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Abstract – In this paper, we present useful modeling 
procedures intended to characterize and optimize MEMS 
resonator-filter designs.  We address  two major areas: (1) 
the impedance of the resonators as a function of frequency, 
assuming a given damping value, and (2) the numerical 
calculation of resonator Quality factor (Q) due to known 
damping mechanisms.  The impedance calculation 
procedure is targeted towards piezoelectric MEMS 
resonators, while the Q calculations are more general.  We 
show how these modeling approaches have been used to 
design and optimize our piezoelectric resonator for high Q 
and low impedance in the GHz frequency range. 
 

I.  INTRODUCTION 
 

We report on the development of an acoustic 
piezoelectric MEMS resonator designed for high Q and 
low impedance in the ~700 MHz – 1.2 GHz frequency 
range. Processing of the aluminum nitride resonator is IC-
compatible, offering the potential for integration in 
transceiver applications.  Additionally, since the resonant 
frequency is defined by the length of the resonator, large 
arrays of resonators with different frequencies can be 
fabricated on one chip, offering the potential for more 
complex filter designs or fast frequency hopping 
applications. 

The resonator is a longitudinal-mode, 
piezoelectrically-actuated device consisting of a sandwich 
of metal/aluminum-nitride/metal (Figure 1). It is 
suspended above a gap by two tethers. The device is a one-
port component, where top and bottom metal electrodes 
both actuate the resonator and sense its response.  

The resonator geometry, materials, and fabrication 
process are all designed with careful attention to the 
resulting quality factor and the electrical impedance of the 
device.  To this end, new modeling and characterization 
approaches have been developed to quantify the resonator 
performance and optimize designs.  The modeling results 
are presented, and generic methodologies are outlined for 
the benefit of future designs.  Resonators are currently 
being fabricated so that detailed model predictions and 
optimizations can be experimentally verified.   

 
II.  Frequency Response Function 

 

Coupled Piezoelectric-Mechanical Equations 

The resonator performance as a filtering element is 
best evaluated by studying its impedance over a wide 

bandwidth of frequencies.  The specific modeling goal is to 
develop an electrical frequency response function (FRF) 
using a finite-element (FE) based state-space model.  The 
FRF is compared to analytical solutions of the simplified 
beam equations for a single resonance.  The FE based 
approach has the benefit that the effects of other modes, 
fabricated asymmetries, and electrode placement can be 
evaluated thoroughly, which is not true of analytical 
models. 

In developing the device impedance model, we begin 
with the (lossless) coupled mechanical-piezoelectric 
equations: 

(1)  
T

eucu    

(2)  0ue  

where u is the displacement vector and  is the scalar 
potential.  (A complete list of variables is included in the 
Appendix).  Equation (1) is based on force balance in the 
bulk, and boundary conditions capturing the size, shape, 
and support geometry must be applied.  Equation (2) is 
based on Gauss’s Law 0D  in a source-free material.  
In our case, where electrodes coat two boundaries, either 

fixed potential  or fixed charge (
sn Dˆ ) conditions 

must be applied.   

Figure 1: Schematic of MEMS piezoelectric longitudinal 

bar resonator design.  For dimensions shown above, the 

AlN bar has a resonant frequency of 780 MHz. 
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The electrostatic potential can be written as a 

superposition of solutions: 
)(u
which solves equation (2) 

with zero boundary conditions, and 
)(BC

 which solves 

equation (2) with no piezoelectric term (i.e., Laplace’s 
equation) with fixed potential boundary conditions.  In 
both the analytical and FE based models, we make the 
simplifying assumption that: 

(3)  
)()()( BCBCu
 

This says that the potential is driven primarily by the 
applied voltage and not by the mechanical response.  

)(BC
 drives the mechanical equation, so the piezoelectric 

effect is still included1. For isotropic permittivity, the 
resulting un-coupled system is: 

(4)  
)(BCT

eucu    

(5)  0)(2 BC
 

The mechanical boundary conditions reflect the free-free 
bar geometry of our design.  The electrical boundary 
conditions have 0  on the bottom electrode and 

inV , the applied voltage, at the top electrode.   

