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Overview

This document provides additional details that complement the main paper. We discuss the steps used
to synchronize and calibrate the visual data in Section A. Section B elaborates on the details of UWB
localization, heading direction estimation, and obtaining the reference for lying behavior. In Section C,
we explain the rationale for defining the ground truth, as well as providing a detailed derivation of
visual localization. In Section D, we provide further details on benchmarks and implementation, along
with analyses of the experimental results. Finally, we discuss the ethical considerations, utilization,
generalizability, and limitations in Section E, as well as an additional visualization tool in Section F.

We keep the order of figures, tables, and equations in numerical, and refer to them independently
from the main paper unless explicitly stated otherwise. The sections in this document are kept in
alphabetical order.

The paper checklist is attached as the final part of the main paper. The dataset and the code for
benchmarks are available at https://github.com/neis-lab/mmcows

A Visual Data Processing

We discuss additional details of processing the visual data and calibrating four camera views.

Visual data synchronization and timestamp alignment. We synchronize image frames from
independent cameras using Internet time. During the deployment, we periodically placed an Internet-
time-synchronized clock in front of the camera views, where the locations of the frames that captured
the clock are pinpointed during post-processing for frame alignment and timestamp synchronization.
The cameras recorded the Internet time every two to three days, totaling 16 clock records for all
cameras. To ensure the high quality of the images, we turned off the cameras for a few minutes
each time to clean the lens to prevent dust from building up. The synchronization satisfied three
requirements: the resulting timestamps of the frames match exactly with the clock information in
the images, the total number of available and missing frames in a single day is equal to the total
number of seconds in one day, and the timestamps of light-turning-on and -off events in the pen at
night remain consistent throughout the deployment. After the synchronization, the recorded videos
were extracted as images and cropped from 5.1k to 4.5k.
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Figure 1: Calibration for Cameras #1 (left) and #3 (right) with the ground truth and reconstructed
points that are projected from the 3D world to the camera views along with the ground grid (the axes
represent pixel locations).

Since the ultra-wideband (UWB) distance measurements are synchronized and the timestamps
are known, we also maintain a separate set of images that are captured at the same time as the
UWB measurements throughout the deployment, with a sampling interval of 15 seconds, called
UWB-synced frames.

Camera calibration. As location data is an important part of this dataset, we also provide projection
matrices for transforming 3D points in the world coordinates to 2D points on the camera views and
vice versa. The projection matrices are derived from direct linear transformation using 3D coordinates
of 33 points measured around the pen and their corresponding 2D locations of pixels in each camera
view. The 3D measured points and the corresponding reconstructed points, along with the ground
grid, are illustrated in Figure 1.

B Obtaining the Secondary Data

The measured data, such as UWB distances, magnetic field, and ankle acceleration, require additional
processing steps to extract meaningful data for inferring cows’ activities. In this section, we describe
the processing methods applied.

B.1 3D localization using UWB

UWB-based locations are retrieved from the distances measured between each tag and multiple
stationary anchors. To perform the UWB distance measurements, the tag initiates a two-way ranging
session with each of the eight anchors consecutively. In each ranging session between a tag and an
anchor, the tag performs five measurements for oversampling. In addition to the distance from the tag
to the anchor, other parameters are also collected, such as the number of successful measurements,
the average line-of-sight probability, and the average received signal strength.

From eight stationary UWB anchors, we define two groups of anchors for localization based on their
IDs: [1,2,4,6,7] and [2,3,5,7,8]. When calculating the location of a cow, only the group with a shorter
total distance to the tag is selected for localization.

In order to compute the optimal location of a cow using UWB distances, the 3D location is iteratively
computed using an optimization-based localization approach. To find the location of a mobile tag
in a positioning system with N anchors, let (xt ,yt ,zt) represent the location of the tag, and (xi,yi,zi)
represent the location of the i-th anchor among N stationary anchors. The position of the tag is
determined by minimizing the loss function:

f (xt ,yt ,zt) =
N

∑
i=1

(√
(xt − xi)2 +(yt − yi)2 +(zt − zi)2 −di

)2

(1)

where di is the distance between the tag and the i-th anchor. To minimize the loss function, the
gradient is determined based on the following partial derivatives of the loss function:
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∂ f
∂xt

= fx(xt ,yt ,zt) =
N

∑
i=1

2(xt − xi)(
√

(xt − xi)2 +(yt − yi)2 +(zt − zi)2 −di)√
(xt − xi)2 +(yt − yi)2 +(zt − zi)2

(2)

