
LIMITS OF QUALITY FACTOR IN BULK-MODE 
MICROMECHANICAL RESONATORS 

S. A. Chandorkar1, M. Agarwal1, R. Melamud1, R. N. Candler1, K. E. Goodson1 and T. W. Kenny1 
1 Departments of Electrical & Mechanical Engineering, Stanford University 

 
 
ABSTRACT 

In this paper we present the dominant energy loss 
mechanisms and quality factor (Q) limits in bulk mode 
micromechanical resonators. We demonstrate that in 
resonators with an appropriately designed stem connection 
to anchor the maximum achievable Q limit is set by either 
Thermoelastic dissipation (TED) or the Akhieser effect 
(AKE). Furthermore, we suggest a choice of materials for 
achieving maximum Q’s in micromechanical resonators. It 
is established here that silicon resonators can theoretically 
achieve higher Q’s than quartz and we predict that by using 
alternative materials, such as silicon carbide, it is possible to 
surpass the Q of quartz by more than an order of magnitude. 
 
1. INTRODUCTION 

Micromechanical resonators have the potential to 
replace quartz crystals for timing and frequency references 
owing to their small form factors, CMOS integrability, low 
cost, and low power operation [1]. Resonators with good 
frequency stability and high quality factors (Q) are critical 
for high performance reference oscillators [2].  

Micromechanical resonator designs can be broadly 
classified as per their mode of operation namely flexural, 
torsional and bulk mode devices (Fig. 1a). Flexural 
vibration modes can be viewed as transverse standing 
waves. In the flexural devices, the displacement of the 
structures is orthogonal to the bending stress in the 
structure. In torsional resonators, the dominant stress is 
shear stress and the displacement is rotational. Bulk mode 
operation of resonators is representative of standing 
longitudinal waves. Fig. 1b shows the commonly used bulk-
mode device designs shapes such as circular disk and square 
plate that may be operated in Lamé, wine-glass and 
extensional  (contour) modes. 

In this paper, we will examine the Q limits of some of 
the bulk mode structures. Q is a measure of energy loss in a 
resonator and is defined as  
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where, Umax-stored is maximum energy stored and Wlost is the 
energy lost during an oscillation cycle. The commonly 
encountered energy loss mechanisms in micromechanical 
resonators are air damping, Thermoelastic dissipation 
(TED), resistive damping and clamping loss. Fig. 2 depicts 
the frequency dependence of some of these energy loss 
mechanisms. Air damping, being inversely proportional to 
resonant frequency [3], is the dominant energy loss 
mechanism at low frequencies. TED has been studied 
extensively for flexural devices [4,5] and exhibits 
Lorentzian type of frequency dependence. 
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Figure 1: (a)Three basic types of resonators: Flexural, 
Torsional and Bulk mode structures (b) Commonly used 
Bulk mode resonator designs and various mode shapes 

 
The dominant energy loss mechanism in bulk mode 

devices, typically being high frequency devices, is 
considered to be clamping loss. Clamping loss is design 
dependent and at any given frequency this loss can be 
dominant energy loss mechanism if the stem connecting the 
resonator to the anchor is inappropriately designed [6-9].  

Through this work, we will be show that TED limits the 
Q for Lamé mode devices. We introduce an energy loss 
mechanism called Akhieser effect (AKE), which imposes a 
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Figure 2: Energy loss mechanisms and their dependence on 
frequency: a) Air Damping b) Thermoelastic Dissipation in 
flexural structures c) Akhieser effect. 
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Q limit on high frequency devices if TED is minimized, as 
is the case with wine glass mode and contour mode. 

 
2. THEORY 

We consider a small control volume in a vibrating solid. 
The phonon dispersion in the control volume is perturbed 
due to strain which in turn results in non-equilibrium of 
phonon population. Equilibrium can be reestablished in the 
solid by normal and Ümklapp processes of relaxation and by 
flow of phonons in and out of the control volume under 
consideration. The Boltzmann transport equation (BTE) 
captures these phonon dynamics [10, 11]. Attainment of 
equilibrium from this non-equilibrium state will result in 
entropy generation if this relaxation is not in phase with the 
vibration rate. If the equilibrium is established purely by 
normal and Ümklapp processes, (i.e. the process is purely 
local) the resulting energy loss is AKE. On the other hand, if 
the equilibrium of phonon population is largely established 
due to flow of phonons from beyond the control volume in 
question, the resulting energy loss is TED. Fig. 3 
schematically depicts the essential differences between 
AKE and TED. In this section, we seek to quantify TED and 
AKE. 
2.1 Thermoelastic dissipation 

