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Abstract— The dynamic Allan variance (DAVAR) is a tool that
allows to understand if the stability of an atomic clock is changing
with time. Since an anomaly in the clock behavior generates
a change in its stability, the DAVAR can be used to monitor
the performances of a clock. In this paper we present a fast
algorithm for the computation of the DAVAR, which outperforms
the classical computational method.

I. INTRODUCTION

The performances of an atomic clock change throughout its
life, due to aging, cyclostationary effects such as temperature
and humidity, as well as sudden breakdowns. Therefore, also
its stability changes with time. The dynamic Allan variance
(DAVAR) [1], [2], [3] can be used to represent the change in
stability of an atomic clock, and, in general, of any precise
oscillator. Consequently, the DAVAR can be used to detect
and identify clock anomalies [4], [5].

A critical point of the DAVAR is its computational cost.
The DAVAR is, in fact, a sliding version of the Allan variance
[6]. To compute the DAVAR, at every time instant, the signal
representing the clock phase deviation is truncated, and its
Allan variance represents the clock stability at the given time
instant. Therefore, if a signal has N samples, the computation
of the DAVAR requires, in general, the evaluation of N Allan
variances, which can turn in a computational burden if N is
large.

By using a recursive formulation of the Allan variance it is
possible to formulate the DAVAR in a recursive way [7], [8].
Such formulation can be used to develop a fast computational
algorithm, whose performances are far superior to those of the
classical DAVAR algorithm. In this paper we give the recursive
formulation of the DAVAR, and we show the performances of
the fast algorithm.

II. THE DYNAMIC ALLAN VARIANCE

The standard definition of stability for an atomic clock is
the Allan variance [6], [9]

σ2
y(τ) =

1
2

〈
(ȳ(t + τ)− ȳ(t))2

〉
(1)

where τ is the observation interval, the average frequency
deviation is given by

ȳ(t) =
1
τ

∫ t

t−τ

y(t′)dt′ (2)

and y(t) is the normalized frequency deviation. By using the
phase deviation x(t), defined as,

y(t) =
dx(t)

dt
(3)

and Eq. (2), we can write the Allan variance as

σ2
y(τ) =

1
2τ2

〈
(x(t + τ)− 2x(t) + x(t− τ))2

〉
(4)

The Allan variance is usually evaluated by using the estimator

σ̂2
y[k] =

1
2k2τ2

0

1
N − 2k

(5)

×
N−2k−1∑

n=0

(x[n + 2k]− 2x[n + k] + x[n])2 (6)

where τ0 is the sampling time, k = τ/τ0 is the discrete-time
observation interval, and N is the available number of samples
of x[n]. This estimator can be evaluated at the observation
intervals

k = 1, 2, . . . ,
N

2
− 1 (7)

where we assume N to be even.
In the bilogarithmic representation, the Allan variance of

the typical clock noise is made by straight lines [10]. For
a white frequency noise, for example, the Allan variance
is proportional to τ−1 = (kτ0)−1. To prove this fact, we
show in Fig. 1 a white frequency noise y[n], and, in Fig.
2, the corresponding Allan deviation σ̂y[k]. The slope −1/2
of the Allan deviation indicates the presence of the white
frequency noise. In Fig. 4 we instead show a white frequency
noise whose variance increases with time. Figure 3 shows the
corresponding Allan deviation. As it can be seen, the slope of
the Allan deviation is still −1/2, and from this plot we might
erroneously conclude that the clock noise is a stationary white
frequency noise.

To overcome this problem, we use the dynamic Allan
variance

σ2
y[n, k] =

1
2k2τ2

0

1
Nw − 2k

(8)

×
n+ Nw

2 −2k−1∑

m=n−Nw
2

E
[
(x[m + 2k]− 2x[m + k] + x[m])2

]

where Nw is the analysis window and E is the expected value.
The DAVAR can be evaluated with the estimator

σ̂2
y[n, k] =

1
2k2τ2

0

1
Nw − 2k

(9)

×
n+ Nw

2 −2k−1∑

m=n−Nw
2

(x[m + 2k]− 2x[m + k] + x[m])2

In Fig. 5 we show the dynamic Allan deviation (DADEV)
σ̂y[n, k] of the frequency deviation in Fig. 1. It can be seen,
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that, aside from the fluctuations due to the estimation process,
the DADEV is a stationary surface, with a slope of −1/2
which indicates a white frequency noise. In Fig. 6 we instead
show the DADEV of the frequency deviation in Fig. 3. We
see that the DADEV is an increasing surface which reveals the
increase in the variance of the frequency deviation. The shape
of the DAVAR changes with respect to the clock anomaly, and
it can hence be used as a diagnostic tool [4].