Although an exact solution to (5) should include 
fringing fields, for small gap-to-area )/( WLh ratio, a 

good approximation is:  

(6)  hzVin

BC /)(
  

This 
)(BC

is used as the driving force in (4).   

Although this force has a simple symmetry, it can still 
excite a multitude of mechanical modes.  The linear 
combination of excited modes can be calculated, and the 
output current is calculated by: 

(7)  
)(BC

ueD  

(8)  
electrode

out dADQ  

(9)  outout QI  

  
Frequency Response Function: Methodology 

We have found that the use of a modal state-space 
model for (4), when applied to (7)-(9) leads to a simple 

outin IV /  FRF.  The first part of the procedure derives a 

standard mechanical (force-displacement) FRF as follows: 
 

(a) Use any FE package to extract eigenvalues and 
eigenvectors of the bar. 

                                                 
1 It can be shown that (3) is a good first order 

approximation [1].  The effect of the approximation is to 
neglect piezoelectric stiffening, which shifts the 
mechanical frequency slightly higher.  

(b) Choose a suitable set of eigenvectors and eigenvalues. 

(c) Construct the matrix , where the columns i are 

eigenvectors.   (Optional: Eliminate any non-essential 

physical degrees of freedom rows in .)  

(d) The transformation of any state from physical 
displacement (u) to modal amplitudes ( ) is then:   

)(),( ttxu . 

(e) The mode amplitudes satisfy:   

iiiiii F
~

2 2
,  

where iF
~

 is the force on the i-th mode, and i  is a 

modal damping, assigned such that iiQ 2/1 . 

(f) With the following substitution: 

 

(g) equation (e) can be written as the first order system: 
(note [I] below is the identity matrix)  

FBA         where: 

2

0
2

I
A      TB

0
 

To go back to standard physical coordinates, 

Cu   where   0C  

(h) The FRF for the modal amplitudes is solved as:   

)()( 1
FBAIj . 

(i) Finally, the FRF for the displacements is: 

)(),( FHxu  

with:   BAIjCH
1

 
 

Thus, given only the eigenvalues and eigenvectors of 
interest, a mechanical FRF is found.  The procedure (a)-(g) 
is familiar in mechanical engineering [2] for formulating 
state-space models.  This paper contributes an extension of 
the familiar method to include piezoelectric effects, as 
follows. 

To get the current-voltage FRF, the force will be 

written in terms of inV , and the output current is calculated 

from the charges induced by the linear combination of 
modal amplitudes.   

For piezoelectrics, the force is related to applied 
potential by: 

(10)  
T

electric eT  

2E112.P

TRANSDUCERS ‘03
The 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, June 8-12, 2003

0-7803-7731-1/03/$17.00 ©2003 IEEE 842



 

In our models, we use (6) for the potential and take the 

force at every node to be the element area ( eA ) multiplied 

by the electric stress.  For our models, then, we have: 

(11)  
T

in

T

e hVeAF /00  

This can be directly substituted into (h) or (i).  
 The output current is calculated from (7)-(9).  
According to (7), the strain, rather than actual displacement 
is needed.  A matrix operator, [Q], is constructed to find 
the strain vector from a displacement vector.  In addition, 
the output charge is computed from a sum over the 
electrode area.  For a given geometry, a matrix operator, 
[S], sums the displacement charges calculated only at the 
electrode nodes and takes the component perpendicular to 
the electrode area.  Using these two constructed matrices, 
(7)-(9) combine with (h) to give the total charge: 

(12)  )(FHQeSQout  

Applying (9), we write: 

(13)  inout VYI  

where 

(14)  
TT

e heAHQeSjY /100  

Thus a set of matrix operations, based on the 
eigenvectors and eigenvalues of the mechanical system, is 
used to construct an electrical FRF.  Since the quantities 

SQ  and ,,,,  must be available, we found 

it convenient to construct the entire FE solution by hand.  
The software chosen was Mathcad, which is not optimized 
for complicated matrix inversions.  However, the ease of 
use, combined with the fact that our geometry and desired 
mode could be modeled well with <100 nodes, allowed this 
choice.  We compared the frequencies and mode shapes to 
those obtained with finer meshes in commercial packages, 
and found that the solutions matched to well within 10%.   