∂ f
∂yt

= fy(xt ,yt ,zt) =
N

∑
i=1

2(yt − yi)(
√

(xt − xi)2 +(yt − yi)2 +(zt − zi)2 −di)√
(xt − xi)2 +(yt − yi)2 +(zt − zi)2

(3)

∂ f
∂ zt

= fz(xt ,yt ,zt) =
N

∑
i=1

2(zt − zi)(
√

(xt − xi)2 +(yt − yi)2 +(zt − zi)2 −di)√
(xt − xi)2 +(yt − yi)2 +(zt − zi)2

(4)

We then use AdaGrad [1] with the recursive functions as follows:

xn = xn−1 −
η fx(xn,yn,zn)√
∑

n
i=1 fx(xi,yi,zi)2

(5)

yn = yn−1 −
η fy(xn,yn,zn)√
∑

n
i=1 fy(xi,yi,zi)2

(6)

zn = zn−1 −
η fz(xn,yn,zn)√
∑

n
i=1 fz(xi,yi,zi)2

(7)

where η is the step size. After a certain number of iterations, the optimal location of the tag is
obtained.

The accuracy of UWB 3D localization is evaluated using two reference tags, based on the Circular
Error Probability at the 95% level (CEP-R95), which is defined for each tag as the radius of a circle
centered on the mean position of all 3D locations in which 95% of the locations fall within [2]. The
CEP-R95 of the two reference tags (ID: #13 and #14) throughout the experiment is 8.31 cm and
8.44 cm.

B.2 3D direction of the cow’s head

For the first time, we provide the head direction that complements the neck location to offer more
insights into cattle behaviors. As the cows’ movements are very slow and they spend most of
their time staying still, we assume the acceleration vector recorded by the inertial and magnetic
measurement unit (IMMU) represents the direction of the Earth’s gravity, which is vertical in the 3D
coordinate. Additionally, the direction of the Earth’s magnetic field is also consistent throughout the
deployment. As the gravity and magnetic directions are non-parallel and consistent, they are used as
reference vectors for the cow’s head direction. Data from the IMMU are used to compute the head
direction in roll, pitch, and yaw. We use the tilt-compensated eCompass [3] to extract the cow’s head
direction. The heading direction was calculated in the North-East-Down (NED) coordinate system
and subsequently converted to the East-North-Up (ENU) coordinate system to remain consistent with
UWB and visual locations.

Due to the geographic location of the deployment site being at a high latitude of 43°N 89°W, the
magnetic vector points downward at a large inclination angle of 69° [4], leaving the relative angle
between the two reference vectors at about 21°. As a result, any distortion of the magnetic field occurs
when the sensor is too close to a big metal structure like the feed lock, or any sudden movement of
the cow could reduce the relative angle between the two vectors, resulting in a wrong estimation of
the head direction. Therefore, the head direction data should not be used when the relative angle is
smaller than a certain value, e.g. 10°. When the relative angles smaller than 10° are filtered out, the
availability of the head direction data from ten neck tags varies from 82% to 96%.

B.3 The reference for lying behavior

In precision livestock farming (PLF), using the accelerometer to measure the lying duration of swine
and cattle is a common approach [5, 6]. Ten out of 16 cows are equipped with ankle sensors that
measure three-axis acceleration, which indicates the direction of the Earth’s gravity. The ankle sensors
were mounted such that the y-axis points downward and is parallel to the leg’s orientation. When the
cow stands upright, this axis will have maximum readings at around 1 g. When the cow is lying, either
on the right or left side, the readings on the axis will be at a minimum. The maximum and minimum
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Figure 2: Examples of seven behaviors of the cows: 1-walking, 2-standing, 3-feeding head up,
4-feeding head down, 5-licking, 6-drinking, and 7-lying, with 0 indicates the behavior is unknown

readings form two clusters, where K-Means clustering is used to determine a middle threshold. The
cow is detected as lying when the reading is smaller than the threshold and non-lying otherwise.
When compared to manually annotated lying behavior ground truth in Section C, the average accuracy
of ankle-based lying detection from ten cows in one day is 99.75%. The effectiveness of this approach
allows the ankle acceleration to be used as a reference for the lying behavior during 14 days of the
deployment.

C Further Details of the Ground Truth

We discuss further details on how the cow ID and behavior ground truth were created.