In order to quantify TED, we introduce the concept of 
thermal modes [4]. Thermal modes are eigenmodes of the 
homogeneous heat diffusion equation. The temperature 
distribution of the resonator can be expressed as a weighted 
sum of these thermal modes. The magnitude of these 
weights depends on overlap of the spatial distribution of 
thermal mode with the strain distribution and is given by 

where, ai is weight of the thermal mode vi and Ū is the strain 
in the solid. The greater the weighting factor of a thermal 
mode, the greater is its contribution to entropy generation 
(∆Sgeneration).  

where, f and λ are mechanical resonance frequency and 
thermal mode eigenfrequency respectively. Energy lost in a 
resonator is directly proportional to the entropy generation 
and the ambient temperature. 

where, Tamb is the ambient temperature. TED is minimized if 
the overlap integral in (2) is minimized or if the lorentzian is 
minimized. 

The high stiffness of bulk mode devices ensures that for 
high frequency structures the λ is typically much smaller 
than f. Thus, 
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where, α is the coefficient of thermal expansion, B is the 

bulk modulus and cv is the heat capacity per unit volume. 
Furthermore, λ is given by 
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where, kthermal is the thermal conductivity and L is a 
characteristic length scale of the bulk mode resonators. The 
resonant frequency f of bulk mode structures is given by 

ρ
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where, E is the elastic modulus and ρ is the density of the 
structure. Substituting (6) and (7) in (5) and noting that the 
Umax-stored is proportional to E, we obtain, after appropriate 
mathematical manipulation of the resulting expression, an 
expression for QTED,Bulk in terms of its mechanical resonant 
frequency.  
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This expression, though quite general, does depend on the 
specific design of the bulk mode structure through the 
constant ψ. Next, we introduce another thermo-mechanical 
loss that is entirely local in its nature, and thereby, 
independent of the precise geometry of the structure. 
2.2 Akhieser effect 

Owing to local nature of AKE, any given control 
volume in a vibrating structure undergoes periodic strain 
with no interaction with its surrounding as far as attainment 
of equilibrium of phonon populations is concerned. Thus, a 
result for measure of energy loss due to AKE from the field 
of acoustics will be valid for resonators as well. In this 
paper, we quote the result from [10] which examines AKE 
in solids subject to ultrasonic vibrations 
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where, estored is energy stored per unit volume, γ is 
Grüneisen’s parameter and c is acoustic velocity. The 
energy stored per unit volume is given by 
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where, ui is the displacement along ith orthogonal direction. 
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Figure 3. Schematic of Akhieser effect and Thermoelastic 
dissipation. 
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 Substituting (10) in (9) and recalling the definition of Q 
from (1), 

It should be noted that (11) carries no additional information 
about the exact geometry of the structure other than the 
resonant frequency. Thus, if Q of a device is AKE limited, 
the Q-f product of the device is solely dependent on material 
properties. 

In the following section, we will consider specific 
geometries of bulk mode structures shown in Fig. 1b and 
investigate the material property limit of quality factor for 
each. 

 
3. CASE STUDIES AND EXPERIMENTAL 
EVIDENCE 

In this section, we will consider three major modes of 
operation in bulk mode devices and estimate the limit of Q 
for these structures. 
 3.1 Lamé mode 

 Structures operated in Lamé mode have regions of 
compression and tension, thereby, making them susceptible 
to energy loss due to TED. However, since the λ of thermal 
modes that have significant overlap with strain pattern is 
much lesser than f, (8) is applicable for Q estimation of 
Lamé modes. Table 1 lists the factor ψ for the two 
geometries with Lamé mode shown in Fig. 1b. Fig. 4 shows 
the mechanical mode and corresponding first three thermal 
modes. The AKE estimate of Q for these structures is of the 
same order as TED. Following the discussion in section 2, 
TED is likely to set the lower limit of energy loss in Lamé 
modes if the estimates from the formulae (8) and (11) are 
comparable. 
3.2 Wine glass mode 

