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ABSTRACT 

This paper reports a MEMS relay with high reliability, 
in which van der Waals forces will be used, for the first 
time, to significantly suppress the vacuum contact 
bouncing. The dynamic analysis has been carried out by 
modeling the microcantilever as a multi-segment beam. In 
the model, van der Waals forces as an adhesive force 
replace air damping to represent the suppression term. In 
combination with a dual-pulse actuation waveform 
implemented by simple logic circuits, the contact bounces 
were eventually eliminated by making a soft landing. 
 
INTRODUCTION 

The dynamic behaviors of MEMS relays are known to 
suffer from discrete contact bounces during their closing, 
which will lead to extended switching time, contact wear, 
and contact welding [1,2]. A lot of work has been done to 
understand the nature of contact bouncing. McCarthy et al. 
developed a time-transient finite difference model based 
on Euler-Bernoulli beam theory, which included 
squeeze-film damping and a linear contact spring to 
analysis the dynamic behavior of a contact RF-MEMS 
switch [3]. Decuzzi et al. adopted a similar approach, but 
included van der Waals force to represent the attractive 
force [4]. Tung et al. proposed a multiple eigenmode model 
and used laser Doppler vibrometer to analyze a cantilever 
switch response [5]. 2D and 3D nonlinear dynamic models 
have also been developed to describe the transient 
bouncing dynamics of the contact-type MEMS devices 
[6,7]. However, the dynamic bouncing will be greatly 
exacerbated in vacuum without air damping. In the 
nanometer distances, van der Waals forces, which tend to 
be preventive as an adhesion factor, become comparable 
with the driving force and may therefore significantly 
influence the dynamics of MEMS relays. This paper 
provides a detailed analysis of the vacuum bouncing 
dynamics dominated by van der Waals forces, and 
eventually eliminates contact bounces by driving with a 
dual-pulse actuation waveform. 

 
MODELING AND SIMULATION 
Multi-segment cantilever 

The proposed MEMS relay is fabricated through a 
bulk-silicon process based on silicon-on-insulator (SOI) 
anodic bonding technology, which significantly improves 
the device reliability and consistency [8]. As shown in Fig. 
1(a), the relay structure is a novel cantilever beam with 
hollow suspended spring, which is used to limit spring 
stiffness and enhance relay stabilization. The electrostatic 
parallel-plate actuator switches the relay on and off. And 
the contact levers are connected between the driving plate 
and the contact bar. Gold is chosen as the contact material 
because of its minimal contact resistance. Table 1 presents 
the specific geometric parameters of the proposed MEMS 
relay and the equivalent multi-segment cantilever.  
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Figure 1: Schematic of the cantilever MEMS relay. (a) 
SEM image. (b) The equivalent multi-segment cantilever. 
 
Table 1. Geometric parameters of the proposed MEMS 
relay and the equivalent multi-segment cantilever. 

Parameters Value 
Structure thickness (h) 24 μm 
Air gap height (g0) 3 μm 
Contact gap height (gc) 2.4 μm 
Driving plate (L2 × W2) 640 μm × 580 μm 

Hollow spring (L1 × Wh) 
630 μm × 370 μm  

(coupled with six 20 μm 
wide microbeams) 

Contact levers (L3 × Wc) 100 μm × 50 μm 
Contact bar (L4 × W4) 140 μm × 340 μm 
First segment width (W1) 132 μm 
Second segment width (W2) 580 μm 
Third segment width (W3) 100 μm 
Fourth segment width (W4) 340 μm 

 
The MEMS relay is a very non-uniform cantilever 

beam, which cannot be modeled by the conventional 
lumped parameter. However, due to its symmetry, the 
MEMS relay can be modeled as a virtual line beam on its 
axis with different stiffness along the length direction, as 
shown in Fig. 1(b). According to the Euler-Bernoulli beam 
theory, the cantilever beam can be divided into four solid 
segments with different width that is equal to the sum of 
the physical width, and this has been confirmed and 
corrected by a 3D solid mechanics model. Hence, the 
presented 1D multi-segment cantilever beam can be used 
to model the non-uniform MEMS relay and give some 
details along the width direction. The four segments are 
denoted by 1L , 2L , 3L  and 4L , which represent the lengths of 
the hollow spring, driving plate, contact levers and contact 
bar. Correspondingly, the width of the cantilever 
beam ( )W x can be expressed as: 
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Governing equation 

