Sample Syllabus ME559 Micromechanics of Materials Professor Thomas Siegmund

Specific dates for the units listed below will depend on the actual semester start/ end date but will follow the sequence provided here.

Introduction

Unit 1: Introduction to Micromechanics of Materials

Basic Composite Mechanics

- Unit 2: Unidirectional Composites, Elastic Properties
- Unit 3: Unidirectional Composites, Elastic Properties
- Unit 4: Unidirectional Composites, Shear Modulus, Poisson's Ratio, Yield
- Unit 5: Unidirectional Composites, Failure
- Unit 6: Unidirectional Composites, Thermomechanical Properties
- Unit 7: Material Property Spaces
- Unit 8: Shear Lag Model
- Unit 9: Shear Lag Model
- Unit 10. Size Effects in Composites: Smaller is Stronger

Micromechanics of Multiphase Materials

- Unit 11: Homogenization I: Representative Volume Element Concept, Averaging
- Unit 12: Homogenization II: Basic Equations
- Unit 13: Eigenstrains
- Unit 14: Eigenstrains Thermal Strains
- Unit 15: Eigenstrains Mechanical Loading
- Unit 16: Dilute Approximation
- Unit 17: Dilute Approximation
- Unit 18: Self Consistent Model
- Unit 19: Mori Tanaka Method
- Unit 20: Mori Tanaka Method

Architectured Material Systems

- Unit 22: Cellular Solids Introduction
- Unit 23: Honeycomb Structures Elastic Properties
- Unit 24: Honeycomb Structures Nonlinear Properties
- Unit 25: Honeycomb Structures Nonlinear Properties
- Unit 26: Honeycomb Structures Failure
- Unit 27: Properties of Foams
- Unit 28: Foams, Thermal Shock Properties: Case Study
- Unit 29: Foams, Energy Absorption: Case Study
- Unit 30: Generalization to Lattice Materials
- Unit 31: Mechanics of Lattice Materials

- Unit 32: Segmentation and Assembly as a Material Design Concept
- Unit 33: Mechanics of Segmented and Topologically Interlocked Material Systems
- Unit 34: Mechanics of Segmented and Topologically Interlocked Material Systems
- Unit 35: Mechanics of Segmented and Topologically Interlocked Material Systems

Damage Mechanics as an Example of Mechanics with Evolving Microstructure

- Unit 35: Introduction to Damage Mechanics
- Unit 36: Introduction to Damage Mechanics
- Unit 37: Damage as Internal Variable
- Unit 38: Methods for Determination of Damage
- Unit 39: Thermodynamics of Damage
- Unit 40: Damage Equivalent Stress
- Unit 41: Kinetic of Damage Evolution
- Unit 42: Ductile Fracture Models

Unifying Concepts

Unit 43: Material Design Combining Composition, Shape, Assembly

Unit 44: Material Design Combining Composition, Shape, Assembly