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A B S T R A C T

In the present study, a Gaussian process regression (GPR) model is developed to predict the dryout incipience
quality for flow boiling in mini / micro – channels based on a consolidated database obtained from Purdue
University Boiling and Two – Phase Flow Laboratory (PU – BTPFL) consisting of 997 points from 26 sources. The
database includes 13 different working fluids over a wide range of operating conditions: hydraulic diameter
(0.51 – 6.0 mm), mass velocities (29 – 2303 kg/ m2 s), liquid – only Reynolds number (125 – 53,770), boiling
number (0.31 – 44.3 × 10-4), and reduced pressure (0.005 – 0.78). The inputs to the model were liquid – only
Weber number (Wefo), reduced pressure (PR), boiling number (Bo), heated to frictional perimeter ratio(PH/PF),
capillary number (Ca) and density ratio (ρg/ρf ), and the output was dryout incipience quality. The database was
randomly divided into training data to learn GPR kernel (covariance) parameters using maximum likelihood
estimation, and test data to evaluate the prediction accuracy of the outputs based on mean absolute error (MAE).
Six – different types of covariance functions were tested, and GPR model with automatic relevance detection
(ARD) rational quadratic covariance function showed the best overall performance. A performance comparison
of approved GPR model was made with an existing highly reliable universal correlation to predict dryout
incipience quality for mini / micro – channels. Results show that the developed GPR model exhibits superior
generalization ability with an overall MAE of 6.03 %, and a significant reduction of 51.76 % in MAE compared
with the universal correlation. Overall, the GPR model was found to be a data efficient machine learning
technique for predicting dryout incipience quality for flow boiling in mini / micro – channels based on a
consolidated database.

1. Introduction

Efforts towards miniaturization and seamless integration in
contemporary technology have ushered in the era of ultra-high heat flux
devices [1]. Effectively dissipating a substantial amount of heat from a
small surface has emerged as a paramount concern. This technological
trajectory has heightened the significance of thermal management for
these devices, as maintaining them within the optimal temperature
range is a critical prerequisite for achieving their designed performance.
Among themyriad thermal management methods, the cooling technique
employing two-phase flow boiling has garnered considerable attention
as a robust contender for addressing the thermal challenges posed by
ultra-high heat flux devices [2]. Its superior cooling performance stems

from a heat transfer mechanism that leverages both sensible and latent
heats [3]. To optimize cooling efficiency, the flow boiling technique has
been implemented in micro-channels, showcasing a high heat transfer
coefficient for single-phase convection [2,4 –6]. Micro-channel flow
boiling has been integrated into diverse cooling techniques, encom-
passing parallel micro-channel heat sinks [7 –10], manifold micro-
channel heat sinks [11], hybrid cooling involving jet impinging on
micro-channels [12], and capillary-driven evaporator [13], and
buoyancy-driven pumpless loops [14]. These applications span various
devices, including power semiconductors [15,16], avionics [17], bat-
teries [18], HVAC (heating, ventilation, and air-conditioning) systems
[19], nuclear reactors [20], rocket nozzles [21], and hydrogen stacks
[22,23]. Characterized by a high heat transfer rate at a given tempera-
ture difference, the mentioned cooling techniques offer advantages such

* Corresponding author.
E-mail address: lees@gist.ac.kr (S. Lee).

Contents lists available at ScienceDirect

Applied Thermal Engineering

journal homepage: www.elsevier.com/locate/apthermeng

https://doi.org/10.1016/j.applthermaleng.2024.124137
Received 13 April 2024; Received in revised form 21 June 2024; Accepted 6 August 2024

Applied Thermal Engineering 256 (2024) 124137 

Available online 11 August 2024 
1359-4311/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:lees@gist.ac.kr
www.sciencedirect.com/science/journal/13594311
https://www.elsevier.com/locate/apthermeng
https://doi.org/10.1016/j.applthermaleng.2024.124137
https://doi.org/10.1016/j.applthermaleng.2024.124137
https://doi.org/10.1016/j.applthermaleng.2024.124137
http://crossmark.crossref.org/dialog/?doi=10.1016/j.applthermaleng.2024.124137&domain=pdf


as the ability to suppress temperature rise, maintain a uniform tem-
perature along the flow direction, and minimize system size and weight.
However, they also present drawbacks, including high pumping power
[24], susceptibility to various flow instabilities [25–27], and the
occurrence of premature critical heat flux (CHF) [28]. Particularly
concerning flow instabilities and CHF, once they occur, they can lead to
dryout and subsequent temperature rise in the downstream region,
negating the mentioned thermal advantages. Given the paramount
importance of operating temperature in modern devices, the occurrence
of dryout is considered a pivotal event that demands precise prediction.
Nevertheless, predicting dryout is a highly complex task due to the ex-
istence of multiple triggering mechanisms.

