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ABSTRACT 
We present an epitaxially-encapsulated 2x2mm2 quad-

mass resonator (QMR) with shaped comb fingers for 

frequency tuning. While shaped electrodes have been used 

for frequency tuning of linear resonators, the device studied 

here has very high quality factor (Q=100,000) resulting in 

a very narrowband resonance which, without the shaped 

electrodes, results in undesirable nonlinear behavior such 

as amplitude-frequency dependence and instability of the 

oscillator loop at large amplitudes. We demonstrate that 

through the shaped comb finger design, both frequency 

tuning (over 90Hz) and large amplitude oscillation (1.25 

µm amplitude, a factor of 100 compared to performance 

without the shaped electrodes) are possible. Furthermore, 

we demonstrate how critical dimension loss in the 

fabrication process can change the shape of the designed 

shaped finger and introduce electrostatic stiffness 

hardening.   

 

INTRODUCTION 
In MEMS resonators used in applications such as 

vibratory gyroscopes [1,2] and timing oscillators [3], high 

signal-to-noise ratio can be achieved through having large 

vibration amplitude and high quality factor, Q. Conversely, 

high-Q resonators are very sensitive to amplitude-

dependent nonlinearities which cause a variety of 

undesired effects such as bifurcation in the frequency 

response, unstable behavior and amplitude-induced 

frequency fluctuations. In parallel, having a substantial 

control of the resonance frequency is mandatory in many 

MEMS resonator applications. Implementing both 

frequency tuning and achieving large linear oscillation is a 

challenge for electrostatically actuated MEMS. Using 

parallel-plate electrodes for frequency tuning is well-

known for a variety of resonators [1,2,4]; however, this 

type of electrode creates nonlinearity and the electrode gap 

limits the oscillation amplitude or requires high voltage if 

the electrode gap is large.  

Although cancelling nonlinearity has been illustrated 

[1,5,6], it has limited success [1,7,8]. Using good 

mechanical design and using comb fingers (rather than 

parallel-plate electrodes) one can avoid nonlinear 

oscillation, however; to implement frequency tuning, comb 

fingers with a shaped profile are needed [9,10]. Previous 

demonstrations of shaped comb fingers were on low 

quality-factor devices with low resonance frequencies, 

because earlier shaped combs were not capable of 

generating enough voltage-controlled stiffness to tune a 

stiff, high-frequency device.  

Here, we present a quad-mass resonator (QMR), 

illustrated in Fig. 1(a), having two vibration modes 

illustrated in Fig. 1(b). This device has four proof masses 

(M) and sixteen drive frames (m). Electrostatic drive, 

sense, and tuning of the resonator is done through the drive 

frames. The QMR device can potentially be used as a 

gyroscope [1,11]. The device is fabricated from a 20 μm 

single-crystal silicon layer, and it is epitaxially 

encapsulated at a very low pressure (1 Pa) which results in 

a quality factor of 100,000 [12], a factor of 6 greater than 

[9]. By using comb fingers for actuation and transduction 

of the motion, the resonator can be driven to a peak 

amplitude of 1.25 μm in the linear regime without passing 

the bifurcation point, an amplitude that is 10 times greater 

than that of a similar device presented in [1], which used 

parallel-plate electrodes. We demonstrate shaped combs 

which achieve a 90 Hz frequency tuning range at 40V 

tuning voltage. Achieving this wide tuning range on a stiff 

resonator operating at 52 kHz is possible using shaped 

comb finger electrodes with a sub-micron (0.7µm) gap. 

 

RESONATOR DYNAMICS 
The resonator dynamics are described by the Duffing 

equation: 
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where u represents displacement, ωn is the natural 

frequency, Q is the quality factor, m the modal mass, and 

k3 is the stiffness coefficient corresponding to the cubic 

nonlinearity of the resonator. The sign of k3 determines 

whether nonlinear spring-softening (negative), or nonlinear 

spring-hardening (positive) is present. Amplitude-

frequency (A-f) dependence, which arises from 

Fig. 1: Layout and vibration modes of the 2 mm square 

QMR. (a) Device layout showing M: proof mass, m: drive 

frames, L: lever, CF: comb fingers, SCF: shaped comb 

fingers, and S: springs. (b) Mode shapes and natural 

frequencies of the two modes. 
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nonlinearity, is not dependent on the quality factor of the 

resonator but having a larger quality factor will make the 

nonlinearity more visible as the bifurcation amplitude is 

dependent on the bandwidth of the resonator [13].  