 

FRF Results on RF Longitudinal Bar 

Figure 2 shows the calculated impedance magnitude, 
|Z|=|Y-1| versus frequency.  The magnitude is given in 
Ohms, for a 1 Volt input and assuming a modal damping 
corresponding to Q=104.  The desired longitudinal 
resonance mode is number 16 and falls at 780 MHz.  At 
resonance, the impedance drops down to approximately 
200 Ohms (this value scales inversely proportional to Q).   

Continuous beam equations with piezoelectric 
coupling have also been solved to find the Butterworth-
van-Dyke circuit parameters at the longitudinal resonance.  
The details are not derived here, but are similar to those of 
many authors, including [3].  Although analytical solutions 
yield design intuition, the advantages to also developing 
the FE-based FRF are many – it takes into account all 
desired modes, covers a wide bandwidth, accounts for the 
electrode geometry and mode symmetries, and can include 
any complicated resonator geometry.  

In the current design, the FE model was used to 
confirm that the electrode configuration was optimized for 
actuating and sensing the longitudinal mode, which is 
apparent in Figure 2.  Although there are 15 lower 
mechanical modes, the desired longitudinal mode is the 
first to appear in |Z( )|.  (The nearest resonance in the 
FRF, not shown in Figure 2, is 18% higher in frequency).  
In addition, we explored how robust the design was to 
process imperfections such as sidewall angles.  Figure 3 
shows impedance plots for 5o and 30o sidewall angles.  For 
reference, our non-optimized dry etches of the Aluminum 
Nitride resonator bar have yielded sidewall angles of less 
than 15o, and final angles of less than 5o are realistic.  From 
Figure 3, we see that the effect of sidewall angle is to 
introduce a lower mode response.  However, the 
impedance amplitude of the spurious mode remains almost 
an order of magnitude higher than the longitudinal mode, 
even for a large 30o sidewall angle.       

 

Figure 2:  Impedance FRF, based on FE state space 

model.  Grey line shows analytical model results. 

Figure 3: Impedance FRF calculated from FE models. 
The effect of sloping the (0.5 um thick) sidewalls, due to 

processing, is explored.   
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III. THERMOELASTIC DAMPING 

SIMULATIONS 
 

Both analytical and FE-based impedance models are 
derived assuming a given Q value.  In the FE model, we 
assigned a modal damping that was not connected to any 
particular physics.  In the analytical beam solutions, we 
used a viscous damping. The resulting Q value and 
material viscosity ( ) are related by [3]: 

(15)  ofEQ 2/  

with E as Young’s modulus and fo as the resonance 
frequency.   For viscous damping, this relationship turns 
out to be true regardless of the mode shape or resonator 
geometry, although they are accounted for in fo.    

In most real physical systems, the material damping is 
not well described by a viscosity term.  A more useful 
model is the standard anelastic model, where the 
constitutive stress-strain relationships are coupled to 
another internal degree of freedom.   One of the most 
dominant mechanisms under study today in the MEMS 
resonator design area is thermoelastic damping [4-5].  This 
is the loss of energy through dissipative thermal currents, 
which are induced by mechanical strains.  The coupled 
mechanical-thermal equations are [6]: 

(16)  Tcucu  

(17)  ucov TTTC  

Although analytical solutions to (16)-(17) are 
available [4,7-8], they can be obtained only for idealized 
geometries.  The analytical approaches simplify the 

equations and solve for a subset of eigenvalues i and 

eigenvectors 
i
, with Q calculated by: 

(18)  iiiQ Im2/Re  

If an extra degree of freedom, temperature, is 
included at every node, then equations (16)-(17) can also 
be solved using a standard complex eigenvalues analysis.  
We have identified the software package Femlab®2 as a 
useful platform for this analysis.   

In the current study, the RF resonator geometry is a 
3um wide by 6um long by 0.5um thick bar.  Short tethers 
are included in the simulation.  The end face of each tether 
is mechanically fixed, so that displacement is set to zero.  
All boundaries are assumed to be thermally insulated.   

With these conditions, Femlab is used to mesh the 
geometry and perform the eigenvalue analysis.  Since 
thermal loss is included in the model, the solutions are 
complex, and (18) is used to calculate Q. 