C.1 Ground truth for cow identification

We selected UWB-synced frames from four cameras on July 25th from 2:57:18 AM to 11:57:17 PM,
when the lighting was available for cow ID annotation and behavior labeling, totaling 20,000 frames.
The annotation rules focus on cow identification in such a way that we only annotate a non-lying cow
if there is a visible portion of the cow’s body with a recognizable pattern that is significant enough
for the cow ID to be deemed identifiable. When the cows are lying in the stalls, their bodies are often
heavily occluded by one another. This makes it more challenging to identify the cow as a model
cannot rely on the body pattern to identify the cow. In this case, tracking the cow from a standing
position as it transitions to lying might help identify the cow better. As a result, we annotate the cows
as long as their body shape is visible so that the cow can be detected accurately. Out of a total of
213,000 bounding boxes of lying and non-lying cows, the number of bounding boxes for each cow
varies from 10,000 to 15,000. On average, there are 10.6 annotated cows per frame.

As the cows are observed at different viewing angles and directions in their natural positions,
identifying cows is more challenging compared to the case when using top-view images of cows. In
many instances, one standing cow could be occluded by one or a few other cows, and the size of
the cow appears differently in each camera view. The annotators were trained to follow our strict
annotation rules to ensure consistency. The details and visual examples of the annotation rules will
be made available on the dataset website. We used the VGG Image Annotator (VIA) to annotate the
cow IDs [7, 8].

C.2 Ground truth of individual cows’ behaviors

For labeling cow behaviors, we define seven behaviors: walking, standing, feeding head up, feeding
head down, licking, drinking, and lying. The definitions, visual examples, and statistics of the
behaviors are provided in Table 1, Figure 2, and Table 2, respectively. The behavior is labeled as zero
when the cow is not visible in any camera view, which only happens when she leaves for milking
twice per day or when the light is off from 11:57:19 PM to 2:57:17 AM.
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Table 1: Behavior definitions of cows observed in isometric views

# Behavior Definition

0 Unknown When the cow is not visible in any camera view
1 Walking Moving from one location to another between consecutive frames
2 Standing The legs are straight up, and the head is not at the feeding area
3 Feeding head up The head is at the feeding area and the mouth is above the food
4 Feeding head down The head is at the feeding area and the mouth touches the food
5 Licking Licking the mineral (salt) block
6 Drinking Drinking at a water trough, when the mouth touches the water
7 Lying The cow is lying in the stall

Table 2: Statistics of cow behaviors in one-day ground truth data at two different sample rates

Sampling rate Behaviors

Walking Standing Feeding↑ Feeding↓ Drinking Licking Lying

1 s (full ground truth) 1.48% 25.21% 7.00% 11.41% 0.70% 1.23% 52.98%
15 s (UWB synced) 1.43% 25.16% 6.93% 11.49% 0.70% 1.21% 53.07%

During feeding, the cows also stand, but they are labeled as feeding for the purpose of behavior
separation. We separate feeding behavior into ‘feeding head up’ and ‘feeding head down’ because
sometimes cows do not feed even when their heads are above the food. It has been shown that cows
only feed from 68% to 88% of the time while staying in the feeding area [9]. When the head is
above the food, the cow could be chewing, and this behavior separation can be used to obtain a more
fine-grained feeding duration such that the cow can be assumed to feed while the head is above the
food for a certain number of seconds following the last moment when the cow took in the food with
its head down.

The labeling process is thoroughly conducted to ensure accuracy and consistency across behavior
labels generated by multiple annotators before, during, and after the labeling process. Before labeling,
the annotators underwent an extensive training process where they distinguished between true positive
and false positive cases of each behavior from various viewing angles. They were required to pass a
screening test in which they had to track and assign correct behaviors of a cow that moves between
other cows around the pen for a long duration. During labeling, the annotated cow IDs are added to
the footage at which they show up every 15 frames to help the annotator accurately track the cow of
interest. After labeling, another annotator is assigned to cross-check the labels to ensure that a cow
only switches between behaviors that can only be performed at the same location–between drinking
and standing, between feeding head up and feeding head down, and between licking and standing.

C.3 Visual localization and location ground truth

As locations are important in inferring cows’ behaviors, our goal is to provide a reliable location
ground truth. Since the bounding boxes and IDs have been manually and thoroughly verified during
the annotation, they can be used to extract the most accurate locations of the cows. We define the
location ground truth as the central location of the cow’s body, which is typically observed at the
center of the annotated bounding box in each camera view. We propose a new optimization-based
approach to calculate the 3D body location using annotated bounding boxes of the same cow in
multiple camera views. The location is derived by projecting the bounding box centers to the world
coordinate system as 3D lines that inherently converge. We then apply AdaGrad to find the optimal
location, which is nearest to the lines, resulting in the 3D body location.