Simulations of the Duffing oscillator’s frequency 

response were conducted using parameters similar to those 

of the QMR presented in [1,14]. In these simulations, k3 = 

0.5×1014 (N/m3), typical for the QMR device. The 

simulation results are plotted in Fig. 2 for three different 

quality factors. The figure shows that as the quality factor 

increases, the bifurcation amplitude decreases. Although 

the nonlinearity’s value does not change in these 

simulations, higher quality factor makes the resonator more 

sensitive to nonlinearities. As a result, it is more 

challenging to achieve large amplitude oscillation in a high 

quality factor device than in a low quality factor device. 

 

SHAPED COMB FINGER DESIGN 
Standard design 

The ideal profile of a shaped electrode to produce a 

linear spring constant was described in [10,15]. This profile 

is parametrized by the following equation: 
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where g0 is the distance between the centerline of the 

shaped comb finger and the wall of a straight comb finger 

and x0 is a parameter which controls the taper. By 

decreasing x0, the stiffness that is produced by shaped comb 

finger will increase. The limitation in decreasing x0 is the 

minimum gap between the shaped finger and the straight 

finger. For a fixed minimum gap, there is a trade-off 

between the linear operating range and the stiffness created 

by the shaped finger. Because high frequency devices with 

high stiffness requires large electrostatic negative stiffness 

to obtain significant frequency tuning, and, in parallel, to 

achieve large displacement operation range, one should use 

a fabrication process which allows sub-micron minimum 

gap. 

The designed shaped finger is illustrated in Fig. 3(a) 

with a minimum gap of 0.5 μm and an engagement length 

of 3 μm (x0 = 0.75 μm, g0 = 2.5 μm). This design allows a 

linear operating range of 5 μm (peak-to-peak), as presented 

in Fig. 3(b). Fig. 3(c) illustrates the expected voltage 

dependence of the linear stiffness softening, predicting 

0.0002 N/m at 1V for one shaped finger. The QMR design 

has a total of 164 shaped comb fingers per vibration axis, 

resulting in a theoretical maximum tuning range of 550 Hz 

at 40V. Later in the paper, we show how fabrication 

variations modify the tuning characteristic.  

Effect of fabrication imperfections 

The etching processes used in MEMS fabrication 

result in reduction in the size of critical dimensions (CD), 

a phenomenon commonly known as CD loss. This CD loss 

will change the profile of the shaped finger. Generally a 

parametric function can be developed to show the profile 

of the shaped comb finger after fabrication: 
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where [xf, yf] are the coordinates of the final profile, Ox and 

Oy are CD loss values (negative values) for the x and y 

directions, and dyi/dxi is the derivative of the original 

profile of the shaped-comb finger. 

Fig. 4 (a) shows how an isotropic CD loss (here of 0.25 

µm) will change the profile of the shaped comb finger. Fig. 

4 (b) shows the force-displacement curve of the shaped 

comb finger as-drawn and as-fabricated. The slope of the 

curve, which determines the electrostatic spring-constant, 

is reduced due to the increase in the gap between comb 

fingers. In addition, the curve is nonlinear. While an 

isotropic CD loss results in nonlinear softening at large 

amplitudes, nonlinear stiffening can also occur from 

anisotropic changes in the profile.   

 

EXPERIMENTS 
Fig. 5 shows a block-diagram of the QMR operation 

and a schematic of the electrode configuration of the 

resonator. Two sets of straight comb-finger electrodes are 

used for single-ended drive of the X-axis resonance mode, 

and two sets of straight comb-finger electrodes are used for 

differential sense of this mode.  This figure also illustrates 

Fig. 2: Simulated QMR frequency responses for three 

different values of Q. Above the bifurcation threshold, 

there are branches that are open-loop unstable (dashed 

lines). The bifurcation threshold occurs at lower 

amplitude if the quality factor is higher. 

Q = 10000 Q = 100000 Q = 1000 

Fig. 3: Shaped comb finger design. (a) SEM image of the 

shaped comb finger illustrating dimensions of the design. 