The classical Euler-Bernoulli theory can be employed 
for modeling. In vacuum, the air damping effects can be 
ignored; hence, the microbeam equation of motion can be 
expressed as follows: 
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Where 0A is the mass per unit length, EI is the flexural 
rigidity. eF is the electrostatic force, aF is the adhesion force 
caused by van der Waals forces, and cF is the contact force. 
The dynamic response of the system is derived by solving 
the above equation for ( , )z x t with the initial and boundary 
conditions described below: 
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The electrostatic force eF is generally introduced by 
the parallel-plate electrostatic actuator, corrected by the 
first-order fringing field effect. 
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Where 0 is the permittivity of vacuum; 0g is the initial gap 
height; and eV is the driving voltage. The electrostatic load 
is applied only on the segment labeled 2L . 

The contact substrate can be modeled as an elastic 
foundation. When the contact bar comes into contact with 
the substrate, the deformation of the foundation springs 
produces the contact force that can be approximated by a 
linear spring model.  

 4( ) ( ), ,c c c cF k z g H z g x L L L                         (5) 
Here, the Heaviside function ( )cH z g ensures the contact 
force applied only at those locations where cz g . The 
contact spring constant ck take an empirical value, which 
ensures that the substrate deformation is small. 
 
Van der Waals forces 

Van der Waals forces become significant in 
nanometer distances, and pose a fundamental limit to the 
adhesion between micromachined surfaces. The normal 
van der Waals force is generated by the temporary dipole 
moment produced by the instantaneous positions of 
electrons in a molecule. The temporary dipole polarizes the 
electron distribution of a nearby molecule, and creates 
attractive dispersion energy proportional to 61 r , where r is 
the distance between the molecules. The normal van der 
Waals force mainly governs at separations less than 10nm. 
For larger separations greater than 50nm, the Casimir force 
or retarded van der Waals force plays a major role, and the 
interaction energy between molecules becomes 
proportional to 71 r . A gradual transition from normal to 
retarded van der Waals forces occurs between theses 
separations. Gold surface roughness is typically 2-5nm, 

which corresponds to the surface separation of 10-30nm. 
Therefore, the adhesion of gold surfaces is due to forces in 
the transition region between non-contacting areas. 

The van der Waals forces between two smooth 
parallel surfaces can be expressed as: 
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The Hamaker constant 194 10A J  , and fg  is a function 
based on separation distance that describes the transition 
from normal to retarded van der Waals forces [10]. 
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Where 3.1 2c   , the coefficient 3.1 is to make the 
correction function match the Casimir and Polder function. 
  denotes the characteristic wavelength of interaction, 
often assumed to be about 100 nm.  

Introducing the following dimensionless parameters: 
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Where h  represents the beam thick; 3( ) 12I W x h is the 
second moments; T is the time scale constant. Then, the 
dimensionless equation of motion is 
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RESULTS AND DISCUSSION 
Finite element simulation 

Modeling and solution is implemented by COMSOL 
Multiphysics. In order to confirm the validity of the 1D 
multi-segment model, we compared the simulated dynamic 
pull-in voltage with the static result obtained by a 3D 
model. The dynamic pull-in voltage of 17.2V is about 10% 
lower than the static value, which is in good agreement 
with the results of the reference [11]. Figure 2 shows the 
dynamic response of the multi-segment cantilever, in 
which the pull-in time is approximately 49.3μs when the 
applying voltage is 1.2 times the pull-in voltage. 
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Figure 2: Simulated contact bouncing dynamics of the 
MEMS relay driving by 1.2 times the pull-in voltage. 
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Experimental results 
The output voltage bounces were obtained by an 

oscilloscope. The relay was placed in parallel with a 1k 
resistor and a 2V voltage source, and then in series with a 
1k resistor to limit the maximum load current of 2mA. The 
driving voltage was set to be 1.2 times the pull-in voltage. 
The measurements were carried out in a vacuum chamber, 
which ensures vacuum degree can reach less than 10-4Torr. 
The output voltages curves are shown in Fig. 3. When the 
contact electrodes are solid, the number of the contact 
bounces is 6 times, less than the 9 times of the grid contacts. 
Thus, the output voltage bounces significantly suppressed 
by the increase of contact area. At the same time, the 
contact bounces greatly prolong the switching-on time and 
strongly deteriorate the reliability of relay closing. 
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Figure 3: Vacuum output voltage bounces of solid and grid 
contacts driving by 1.2 times the pull-in voltage. 
 