To find this 3D point, from the projection matrix of a camera P = [M|p4], the camera location in the
3D world is C0 =−M−1 p4 [10]. The projection line of the bounding box center is represented as

C =C0 + tv (8)

where C is any point on the line, v is the direction vector of the line, and t is the scaling factor. Given
point Q outside of the line, we need to find the distance from Q to the line. Assuming the nearest
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Figure 3: 3D visual localization of multiple cows using multi-view images. The lines with the same
color represent the centers of bounding boxes of the same cows in different views.

point on the line to Q is K, this point can be found by projecting
−−→
C0Q on the line:

t0 =
−−→
C0Q · v⃗
||⃗v||2

(9)

K =C0 + t0v, (10)

which can be used to calculate the distance from point Q to the line, d(Q,K). With N lines from N
camera views where the bounding box centers are visible, the objective function that needs to be
minimized is:

f (x,y,z) =
N

∑
i=1

d(Q,Ki). (11)

To minimize the total distance from point Q to the lines, point Q needs to move in the direction of−−→
QKi (1 ≤ i ≤ N). In this case, the total gradient is:

∇ f (x,y,z) =
N

∑
i=1

−−→
QKi

||−−→QKi||
. (12)

By applying AdaGrad [1], after each iteration, Q will move closer to the optimal location of the
bounding box centers in the 3D world coordinate:

Qn = Qn−1 −
η∇ f (xn,yn,zn)√
∑

n
i=1 ∇ f (xi,yi,zi)2

(13)

where η is the step size. The final location is used as the ground truth of the cow’s body location.
Figure 3 illustrates the projected lines from four cameras to the 3D world and the optimal locations
of multiple cows.

This approach requires the cow to be visible in at least two camera views, which is true for all cows
87.5% of the time on the chosen day July 25th. When the cow is only visible in one camera view
(12.5% of the time, which mostly happens when the cows are lying), the location is calculated by
projecting the center point to the 3D world coordinate at an assumed height. The assumed height is
set differently for lying and non-lying cows. We find the most representative values of the z-direction
of the visual locations for lying and non-lying cows 55 cm and 80 cm, respectively, calculated using
at least two camera views. The values are used as the assumed height depending on whether the cow
is lying or non-lying. Only 2.5% of the time is the bounding box of a cow not available in any camera
view. The cows are available 22.5%, 27.4%, and 35.1% of the time in two, three, and four camera
views, respectively.

Figure 4 shows the heat maps of UWB neck locations and visual body locations of the cows on July
25th. The body locations of the cows are perfectly located inside the pen area except for a few data
points at the top-left corner where the cows move out of the pen for milking, while their locations are
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Figure 4: Heat maps of 54,000 UWB neck locations of 10 cows (left) in 23 hours and 74,000 visual
body locations of 16 cows (right) in 20 hours on July 25th (no data during two milking sessions that
totaled one hour for both types, and during three hours of light off for visual locations)

clearly separated in the stall area where they stand or rest, demonstrating the high accuracy of visual
localization. The UWB neck locations are reliable enough as the cows can stick their neck out of the
pen during feeding, except for data points outside of the feeding area, which we discuss further in
Section E.

For multi-view multi-cow visual localization using vision models, the 3D visual body location can be
converted to an indexed-grid location by removing the z-axis and assigning it to the corresponding
2D indexed ground grid. The newly indexed location can be used as the ground truth for training and
benchmarking the localization accuracy of multi-view visual localization models.

D Details of Benchmark and Implementation

D.1 Comparison of modalities for behavior classification

In this section, we describe in detail the implementation of the models and result analyses. We
utilized PyTorch, TensorFlow, and Scikit-learn to implement the models [11, 12, 13]. Intel Xeon
Gold 6138 CPU @ 80x 2GHz and NVIDIA Tesla V100 SXM2 4x are used. The training code and
pre-trained model will be made open source. Both the primary data and secondary data will be
released to the public. The dataset will be made available under the following Creative Commons
license: Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) [14]. The code will be made
available under the MIT open-source license [15].

Evaluation metrics. We discuss further how the F1 score is calculated in RGBs and RGBm, as they
involve cow identification. Instead of evaluating the performance of a single behavior classification
model, we evaluate the F1 scores of the whole pipeline, where both the cow ID and its behavior need
to be predicted accurately.

In the case of RGBs, considering a single frame, the model is expected to correctly detect, classify,
and identify the visible cows in the frame. The results are then compared to the annotated IDs and
behavior labels, i.e., the available bounding boxes and IDs in the ground truth of the frame, as well as
the corresponding ground truth behavior labels. For every cow that is available in the ground truth,
if it is also available among the predicted cows, the corresponding predicted behavior label will be
compared against the ground-truth behavior label for computing the F1 scores. If the cow is not
found among the predicted cows, the predicted behavior is considered unknown (denoted as 0). We
discard all predicted cows that are not present among the cows in the ground truth.