The eigenvectors contain relative spatial amplitudes, 
as well as the relative temperature at each node.  Figure 4 

                                                 
2 FEMLAB, by Comsol, Inc, is a general purpose partial 

differential equation solver. 

shows frames from the longitudinal mode of interest.  The 
mechanical component of the eigenvector is represented by 
the deformation of the bar, while the thermal component is 
represented by the shading.  As the bar compresses, it 
heats, with larger temperature amplitude in the center.  As 
the bar stretches, it cools.  The simulations yield  
Q=32,000 at 860 MHz3 for Aluminum Nitride.   

This prediction is a powerful tool in optimizing a high 
Q resonator design, since the effects of material parameters 
and detailed geometry variations (such as the presence of 
anchors, fillets, 3-D structure, etc.) can be simulated.  In 
addition, complicated mode structures can be difficult to 
study analytically.  For example, a torsional wave in an 
infinite medium should not result in thermoelastic 
damping.  However, insightful work by Houston et al. [9] 
considered torsion-type modes in finite geometries and 
found that the degree of flexural motion associated with the 
mode could be calculated and used to estimate the quality 
factor due to thermal losses.  The FE eigenvalue analysis 
can also be used to study this flexural participation effect. 

We compared the longitudinal bar Q simulation 
results to analytical models for thermoelastic damping.  A 
rough estimate for the longitudinal mode Q can be obtained 
using Zener’s formulation, which is nicely outlined in [10].  
This analytical approach essentially identifies the 
uncoupled thermal and mechanical eigensolutions first. 
The coupling is implemented by identifying the dominant 
thermal mode that is driven by the strain distribution 
associated the mechanical resonance of interest. The 
thermal eigenvalue corresponding to this dominant thermal 
mode is identified as the characteristic damping time.  In 

                                                 
3 Note that the frequency is higher than the results in 

Section II.  Those simulations included the effective 
mass of the metal electrodes, thus lowering the 
frequency, and the Femlab simulations do not.   

Figure 4: Frames showing thermoelastic damping 

longitudinal eigenmode solutions from Femlab. 
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our longitudinal bar (length L), this thermal time constant 
is: 

(19)  vCL
2

 

The corresponding Quality factor is [10]: 

(20)  
22

2
1

1v

o

C

TE
Q  

The analytically calculated resonant frequency is: 

(21)  E

L
f o

2

1  

For an aluminum nitride bar of length 6um, the above 
formulas give Q=52,000 at fo=833 MHz.  The simplistic 
calculation of our mode frequency is different from 
simulations by about 3.5%, which is to be expected.  The Q 
value, however, is about 1.6 times higher than the 
simulation result.   

Given the ambitious design goals of Q>104, including 
all damping effects, accuracy in this prediction can be very 
important.  This necessitates some verification of the 
simulation approach.   A better case study for this 
verification is a flexural mode resonating beam, since 
much more rigorous analysis and Q formulas are available 
for this mode.  In reference [4], Lifshitz and Roukes 
provide a relatively rigorous solution to the coupled 
thermoelastic beam equations of flexural modes. The 
approximations made and boundary conditions used are 
clearly stated.  We have used Femlab to simulate the 
idealized beam (isotropic, made of silicon, with no 
anchors, etc.) with mechanically fixed and thermally 
insulating boundaries.  The approximations and boundary 
conditions of the analytical model were implemented in 
detail. This simulation gave resonant frequencies and Q 
values that matched [4] to within 8%.   

The results of the comparison are shown in Figure 5.  
To explore the thermoelastic effect, Q calculations are 
presented over a range of frequencies.  Frequency is varied 
by changing the beam width while holding the length-to-
width ratio fixed to 10. Thus the fundamental mode 
frequency is inversely proportional to beam width in this 
experiment.  Given the large dynamic range covered in the 
plot together with the small percent error, it is difficult to 
see a difference at all.  One of the more interesting details 
observed in conducting this verification was that the 
analysis used a simplification that temperature flow would 
be primarily across the flexing beam.  (Thus T2  was 
replaced by 22 / yT ).  This makes the system more 

tractable. However, we observed that when we did not 
include this assumption in the simulation, the deviation 
between the simulated Q and the calculated Q was 
systematically large.  The deviation grew from only 5% 
near the Debye peak to as much as 70% at lower 
frequencies (larger beam widths in Figure 5).  These 

observations help to verify the ability of the simulation to 
reproduce thermoelastic effects in a model system, while 
they also reinforce the value of using a fully 3D physical 
model.   
   

