Notice: For the latest information and guidance on Purdue's response to COVID-19 please visit:

Micro- and Nano-scale Energy Transfer Processes


Credit Hours:


Learning Objective:

Students in this course will: (1) Gain an understanding of the fundamental elements of solid-state physics and quantum mechanics. (2) Develop skills to derive continuum physical properties from sub-continuum principles. (3) Apply statistical and physical principles to describe energy transport in modern small-scale materials and devices.


This course provides a detailed treatment of the transport of energy in micro- and nano-scale structures. The physical nature of energy transport by three carriers (electrons, phonons, and photons) is explored from first principles, as well as interactions among these carriers. Bulk material properties, such as thermal and electrical conductivity, are derived from statistical particle transport theories, and the effects of spatial confinement on these properties are quantified. Following the treatment of fundamental physical principles, the course focuses on contemporary engineering applications, such as interfacial heat transfer, heat transport in semiconductor materials, quantum wells and wires, and direct energy conversion devices such as thermionics. The applications are interdisciplinary in nature and do not presume prior expertise.

Topics Covered:

Introduction and preliminaries; Lattice structure, phonons, electrons; Carrier Statistics; Basic Thermal Properties; Landauer Transport Formalism; Carrier Scattering and Transmission; Transport in Graphene; Heat Flow in Semiconductor and Solid-State Energy Conversion Devices.


An undergraduate degree in engineering or science. Some prior exposure to thermodynamics and/or heat transfer is helpful but not required..

Applied / Theory:

25 / 75

Web Address:

Web Content:

A link to current course website and grades.


Bi-weekly (accepted via the internet).


Can be job-related and involves the preparation of a final project report in journal paper format (4000 to 8000 words).


Two midterms and a final project.


Official textbook information is now listed in the Schedule of Classes. NOTE: Textbook information is subject to be changed at any time at the discretion of the faculty member. If you have questions or concerns please contact the academic department.

Computer Requirements:

Must be able to access nanoHUB-U and use tools therein.

ProEd Minimum Requirements:


Tuition & Fees: