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ABSTRACT 
This paper reports a 3-axis MEMS-CMOS integrated 

tactile sensor for surface-mounting on a flexible bus line.  
This 3-axis sensor uses a bran-new CMOS LSI with 
capacitive sensing circuit and other extended 
functionalities (e.g. configurability and a robust clock data 
recovery algorithm).  The sensor is composed of a 
flip-bonded CMOS substrate with a sensing diaphragm and 
a special low temperature co-fired ceramics (LTCC) 
substrate with vias.  These substrates are electrically and 
mechanically connected by Au-Au bonding, forming 
sealed differential capacitive gaps.  The completed sensor 
outputs coded 3-axis digital signals according to applied 
3-axis force with small cross-sensitivity and hysteresis. 
 
INTRODUCTION 

Social robots for non-industrial areas such as nursing 
care, housework support, and entertainment are now being 
developed all over the world.  These robots must be safe, 
but they are also required to manipulate various objects 
appropriately and communicate with humans friendly.  For 
these purposes, social robots must equip many tactile 
sensors on their whole body like human tactile receptors.  
Until now, tactile sensors and systems have been 
developed using many kinds of force detection methods 
[1][2].  However, there are problems: 1) increase of wires 
connecting sensors to detection circuits, 2) low sensitivity 
and signal delay caused by distance between sensors and 
signal processing circuits, 3) large hysteresis error, 4) 
installation on curved and bendable parts such as robot 
arms and hands, and 5) force direction and slip detection. 

As a solution of these problems, we propose a flexible 
and stretchable 3-axis MEMS-CMOS integrated tactile 
sensor, as shown in Figure 1.  Each tactile sensor has 3-axis 
differential capacitive sensing electrodes, a readout circuit, 
a signal processor and a data transmission controller.  The 
sensors are surface-mounted on a meandered flexible and 
stretchable bus line [3] for installation on a robot.  In the 
previous papers [4][5], we presented a 1-axis tactile sensor 
using the 1st generation of CMOS LSI with limited 
functionalities.  In this study, we have developed the new 
3-axis tactile sensor with the 2nd generation of CMOS LSI. 
 
SENSOR STRUCTURE AND WORKING 
PRINCIPLE 

Figure 2(a) shows the structure of the 3-axis integrated 
tactile sensor.  The sensor size is designed to 2.5 mm × 2.5 
mm × 0.66 mm.  A sensing diaphragm is formed from the 
backside of a flipped CMOS substrate, which is electrically 
connected and sealed with a LTCC substrate.  This 
structure has an advantage of simple fabrication by 

providing interconnections to the sensor backside for 
surface-mounting without using through silicon vias 
(TSVs).  The structure and the fabrication process are 
almost similar to the previous 1-axis tactile sensor [4], but 
there are some modifications as follows: 1) the capacitor 
gap is reduced from 10 µm to 5 µm for higher sensitivity.  
In order to enhance X and Y-axis sensitivities, 2) the side 
wall of the diaphragm boss is not tapered but vertical, 3) 
differential capacitive sensing like seesaw for X and Y-axis 
although one capacitance changes and another is fixed for 
Z-axis, and 4) the electrode areas of X and Y-axis are about 
twice larger than that of Z-axis. 

The working principle of the tactile sensor is shown in 
Figure 2(b) and (c).  When normal force (FZ) is applied to 
the diaphragm boss, the diaphragm is deformed and the 
capacitance increases except for the fixed capacitor (CZref).  
In this case, differential capacitance of only Z-axis appears 
due to the symmetry of the electrode layout.  On the other 
hand, the diaphragm boss tilts by shear force (FX and FY).  
As a result, capacitance of only the force direction changes 
and differential capacitance of only that direction also 
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Figure 1: Concept of (a) a networked 3-axis integrated 
tactile sensor system and (b) its physical implementation.
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appears.  For every six capacitors, the capacitance is 
detected by oscillation circuits which are included in the 
CMOS LSI.  The differential type sensor output for each 
axis is acquired by the difference of the two counter values 
which are given by the oscillation frequencies of the two 
capacitors with a certain sensing conditions. 
 
FABRICATION 

Figure 3 illustrates the fabrication process.  The 

CMOS substrate used in this study is fabricated by a 
multi-project wafer which contains a laser ablated area 
with large surface roughness of about 20 µm in 
peak-to-valley.  For fabrication, the surface is smoothed by 
chemical mechanical polishing after depositing a 20 µm 
thick SiO2 film by plasma enhanced chemical vapor 
deposition.  The thickness of the CMOS substrate is 
reduced to 300 µm by back grinding.  The CMOS substrate 
and a 350 µm thick LTCC substrate are both diced into 20 
mm square size for in-house fabrication. 