 Wine glass mode of a square resonator has a unique 
strain pattern in that it is inherently isochoric. Fig. 5a shows 
the principle strain pattern in the wine glass mode. 
Therefore, as per (2), the primary driving force of TED is 
absent. This mode in square resonators is limited by AKE. 
Though the deformation is not perfectly isochoric in disk 
resonators, as the structure is not limited by TED to the first 
order, upper limit of Q is still set by AKE. 
3.3 Extensional mode 

Fig. 5b shows the distribution of volumetric change in an 
extensional mode of a ring. It can be seen that, extensional 
mode structures have large “dc” offset of volumetric strain. 
From the formulation of entropy production due to TED (3), 
the ai for the “dc” thermal mode is high. To the first order 
extensional mode devices do not suffer from TED losses. 
Thus, Q limit of this mode is also set by AKE.  

Table 2 lists estimated Q limits for a square resonator in 
various modes. We see that upper limit of Q in Lamé mode of 
this resonator will be TED limited while in wine-glass mode  
Shape ψ 
Square 25(1+υ) 
Disk  5.1(1+υ) 
Table 1: ψ estimated for Lamé modes (υ: Poisson ration) 

 

 

 

 
and extensional mode it is AKE limited. 

Fig. 6 compares some of the state of the art devices 
against the Q upper limits imposed by TED and AKE on 
single crystal devices. The marked forbidden zone is for 
single crystal silicon based micromechanical resonators.  

 
4. DISCUSSION 

We first make a note of surprising similitude of the 
formulae for TED and AKE in spite of the difference in the 
nature of the two effects as discussed in the theory section. 
This can be reconciled to some extent by noting that the 
initial cause of the non-equilibrium is the same and if both 
the effects are equally efficient in carrying the system 
toward equilibrium, the entropy generation would be 
similar.  

Another striking aspect of the two effects is that the Q-f  
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Figure 4: TED in Lamé mode of square resonator 
(a) Mechanical mode (b) First three thermal modes 
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Figure 5: TED in (a) wine glass mode of a square 
resonator (b) extensional mode of a ring resonator 

 Lamé Wine-glass Extensional 
TED 5.8x106 ~1010 19.1x106 
AKE 2x106 2.1x106 1.9x106 

Table 2: Estimated Q of a square resonator with edge 
length of 200µm 
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Material Q-f (x 1013) γ 
Si 3.9 0.51 

Quartz 3.2 0.87 
AlN 2.5 0.91 

Diamond 3.7 0.94 
Sapphire 11.3 1.1 

SiC 64 0.3 
Table 3. Akhiezer effect limit of Q-f product for resonators 
composed of different materials 
products are constant for a given material and mode shape. 
Table 3 lists some of the commonly used resonator materials 
and their Q-f products together with the Grüneisen 
parameter used to determine these limits. It is evident that 
SiC has exceptionally high Q-f product.  

It should be noted that the quality factor limits 
mentioned here represent maximum achievable quality 
factor for a device. Thus, a measure of goodness of design 
of the clamping structure is the difference between the 
actually measured quality factor and the ascribed limits. 
Figure 6 shows that one of the most efficient designs for 
reducing clamping loss was achieved by a composite ring 
structure [12]. 

At this point, it is necessary to point out that the limits 
calculated in this paper have been based off of material 
properties data found from literature. However, these values 
are generic and for the specific device exact knowledge of 
these properties is required. Among others, the most 
difficult value to ascertain is the Grüneisen parameter.  
 
5. CONCLUSION 

In this paper, we have analyzed the quality factor limits 
of bulk mode devices. We show that for bulk mode 
structures, TED assumes a form such that Q is inversely 
proportional to f. We introduce a relatively unknown loss 
mechanism in context of micromechanical resonators called 
Akhieser effect. We show that Akhieser effect is 
independent of the geometry of the structure and the 
resulting Q-f product is purely material property limited. 
Quality factor limit of Lamé mode of structures is 
determined by TED while that of extensional and wine glass 

modes is AKE limited. Finally, we show that Si has a Q-f 
product which is marginally greater than quartz and a ~20x 
higher Q-f product can be achieved by using SiC. 
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Figure 6: Quality factor and frequency products of recently 
reported high frequency devices. 
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