V.  SUMMARY AND CONCLUSIONS 
 
 A MEMS piezoelectric resonator has been designed 
for operation in the GHz frequency range.  The design 
goals of small size, Q>104, and impedance at resonance 
compatible with a 50  environment are challenges that 
were addressed using rigorous modeling tools.   

Our contributions to this area include an FE-state 
space model that obtains an electrical impedance FRF over 
a wide range of frequencies and can include an arbitrarily 
large numbers of modes.  The FRF obtained on our RF 
resonator showed that the choice of electrode geometry 
appropriately isolated our longitudinal mode in the 
electrical transfer function.  We were also able to identify 
the effects of process imperfections on electrical 
performance so that we can set appropriate process 
specifications.  Given the impact of the obtaining the 
electrical FRF, we are currently attempting to automate this 
using Femlab (in a manner similar to the approach outlined 
in section IV).  Coventor is also currently developing a 
product targeting piezoelectric MEMS.   

We have shown that, given a physical model for the 
damping in a MEMS resonator, simulations can be used to 
calculate the Quality factor.  The case we studied, 
thermoelastic damping, is general in the sense that the 
mechanical constitutive relations for the material are 
coupled to another internal degree of freedom, in this case 
temperature.  We showed how a complex eigenvalue 
analysis is used to calculate the Q, and we also showed 
eigenvectors of the resonant mode, which provides 
additional intuition.  We note that this procedure will work 

Figure 5: Quality factor of a thermoelastic beam in 
fundamental flexural mode.  Length-to-width ratio is 

fixed to 10; thus frequency is inversely proportional to 

beam width in this plot. 
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well for any standard anelastic damping model for which 
the parameters and boundary conditions can be known.  
The case studied, thermoelastic damping, is of primary 
interest to the MEMS community.  We provided a validity 
check for the simulation by comparing to rigorous 
analytical models of flexural modes.  We then applied the 
tool to cases that are not as accessible analytically, 
including our own longitudinal mode.  We continue to use 
this simulation approach to study the detailed effects of 
geometry and materials choices in optimizing our RF 
resonator for high Quality factor.   
 
 

APPENDIX: VARIABLE DEFINITIONS 
 
A list of variables, the SI units, and the vector/tensor 
dimensional structure used in this text is included below.   
 

m. 0.5  essBar thickn h  

m. 3Bar width  W  

m. 6 Length Bar  L  

resonator ofFactor Quality  Q  

z)y, x,:3 (example, freedom of degrees spatial n  

 vector.nx1  meters. nt,displaceme u  

 vectorsnx1 ofmatrix  nx1 u  

matricesnxn  ofmatrix nxn   N/m. stiffness, c  

matrices nx1 ofmatrix  nx1 uc  
3kg/m density,  

matrices. nx1 ofmatrix nxn       

  .C/m ts,coefficien ricpiezoelect 2e
 

F/m. constant, dielctric  

Volts. age,input volt inV  

 vectornx1  .C/m density, chargent Displaceme 2D  
2C/m density, charge Surface s

 

C electrode,on  chargeOutput  outQ  

A current,Output  outI  

rseignevecto ofMatrix   

 vectoramplitudes Modal  

forcing Modal 
~
F  

 vectordamping Modal  

solution space-state of sEigenvalue  

amplitudes modal dGeneralize  

scoordinate physicalon  Force F  

strain nt todisplaceme convertingOperator  Q  

area electrodeon  charge sumsOperator  S  

Function ResponseFrequency  eAddmittanc Y  

Function ResponseFrequency  Impedance Z  

modulus sYoung' E  

 viscositymaterial  

Hz interest. offrequency Resonator  of  

)mJ/(K  olume.constant vat capacity Heat  3
vC  

matrices nx1 ofmatrix  nx1        

  C1/ expansion,  thermaloft coefficien o

 

matrices. nx1 ofmatrix  nx1 is        

  m)sJ/(K ty,conductivi  thermal
 

eTemperatur Operating Nominal oT  

seconds ,decay time  thermal  
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