For RGBm, the list of available cows in the ground truth is combined from all four annotated labels
from four camera views that were taken at the same time. We then perform the same process as
for the RGBs to calculate the F1 scores. Computing the F1 score in this way ensures that if the
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Table 3: Ten groups of data using temporal split (TS) in the first fold of cross-validation

Group Train Val Test

Artificial light {1} 2:57–4:30 {2} 4:30–6:00 {3} 18:00–20:00 {4} 20:00–22:00 {5} 22:00–23:57
Natural light {6} 6:00–8:24 {7} 8:24–10:48 {8} 10:48–13:12 {9} 13:12–15:36 {10} 15:36–18:00

Table 4: Performance of the four vision models in RGBs

Model mAP[0.5:0.95] ↑ Average F1 ↑

Cow detection .729±.014 -
Cow detection .729±.014 -
Behavior classification - .678±.025

Lying cow identification - .540±.060

Non-lying cow identification - .942±.011

model cannot detect the cow, the predicted behavior label is assigned zero even though there is no
information about the cow being aggregated through the pipeline.

Split settings. In object-wise split (OS), ten cows are grouped into pairs based on cow IDs {1,2},
{3,4}, {5,6}, {7,8}, and {9,10}. In the first fold of cross-validation, the cow IDs for training,
validation, and testing are {1,2,3,4,5,6:7,8:9,10}. We shift the order by one pair in each fold such
that in the second fold, the order is {3,4,5,6,7,8:9,10:1,2}, and so on. In some models where the
validation is not needed, the validation set is concatenated to the test set.

In the temporal split (TS), because of the differences in the appearance of cows in the RGB data under
different lighting conditions, the data from each modality is divided into two groups based on two
lighting conditions: artificial light and natural light. The data from each modality is separated into ten
chunks ({1} to {10}) as shown in Table 3. In the first fold of cross-validation, the training, validation,
and testing sets based on chunk IDs are {1,2,3,6,7,8:4,9:5,10}. We then shift by two chunks in each
subsequent fold such as {2,3,4,7,8,9:5,10:1,6} and so on.

To ensure that the algorithms do not learn cow-specific behaviors, OS is used that excludes two cows
from the first ten cows in each validation fold for behavior classification. In other words, this is
similar to leave-one-cow-out cross-validation. We use OS for non-vision data, but not for vision
data, because our vision pipeline performs identification and behavior classification at the same time,
making it difficult to apply OS validation. The cow identification models are trained using only TS
as the data from all cows are required. A different vision pipeline with separate identification and
behavior classification could be designed, where behavior classification is completely ID-agnostic,
but we leave this potential approach out of the scope of this work.

UWB. We use a Random Forest (RF) model with balanced weights, where the classes are weighted
inversely proportional to their popularity in the data. UWB data at 15 seconds intervals are used,
where each location point is associated with a specific behavior. In the UWB’s results, the average F1
score is about .712 with low error rates. The drinking score is lower while the error rate is higher,
which can be explained by the fact that the cows often stand with their neck above the water trough
but do not always drink, creating confusion between standing and drinking.

IMMU. We truncated the acceleration data into 10-second windows with an overlap of 50%, making
each data sample 5 seconds apart. Discrete wavelet transform is used to extract the approximation
and detail coefficients of the acceleration [16]. The wavelet coefficients are concatenated with the
relative angle between the acceleration and magnetic vector, which is derived from the head direction
data. The data includes four features, which are normalized separately. The behavior label is selected
from the timestamp at the middle of each window. We employ a fully connected network that consists
of four layers with 300, 256, 127, and 7 neurons. All activation functions are ReLu except for the
final layer. A dropout layer and batch normalization are added after each fully connected (FC) layer
(excluding the final layer) to reduce the dependency on specific neurons.

We conducted an independent test of IMMU using a random split of data from a single cow that
showed an average F1 score of .605 which is comparable to UWB. However, IMMU performs worst
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Figure 5: Processing pipelines of RGBs (top) and RGBm (bottom) for visual cow identification and
behavior classification

in both OS and TS despite having more features. This low performance shows the poor transferability
of IMMU among cows.

RGBs. As shown in Figure 5, the computer vision-based behavior monitoring pipeline consists of 3
stages: cow detection, behavior classification, and cow identification.

In the first stage, we employ YOLOv8 [17] as an object detector to detect cows in a video frame.
YOLOv8 predicts the bounding box coordinates of cows that are present in the image. The model was
trained for 20 epochs using the default training parameters provided in [17]. To ensure robustness
and generalizability, we used temporal split (TS) as described previously and trained five YOLOv8
models based on five different timings of train, validation, and test splits, achieving a mean Average
Precision (mAP) of .729±.014, as shown in Table 4.