(b) Results of FEM simulations of a single shaped comb 

finger showing a linear operating range of 5 μm (peak-to-

peak) displacement, creating a stiffness of 0.0002 N/m for 

a tuning voltage of 1V for one shaped comb finger. (c) 

Quadratic dependency of the stiffness on tuning voltage.  
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a block diagram of the test setup used to characterize the 

performance of the QMR. The device is placed on a PCB 

along with analog front-end amplifiers and the sense 

signals are processed in lock-in-amplifier (HF2LI, Zurich 

Instruments AG). A PLL (phase-locked loop) within the 

lock-in amplifier is used to force the QMR into oscillation 

with a desired phase shift between input and output. The 

proof-mass bias voltage and tuning voltages are set through 

the lock-in-amplifier’s analog outputs as well.  

Frequency tuning experiments were conducted using a 

20V bias applied to the QMR proof-mass and -20 V to +20 

V applied to the tuning electrodes, resulting in a net tuning 

voltage range from 0 to 40V. The results, shown in Fig. 6, 

demonstrate a 90 Hz tuning range. Frequency response 

measurements were conducted at four different driving 

amplitudes selected to exhibit different A-f dependence. 

The differential sensing scheme and high Q-factor resulted 

in a negligible amount of capacitive feed-through, and the 

measured response, shown in Fig. 7, clearly shows the 

device’s resonance behavior. Note that at large amplitudes, 

each of the curves exhibits multiple amplitude branches as 

predicted by the models shown in Fig. 2, some of which are 

open-loop unstable [16]. The response at each branch was 

measured by locking the PLL to the specific phase of 

oscillation corresponding to the desired amplitude branch, 

a technique which allows stable oscillation to be achieved 

at all branches [17]. 

Fig. 8 (a) shows the amplitude-frequency relationship 

for different bias voltage, also known as the backbone 

curve. These data are measured by locking the phase of the 

oscillator to -90º which corresponds to the maximum 

amplitude at each drive voltage. The figure shows that the 

back-bone curve is independent of the bias voltage. 

Fig. 8 (b), on the other hand, shows the dependence of  

A-f on the tuning voltage. As suggested in the previous 

section, shaped comb fingers can exhibit nonlinearity due 

to the change in profile resulting from CD loss. The 

measurements presented here show a tuning voltage 

dependent stiffness-hardening that increases with the 

tuning voltage. Also as presented in [10], some comb-

finger profiles could introduce electrostatic hardening. In 

our case, preliminary simulations of the shaped fingers 

using Eq. (3) show that a difference in CD loss rate in the 

x and y directions (Ox ≠ Oy) will result in electrostatic 

stiffness-hardening.  

To solve the problem of CD loss, we suggest that a 

modified profile could be used to draw the layout for the 

shaped comb finger. If the expected CD loss of the 

fabrication process is known, one can use Eq. (3) with 

positive values for Ox and Oy to compute a modified profile. 

Fig. 4: Effect of CD loss on the profile of the shaped 

electrode. (a) Profile of the shaped electrode as drawn 

(red), and as-fabricated (black) after an isotropic CD loss 

of 0.25 μm. (b) Force-displacement curve of the initial 

profile (black) and after CD loss (red). The final curve has 

lower slope (spring-constant) and is nonlinear. 
  

Fig. 5: Block diagram of setup for QMR testing and a 

schematic showing the electrode layout of the device. Two 

electrodes are used for single-ended drive (DX), two 

electrodes for differential sense (SX+/-), and four shaped 

electrodes are used for frequency tuning (TX). 

Fig. 7: Nonlinear resonance (a) Amplitude versus 

frequency measurements showing a linear range of 1.25 

μm (2.5 μm peak-to-peak). (b) Measured phase of the 

oscillation (c) Amplitude-phase relation for the same 

measurements. 

(a) 

(b) 

(c) 

Fig. 6: Measured tuning range of the resonator for tuning 

voltages from 0-40 V, showing a range of 90 Hz, with four 

sample frequency sweeps. 
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After fabrication, one can expect to achieve an ideal profile 

(i.e. Eq. (2)) for the shaped finger. Note that Eq. (3) is a 

general equation and can be used for any profile as long as 

the function of the profile is known. 

 

CONCLUSION 
In this paper we have shown a successful 

demonstration of shaped comb fingers for frequency tuning 

of high quality factor devices in episeal fabrication process. 

We have shown how CD loss can introduce nonlinearity in 

the shaped finger stiffness and have proposed a method to 

solve this issue. The results presented in this paper can be 

used to provide guidelines for design of shaped comb 

fingers. 
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Fig. 8: Duffing backbone curves measured to illustrate 

that the A-f dependence does not depend on bias voltage 

(a), and but does depend on the tuning voltage (b). 

(a) 

(b) 
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