ME 57500 SYLLABUS

THEORY AND DESIGN OF CONTROL SYSTEMS

Fall Semester 2020

INSTRUCTORS: George T.-C. Chiu, ME 3061C, (765) 494-2688

E-mail: gchiu@purdue.edu

TA: TBD, E-mail: TBD

Office Hour: TBD

COURSE TEXT: Feedback Systems: An Introduction for Scientists and Engineers, Karl J. Åström

and Richard M. Murray, 2nd Ed. (available on-line)

Lecture handouts will be posted to the course website.

RECOMMENDED REFERENCE:

Multivariable Feedback Control: Analysis and Design, Sigurd Skogestad and Ian

Postlethwaite, Wiley, 2nd Ed., 2005. (paperback version)

PREREQUISITE: ME475 or the consent of the instructor.

OBJECTIVES: This course is to review and introduce analysis and synthesis tools for continuous-time linear time-invariant (LTI) control systems:

 Analysis - state space and input/output representations, time and frequency domain, stability, robustness and sensitivity

 Synthesis - input/output or frequency domain, state feedback control, state observer, observer-based compensator

GRADING POLICY:

Homework 35% Midterm Exam (Take home) 25% Final Exam (Take home) 40%

HOMEWORK POLICY:

We will be using Gradescope (http://www.gradescope.com) to handle homework submission and grading. Homework is to be uploaded by the designated deadline. No late homework will be accepted. There will be, on average, one homework set every two weeks. Since assigned homeworks are an integral part of the course content, they are to be an individual effort. However, discussion is strongly encouraged. Each homework problem must begin on a new page. You must receive a passing homework grade (60%) to pass the course. The lowest homework grade will be dropped when computing the overall homework average.

MIDTERM EXAM: There will be one midterm exam during the semester. It will be a take home exam. There will be no makeup examination.

FINAL EXAM: The final take home exam will be comprehensive. Time, date, and duration will be announced.

COMPUTER USAGE:

Course communication is going through the Purdue Brightspace web site at https://purdue.brightspace.com/. When login with your Purdue Career account you should be able to access the ME57500 site. Course announcements, lecture notes, homework are posted there. You should check the web site at least once a day.

George Chiu © 2020 Page 1 of 2

You will be expected to use MATLAB/SIMULINK for some of the homework assignments and the course project. There is a self-paced MATLAB tutorial on the Web. The tutorial can be accessed through http://ctms.engin.umich.edu/CTMS/.

ON-LINE ACCESS: The course will be offered on-line in a semi-asynchronous manner within a given week to accommodate for different time-zones and individual situations. Homework and exam will still have a fixed due date/time. Lecture videos (in multiple segments) will be posted to the course website. We will schedule on-line office hours through the new Purdue LMS system, Brightspace. Since this is our first experience with Brightspace, several backup options such as Zoom and/or Slack for on-line communication will also be considered. We will give them a try during the first week of class.

TENTATIVE COURSE OUTLINE (AS OF JULY 2020)

Week	Date	Tentative topic	Homework
Week 1	08/25/20	Introduction	
	08/27/20	Feedback control	HW0 due
Week 2	09/01/20	Modeling	
	09/03/20	Modeling	
Week 3	09/08/20	Dynamic response	
	09/10/20	Dynamic response	HW1 due
Week 4	09/15/20	Transfer function	
	09/17/20	Transfer function	
Week 5	09/22/20	Frequency analysis	
	09/24/20	Frequency analysis	HW2 due
Week 6	09/29/20	Frequency analysis	
	10/01/20	Pole placement	
Week 7	10/06/20	PID control	
	10/08/20	Frequency domain design	HW3 due
Week 8	10/13/20	Frequency domain design	
	10/15/20	Miterm exam break	
Week 9	10/20/20	Robust performance	
	10/22/20	Robust performance	HW4 due
Week 10	10/27/20	Robust performance	
	10/29/20	Stabiilty	
Week 11	11/03/20	Linear systems	
	11/05/20	Linear systems	HW5 due
Week 12		State feedback	
	11/12/20	State feedback	
Week 13	11/17/20	Output feedback	
	11/19/10	Output feedback/LQR	HW6 due
Week 14	11/24/20	LQR/LQG	
	11/28/20	Thanksgiven break	
Week 15	12/01/20	DOB	
	12/04/20	Review	HW7 due

George Chiu © 2020 Page 2 of 2