Once the bounding boxes of cows are predicted, the detected cows are cropped from the image and
fed into the behavior classifier. The behavior classifier is a convolutional neural network (CNN)
tasked with classifying the predicted cows into one of seven behaviors, namely walking, standing,
feeding head up, feeding head down, drinking, licking, and lying. We use EfficientNet-B0 [18]
for this task due to its balance between performance and computational efficiency. The cropped
detections that form the input to the classification model are resized with padding to 224×224 and
normalized using the mean and standard deviation computed using the training data split. The model
is trained using a categorical cross-entropy loss function and Adam optimizer with a learning rate
of .001 for 15 epochs. The same five-fold temporal split (TS) configurations were used to train and
test the model, and an F1 score of .678±.025 was obtained for the behavior classification task when
tested independently on the test split of behavior classification data. Table 5 shows the class-wise
performance of the behavior classification model.

The detected cows cropped from the original images are classified into one of 16 classes, where each
class represents an individual cow identity. For this stage, we train two separate image classification
models: one to predict the identity of non-lying cows and another for lying cows. The model
architecture used for cow identification, i.e., EfficientNet-B0 [18], is the same as that for behavior
classification. Using two different models instead of a single model accounts for the significant
differences in appearance between non-lying and lying cows, which could impact the model’s ability
to accurately differentiate between individual identities. The model is trained using a categorical
cross-entropy loss function and Adam optimizer with a learning rate of .001 for 15 epochs. The model
was trained and tested using the same five-fold temporal split (TS) configurations as the previous
two stages. F1 scores of .540±.060 for lying cows and .942±.011 for non-lying cow identification
were obtained when the models were tested independently using test data for cow identification.
Table 6 shows the ID-wise performance of the cow identification models. During inference, the
behavior classification model’s prediction determines which cow identification classifier to use. If the
predicted behavior is ‘lying’, the lying cow classifier is used. For all other behaviors, the non-lying
cow classifier is used.

UWB+HD. We combine the uwb and head direction (hd) to create the training data, where hd is
downsampled to a sampling rate of 15 seconds. We also use Random Forest (RF) with balanced
weights that result in a slight improvement in all behaviors compared to the performance of UWB.
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Table 5: Performance of the behavior classification model

F1 score ↑

Walking Standing Feeding↑ Feeding↓ Drinking Licking Lying

All cows .179±.062 .901±.030 .704±.040 .819±.024 .591±.161 .569±.066 .986±.007

Table 6: Performance (F1 score) of the two visual cow identification models

Cow ID Non-lying cow identifier Lying cow identifier

1 .954±.010 .584±.142

2 .956±.021 .566±.163

3 .958±.008 .656±.231

4 .966±.031 .568±.193

5 .968±.019 .533±.276

6 .901±.026 .240±.192

7 .935±.012 .458±.269

8 .967±.013 .570±.301

9 .961±.024 .326±.218

10 .948±.033 .476±.119

11 .833±.051 .702±.111

12 .975±.008 .580±.190

13 .977±.009 .802±.090

14 .899±.031 .438±.092

15 .967±.017 .448±.150

16 .906±.026 .622±.125

UWB+HD+Akl. We use the same data format and model as in UWB+HD but incorporate the
additional ankle data which was up-sampled from 1-minute to 15-second intervals. The results
showed improvements in all behaviors with lower error rates.

RGBm. We use multiple views of the cow at the same time instance to predict the behavior. Each
frame is processed by RGBs to produce bounding boxes with cow IDs. For each predicted bounding
box of the same cow, the center is projected to the world coordinate as a 3D line. We use visual
localization to find and exclude the projection line that does not converge with other lines. We then
implement weighted voting to determine the final cow’s behavior where the weight is proportional to
the width of the bounding box.

RGBm demonstrated a noticeable improvement from RGBs in all behavior classes as knowledge from
multiple views is combined, while visual localization ensures that the same cow is being asserted
among the views. Even though the performance of RGBm was not as high as UWB, it still holds
great potential in advancing precision livestock farming (PLF) with the benefits of being low-cost,
animal-friendly, and scalable.

D.2 Behavior analysis

We used UWB+HD+Akl to extract the behaviors of ten cows throughout the deployment. An example
of a cow’s behavior changes is shown in Figure 6, where the daily total duration of standing fluctuated
in the same trend as the THI.