The transient contact behavior was measured by a 
Laser Doppler Vibrometer (LDV). In the experiments, 
laser spot was projected on the center of the contact bar, 
and then measured the displacement of this point. The 
transient displacement curves were obtained by an 
oscilloscope when MEMS relays were actuated by the 
driving voltage. Figure 4 shows the displacement bounces 
driving by 1.2 times the pull-in voltage. When the contact 
electrodes are solid, the number of the contact bounces is 
about 8 times, less than the 11 times of the grid contacts. 
The number of displacement bounces is two times more 
than the voltage bounces; this is because the displacement 
bounces are too small to change the output voltage.  

The vacuum contact bouncing is mainly dominated by 
van der Waals forces. Van der Waals forces are 
proportional to the contact area and govern at separations 
of 10nm to 50nm. With the effective contact area 
increasing, the contact bounces are strongly suppressed. 
When the contacts are solid, which also means a larger 
contact area than the grid contacts, the magnitude and the 
number of the contact bounces are both significantly 
reduced. The switching-on time measured from the 
displacement curves is approximately 52μs, which is in 
good agreement with the simulated value of 49.3μs. 

However, due to the complexity of influence factors, the 
actual dynamic response is difficult to exactly match with 
the simulation results. 
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Figure 4: Vacuum displacement bounces of solid and grid 
contacts driving by 1.2 times the pull-in voltage. 
 

We also measured the vacuum contact bouncing 
variations with the driving voltage. As shown in Fig.5, the 
contact bounces are significantly reduced with the increase 
of actuation voltage. However, when the driving voltage 
exceeds its limitation, the contacts will not be able to make 
contact effectively. Therefore, the contact bounces cannot 
be eliminated by simply increasing the driving voltage.  
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Figure 5: Vacuum contact bouncing variations with the 
driving voltage. 
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Soft-landing waveform 
In this paper, we have implemented a dual-pulse 

actuation waveform to drive the cantilever beam for 
eliminating the vacuum contact bounces [12]. As shown in 
Fig. 6, the waveform consists of an actuation voltage pulse, 
a coast time, and a hold voltage, which can be easily 
generated by simple logic circuits. The actuation pulse has 
short duration and imparts kinetic energy necessary to 
close the MEMS relay. After the actuation voltage is 
turned off for a coast time, the restoring force slows the 
relay to near-zero velocity as it approaches the closed 
position. The hold voltage is then applied to hold the relay 
closed. The actuation voltage and the hold voltage have the 
same amplitude to simplify the dual-pulse waveform. The 
vacuum contact bounces have been eliminated by this 
dual-pulse actuation waveform and the switching-on time 
has also been shortened a lot. 
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Figure 6: The step and dual-pulse actuation waveforms 
and the corresponding vacuum displacement curves. 
 
CONCLUSION 

The dynamic response of an electrostatically actuated 
MEMS relay has been analyzed by modeling the 
microcantilever as a multi-segment beam. This equivalent 
model focuses on the effects of electrostatic force and 
adhesion force caused by van der Waals forces. The model 
is well confirmed by the experimental results. In the 
nanometer scale, van der Waals forces pose a fundamental 
limit to the adhesion between micromachined surfaces. 
However, contact bouncing has become one of the most 
important failure mechanisms of MEMS relay in vacuum.  
This limitation can be used to replace air damping and 
suppress the vacuum contact bouncing to enhance the 
reliability of the MEMS relay.  In combination with a 
dual-pulse actuation waveform implemented by simple 
logic circuits, the contact bounces were eventually 
eliminated by making a soft landing. In the future work, we 
would seek to find a balance between the suppression of 
adhesion and contact bounces to significantly improve the 
reliability of MEMS devices. 
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