Au bumps and a seal ring are formed on the CMOS 
substrate by electroplating.  The substrate is annealed at 
350°C in vacuum to remove contamination in the 
electroplated Au, and then planarized by fly cutting with a 
diamond bit (DAS8920, Disco Co.) [6].  A ground (GND) 
electrode is formed by patterning an Au electroplating seed 
layer (Figure 3(a)).  3-axis differential capacitor electrodes 
are formed on the LTCC substrate (Figure 3(b)).  After 
flip-bonding the CMOS substrate to the LTCC substrate by 
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Figure 2: (a) Structure of the 3-axis integrated tactile 
sensor (top: bird’s eye view, bottom: cross-sectional 
view).  Capacitor electrode layout and working modes 
induced by (b) normal force of FZ and (c) shear force of 
FX. 
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Au-Au thermo-compression bonding at 300°C with a 
bonding pressure of 130 MPa, a 50 µm thick sensing 
diaphragm is formed by deep reactive ion etching in the 
CMOS substrate, and then backside bonding pads are 
formed by electroplating (Figure 3(c)). 

A diced tactile sensor chip is surface-mounted on a 
glass substrate with interconnections using an anisotropic 
conductive film (ACF) for characterization (Figure 3(d)).  
The bonding temperature and the applied bonding load are 
170°C and 3 N, respectively.  Two tactile sensor chips are 
also surface-mounted on a meandered flexible bus line 
(Figure 3(e)).  This bus line is fabricated by wet etching of 
the metal layer and laser cutting of the polyimide layer [4]. 
 
EXPERIMENTAL RESULTS 

Figure 4 shows an experimental setup.  Initially, 
power and configuration data are provided to the tactile 
sensor on the glass substrate (Figure 3(d)) through a field 
programmable gate array (FPGA) based relay node.  The 
tactile sensor recognizes the configuration data via our 
original clock data recovery system [7], and starts 
transmitting 3-axis sensing data packets (Figure 5), which 
is decoded by the relay node (Figure 4(a)).  The packet data 
rate is set to about 80 Hz.  Normal/shear force is applied to 
the sensor by pushing/pulling a 3D-printed pin using a 
movable stage with a reference force sensor (MX020-10N, 
Minebea Co., Ltd.) and a transmitter (CSA-524, Minebea 
Co., Ltd.).  These 3D-printed pins are used for applying 
force to only a target side of the diaphragm boss. 

Figure 6 shows sensor output characteristics for 
normal force (FZ) and shear force (FX and FY).  The sensor 
detected each direction of 3-axis force with small 

cross-sensitivity and hysteresis.  The sensitivity is 62.7 
kCount/N for Z-axis, 15.8 kCount/N for X-axis, and 14.2 
kCount/N for Y-axis.  The force resolution calculated from 
standard deviations is 0.15 mN for Z-axis, 5.9 mN for 
X-axis, and 8.7 mN for Y-axis. 

The operation of the two bus connected sensors is also 
demonstrated, as shown in Figure 7.  Without applying 
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completed 3-axis integrated tactile sensor. 
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Figure 6: Sensor output changes by applying (a) FZ, (b) 
FX, and (c) FY. 
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force, the sensors send stable 3-axis sensing data (Figure 
7(a)).  When force is applied to the diaphragm boss of each 
sensor, data of the pushed sensor changes (Figure 7(b) and 
(c)).  Simultaneous force sensing of the two sensors is also 
demonstrated (Figure 7(d)). 
 
CONCLUSION 

We have developed a 3-axis surface-mountable 
integrated tactile sensor and evaluated its characteristics.  
In order to simplify the fabrication process, a CMOS 
substrate with capacitance detection circuits was 
flip-bonded on a LTCC substrate with vias, and then the 
sensing diaphragm was formed from the backside of the 
CMOS substrate.  For evaluation of the surface-mounted 
tactile sensor, normal and shear forces were applied by 
3D-printed pins and movable stages.  The fabricated tactile 
sensor demonstrated 3-axis force detection not only with 
small cross-sensitivity and hysteresis but also with good 
force resolution less than 10 mN.  The two bus connected 
sensors correctly sent sensing data according to the applied 
force.  These results demonstrate that the 3-axis integrated 
tactile sensor developed in this study will be useful for 
robot tactile sensation. 
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