Method. The behaviors are pre-processed before being analyzed. For dairy cattle, the changes in a
cow’s position between behaviors for a short duration often create time gaps that segment the behavior
into multiple sub-bouts, which can cause errors in calculating the number of bouts. To improve the
accuracy, we used a custom moving-window filter that smooths out the behavior, such that the cow
is considered as doing a certain behavior if the behavior is detected twice within a given window.
A window size of 12 minutes is used for both standing and feeding behaviors, while a window of
seven minutes is used for drinking. Figure 7 illustrates the smoothing process using this filter. The
smoothed data is only used to calculate the number of bouts, whereas the duration of each bout and
the total behavior duration are computed using the raw behavior data.
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Figure 6: Behavior changes of cow #2 throughout the deployment where 100% corresponds to a
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Figure 7: Feeding behavior of cow #10 before and after being smoothed out

Results. We confirm significant correlations between the cow behavior changes and THI as reported
in Table 4 of the main paper. With r values of .726 and .678, the mean duration of standing bouts
and total standing duration are strongly affected by the THI. Their correlations are also statistically
significant, as the p-values are very small. The R2 values, around .500, show that these parameters
are predictable using THI, given the high natural variability between cows. These results confirm that
cows stand longer when THI increases [19, 20, 21]. Similarly, the strong negative r values between
lying and THI further verify that cows spent less time lying when THI was higher [22, 23].

Regarding feeding behaviors, we observe strongly correlated r values (|r|>.500) for feeding fre-
quency and mean feeding duration. Given the low p-values, this suggests that cows often increase
feeding visit frequency but reduce feeding duration during higher THI conditions, which is similar to
findings in [24]. The strongest correlation that we found is between the drinking frequency and THI,
with a very high r of .802 and a minimal p-value of .001. This result shows that dairy cows drink
more when exposed to higher THI conditions, which aligns well with previous studies [25].

E Discussion

E.1 Ethical considerations

As the subjects of this dataset are dairy cattle, this dataset does not contain any personal information
of any participant. To the best of our knowledge, this work does not negatively impact any person,
animal, or entity during and after the deployment as well as after the release of MMCOWS to the public.
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All sensor deployment procedures were done with the approval of the Institutional Animal Care
and Use Committee (IACUC) of the University of Wisconsin–Madison (Protocol #A006606). All
dairy cattle were handled in compliance with the European Directive 2010/63/EU [26] regarding the
protection of animals used for scientific purposes.

E.2 Utilization and generalizability

So far, we have shown the benefits of MMCOWS in advancing precision livestock farming. Here, we
further discuss the utilization of the dataset in specific research directions:

• Feature Selection: The multimodal nature of the dataset enables researchers to identify which
combination of data modalities (e.g., visual, location, etc.) optimizes model performance for
various outcomes. This analysis can improve model robustness across different applications where
similar combinations of sensors are used, making the findings transferable to other contexts, such
as adapting these models for different cattle breeds or farm setups.

• Animal Identification: The dataset presents challenges such as varying angles and distances
in isometric views, occlusions between cows, and appearance differences across views. These
challenges are ideal for developing algorithms for both closed-set and open-set identification of
dairy cattle. The solutions derived from this dataset are not only applicable to Holstein cows but
can also be adapted to closely related breeds, making the findings broadly transferable to different
cattle populations.

• Multi-View Camera Fusion: The dataset supports research in fusing multi-view camera data,
where detection and identification tasks require consolidation from multiple perspectives. This
approach is particularly useful in complex environments where a single view may be obstructed
or insufficient. The techniques developed using this dataset can be transferred to other livestock
monitoring systems, ensuring improved detection and tracking accuracy in a variety of farm
layouts and operational conditions.

Another important aspect of MMCOWS is the generalizability for different housing conditions and
cattle breeds. Modalities that are less likely to be breed-dependent, such as uwb, immu, pressure,
ankle, and thi, are expected to exhibit robust generalizability across different cattle breeds. On the
other hand, visual data like rgb may have limited generalizability in visual identification for other
breeds that do not have the Holstein-like pattern, but it can still be useful for visual localization and
posture recognition. When comparing different housing conditions, such as indoor versus outdoor
environments, the generalizability is expected to remain high for modalities that are not infrastructure-
dependent, such as immu, pressure, ankle, and thi. However, modalities like uwb and rgb may
be less applicable in outdoor settings, where obtaining location and visual data requires alternative
sensors and devices, such as drones for capturing RGB images [27] or GPS for location tracking.