III. FAST COMPUTATIONAL ALGORITHM

By using a known recursive property of the Allan variance
[7], [8], it is possible to write the DAVAR at time n + 1 as a
function of the DAVAR at time n. We obtain such recursive
formulation for the DAVAR estimator, Eq. (9). An identical
formulation exists for the theoretical DAVAR, Eq. (8).

We start by writing the DAVAR estimator as

σ̂2
y[n, k] =

1
2k2τ2

0

1
Nw − 2k

n+ Nw
2 −2k−1∑

m=n−Nw
2

∆2
k[m] (10)

where ∆k[m] is the discrete second order difference defined
by

∆k[m] = x[m + 2k]− 2x[m + k] + x[m] (11)

The DAVAR estimator at time n + 1 is hence given by

σ̂2
y[n + 1, k] =

1
2k2τ2

0
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2

∆2
k[m] (12)

and we can rewrite as
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y[n + 1, k] =

1
2k2τ2
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2
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+
1

2k2τ2
0

1
Nw − 2k

(
∆2
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)

We recognize the first term to be σ̂2
y[n, k], therefore

σ̂2
y[n + 1, k] = σ̂2

y[n, k] +
1

2k2τ2
0

1
Nw − 2k

(13)

× (
∆2

k[n + Nw/2− 2k]−∆2
k[n−Nw/2]

)

which holds for k = 1, . . . , N/2 − 1. This relationship rep-
resents the desired recursive formulation of the DAVAR. We
note that the term ∆2

k[n + Nw/2− 2k] represents the discrete
difference we must add when the new sample x[n+Nw/2+1]
is available. Similarly, the term ∆2

k[n−Nw/2] is the discrete
difference we must subtract when the sample x[n−Nw/2] is
discarded. At the time n0 at which the DAVAR computation
begins, we must evaluate the Allan variance

σ̂2
y[n0, k] =

1
2k2τ2

0

1
Nw − 2k

n0+
Nw
2 −2k−1∑

m=n0−Nw
2

∆2
k[m] (14)

This Allan variance represents the initial condition of the
recursive procedure given in Eq. (13).

In Tab. 1 we show a comparison between the speed of the
classical algorithm, Eq. (9), and the speed of the fast one, Eq.

(13) and Eq. (14). We consider a time series with an increasing
length N , and a DAVAR with a fixed window length Nw =
N/10. The table shows the computational time obtained on
an Intel Core 2 Duo processor, with a 2.53 GHz clock. It can
be seen that, as N grows, the fast algorithm outperforms the
classical one.

N DAVAR [s] Fast DAVAR [s]
102 2.9× 10−3 3.2× 10−4

103 0.28 4.8× 10−3

104 117 0.29

IV. CONCLUSION

The dynamic Allan variance, or DAVAR, is a tool that can
be used to monitor the behavior of an atomic clock. When
an anomaly occurs, in fact, the DAVAR surface changes as a
function of the type of anomaly occurred. A critical point is the
computational time. In this paper we develop a fast algorithm
for the computation of the DAVAR. The performances of the
proposed algorithm are far superior to those of the classical
one. The fast algorithm can be extended to the case of missing
data [11]. We will present this extension in a forthcoming
paper.

The fast algorithm can be useful in a variety of situations.
First, when long time series must be analyzed. Secondly, when
a large number of clock must be monitored, as happens, for
instance, in satellite navigation systems, where dozens of space
and ground clocks must be observed and analyzed in real
time. Finally, the fast algorithm can be employed when little
computational power is available, such as onboard a satellite.
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Fig. 1. Simulated white frequency noise y[n]. The noise is stationary.

Fig. 2. Allan deviation of the frequency deviation shown in Fig. 1. The slope
of the Allan deviation is −1/2, which correctly indicates a white frequency
noise.

Fig. 3. A simulated white frequency noise with a variance that increases
with time.

Fig. 4. Allan deviation of the clock noise shown in Fig. 3. The slope of the
Allan deviation is still −1/2. From this plot we might erroneously conclude
that the frequency deviation is a white frequency noise.

Fig. 5. Dynamic Allan deviation of the clock noise shown in Fig. 1.

Fig. 6. Dynamic Allan deviation of the clock noise shown in Fig. 3.
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