
batch-fabricated tips.  

 

 
 

For Spindt tip functionality examination in STM, a 
passive MEMS probe was prepared, the procedures 
summarized in Fig. 7. The probe will have no pull-in 
issue thanks to the stiffness of the 300 µm-thick silicon 
cantilever structure.  

 

 
 

IV. STM IMAGING 
The passive MEMS probes with Spindt tips are tested 

in an RHK UHV STM system. The imaging sample is a Si 
(100) 2×1 reconstruction surface. Atomic-level resolution 
imaging was obtained, as shown in Fig. 8, where the di-
mer rows are clearly observed with the ones on the adja-
cent terraces perpendicular to each other. 

 

 
 

 
Fig. 8: STM image of Si (100) via test probe. Dimer rows on 
adjacent terraces are perpendicular to each other. 

5 nm 

 
Fig. 7: Test probe for Spindt tip verification: (a) Probe 
cross-sectional schematic; (b) SEM probe structure after 
MEMS processing; (c) Enlarged SEM of Spindt tip 
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Fig. 6: Spindt tip after (a) STS AOE; (b) PlasmaTherm RIE. 
Inserted SEMS show the tips before oxide etching. 
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CMOS-MEMS active probes with EBID tips are also 
tested in an RHK STM, but in ambient conditions. As the 
chip holding the active probe is wider (2.4 mm) then that 
of commercial AFM tips (1.5 mm), it cannot be inserted 
into scan head using the exchange holder in UHV, and 
must be mounted manually in ambient. Fig. 9(a) is the 
STM imaging on highly ordered pyrolytic graphite 
(HOPG). The AFM-like MEMS probe scans successfully 
in STM mode, with the terrace on the surface resolved. 
Fig. 9(b) shows an I-V characteristic of the Pt-HOPG 
junction: a linear voltage-dependence for small voltages 
and an exponential characteristic for larger voltages. 

 
A test involving MEMS probe actuation in STM 

mode was carried out on a Veeco SPM system in air. 
(Currently, the RHK STM system has just one electrical 
connection that is needed for tip current. The Veeco 
enables multiple connections.) The active probe is 
mounted on a modified probe holder with four signal 
communication lines connected outside: tunneling current 
drawn out to home-made TIA installed on Veeco, ampli-
fied voltage fed back to system control-loop, the probe 
actuation drive line and the shielding line fixed to sample 
voltage. The MEMS probes with EBID tips work nor-
mally in the Veeco STM without actuation, with set cur-
rent varying from 300 pA to up to 20 nA.  

 
V. CONCLUSION 

An active CMOS-MEMS array of five probes is 
successfully fabricated with adequate stiffness of 36 N/m 
and 1.6 µm stroke to handle STM operation in air without 
experiencing snap-in. The probe actuator thermal cut-off 
frequency of 370 Hz is low for tip-based nanomanufac-
turing applications, however this bandwidth can be in-
creased in future closed-loop operation at the expense of 
more power.  EBID is good for rapid prototyping sharp Pt 
tips, made down to 10 nm radius, on the CMOS-MEMS 
probes. The MEMS tips work properly in both UHV and 
ambient STM systems, and atomic resolution imaging is 
obtained in UHV system. Probe actuation involvement in 
real-time STM imaging is work in progress. An off-chip 
external feedback loop is being designed, and will be 
co-work with on-system control loop to demonstrate si-
multaneous imaging/writing of parallel active probes. 
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Fig. 9: (a) Ambient STM image of HOPG using the
CMOS-MEMS probe with an EBID Pt tip. (b) I-V characteris-
tic curve of the Pt tip – HOPG junction 
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