E.3 Data collection duration

The data collection was conducted over a period of two weeks instead of a longer duration which
might be beneficial for various applications, particularly those that require tracking changes over
extended periods. For the specific goal of behavior monitoring, our chosen two-week duration is
sufficient to observe and accurately identify the seven targeted behaviors without requiring the more
complex, expert-driven analysis needed for detecting long-term behavioral changes. Our focus was
on establishing a robust foundation for behavior monitoring, where the effectiveness of short-term
detection is critical. Moreover, the success of short-term monitoring lays the groundwork for future
studies involving long-term data collection, which we plan to pursue as the next step in our research.

E.4 Sensor costs

The custom-designed neck-mounted tags in our dataset, which measure 3D location and head direction,
are engineered to be cost-effective, especially when they are commercialized and mass-produced.
With production costs potentially around 20–40 USD per unit, the device offers an affordable solution
for large-scale deployment in dairy farms. Other commercial sensors, including ankle sensors and
vaginal temperature sensors, are more costly, but they are only used for dataset generation and not
for monitoring in the field. Most importantly, our multimodal dataset can assist system designers in
evaluating the cost-effectiveness of different monitoring approaches, helping them choose the most
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Figure 8: Data visualization tool for the MMCOWS with an interactive 3D map (left) and a combined
camera view (right) with annotated bounding boxes in green and projected UWB locations in red

suitable sensors that balance performance and budget. By providing a detailed understanding of the
trade-offs between sensor cost and monitoring capabilities, the dataset will enable more informed
decision-making in herd management.

E.5 Limitations

Despite the large size and the diversity of modalities in MMCOWS, a few limitations remain. Due to
limited resources, along with the complexity of handling large animals and system maintenance, the
wearable sensors were only deployed on 10 cows. Nonetheless, the one-day visual and behavior
ground truth data is available for all 16 cows. In addition, all UWB anchors were set to point inward
toward the pen to ensure the best alignment between the UWB modules. This setup maximizes
accuracy when the cows stay inside the pen, but does not always yield consistent results when
the cow’s neck is outside of the pen area, such as during feeding. A sensor network with many
more additional UWB anchors could be used to address this limitation but at the cost of increased
installation and maintenance complexity.

As one of the modalities in the dataset, pressure data could potentially be used to detect changes in
the elevation of the cow’s neck, providing valuable information on how often the cow stands up or
lies down, which serves the same function as the ankle sensor in detecting standing/lying behavior.
However, because the ankle sensor provides better accuracy, we did not include the pressure data in
the evaluation section.

The dataset could also benefit future studies by including ground truth on the social behaviors of
cattle. Social behavior–including the establishment of social hierarchy, competition for resources,
and affiliative interactions–is known to profoundly influence feeding behavior, dry matter intake
(DMI), and overall health. For instance, significant overcrowding can reduce feeding activity, alter
resting behavior, and decrease rumination, while low-ranking individuals in a group may suffer from
limited access to resources and increased aggression, leading to negative affective states and impaired
health [28]. Although our dataset does not include ground truth for social behaviors, it provides
a robust foundation for analyzing individual behaviors directly impacted by social dynamics. For
example, changes in feeding or resting patterns within our dataset could indicate underlying social
stress or competition within the herd [29]. Researchers could leverage this dataset to infer social
interactions indirectly or to complement additional observational data specifically targeting social
behavior.

The dataset can be further enhanced for early detection of lameness by incorporating locomotion
scores assigned by an animal welfare specialist who reviews the multi-view footage. Lameness is
often identified through subtle changes in gait and posture, which are critical to detecting early for
timely intervention. By adding these scores, the dataset would not only provide a quantitative measure
of lameness severity but also enable the development of predictive models for early detection. This
enhancement would make the dataset a valuable resource for training machine learning (ML) models
aimed at automated lameness detection, ultimately improving animal welfare and herd management
practices by enabling continuous, real-time monitoring of cow health.

13



F Data Visualization Tool

For visualizing the multimodal data of MMCOWS from ten cows in all 14 days of the deployment, we
provide an interactive 3D visualization tool that is intuitive and easy to use, as shown in Figure 8. The
tool displays two time-synchronized windows separately: a 3D map and a combined camera view.
The 3D map showcases various parameters such as the cows’ location with the heading direction,
the cbt which is illustrated through the color of the triangle that represents the cow’s head, and the
lying behavior as the color of the location point. The images in the combined view are displayed
synchronously with the timestamp, which is chosen in the 3D map. Aside from showing the images,
the combined camera view also provides options to illustrate the UWB locations on each image view,
which is done through 3D projection. This helps the users to distinguish the cows from each other
when the annotated bounding boxes are not available. Users also have multiple options to visualize
more information on the images, such as adding the ground grid or the pen boundary, masking nearby
cow pens, etc. This tool will be made available on the dataset website.
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