Dryout phenomena can be broadly categorized into two groups
based on the associated phenomena they induce: premature critical heat
flux (CHF) and CHF itself. Premature CHF, induced by severe vapor
backflows, occurs when the liquid film is periodically evaporated in the
downstream region, a phenomenon referred to as intermittent dryout
[10,29,30]. These vapor backflows result from extensive phase changes
and rapid bi-directional bubble expansion within the confined volume of
the channel, accompanied by a high pressure drop along the mini/
micro-channels [17,26,31]. These hydrodynamic instabilities manifest
as severe pressure drop oscillations and mild parallel-channel instability
[7]. CHF occurs when the vapor flow completely envelops the heated
surface after the liquid film has undergone dryout or vapor film is
generated in regions with relatively lower thermodynamic quality,
respectively [3,32]. Liquid film dryout typically leads to a mild tem-
perature rise in the downstream region, where mist flow, often accom-
panied by entrained liquid droplets, begins to appear following the
annular flow regime. In contrast, vapor film generation, prevalent in
subcooled or low-quality flows, results in rapid temperature rise, typi-
cally in the upstream region under high heat flux conditions, a phe-
nomenon termed as deviation from nucleate boiling (DNB) CHF.

Historically, predictive tools for dryout incipience quality focused on
specific phenomena or operating conditions, rendering them unsuitable
as general solutions for various situations [33 –47]. Previous theoretical
approaches attempted to model specific phenomena considered primary
trigger mechanisms of dryout incipience, including premature annular
film dryout by entrained liquid droplets [33 –36], Kelvin-Helmholtz
surface instability [37], and asymmetric liquid film establishment
along the circumferential direction [38]. However, these theoretical
models could describe only one of these mechanisms despite the po-
tential for dryout initiation through various means. Empirical correla-
tions from previous studies were developed using dimensionless
numbers for flows with diverse geometries, operating conditions, fluids,
and thermophysical properties [39 –47]. Nonetheless, their predictive
performance proved effective only for specific cases covered by the
databases used to develop the correlations. In attempts to predict the
complex dryout phenomena triggered by various factors, the majority of
previous approaches have inherent limitations as general predictive
tools due to their reliance on a limited range of data.

Kim and Mudawar [48] proposed a universal correlation based on a
consolidated database of 997 points from 26 sources for a wide range of
operating conditions and different types of working fluids, and showed a
superior prediction accuracy compared to the previous correlations [39
–47]. Over the last few decades, machine learning models such as neural
networks, support vectors, and Gaussian processes have been widely
used for predictive modeling in thermal – fluid applications [73 –76].
One of the main advantage of machine learning models compared to
empirical and semi – empirical correlations is its ability to automatically
and efficiently capture the non – linearity in the output based on some
specific types of basis – functions and algorithms with sufficient accu-
racy. Recently, Qiu et al. [75] used artificial neural networks (ANN) to
predict heat transfer coefficient based on universal consolidated data for
saturated flow boiling in mini / micro – channels. The ANN predictions

Nomenclature

A flow area
Ach channel cross-sectional area
Bo boiling number,qʹ́

H/Ghfg
Ca capillary number,μfG/(ρfσ)
D diameter; terms used in Eq. (12) for loss function
Dh hydraulic diameter
Fr Froude number,G2/ρ2gDh
f frictional factor
htp two-phase heat transfer coefficient
hfg latent heat of vaporization
i index for i-th sample in database
n number of data
P pressure
Pcrit critical pressure
PF wetted perimeter of channel
PH heated perimeter of channel
PR reduced pressure, P/Pcrit
qʹ́ heat flux
qʹ́
CHF critical heat flux
qʹ́
H heat flux based on heated perimeter of channel
T temperature
We Weber number,G2Dh/ρσ
xcrit dryout completion (CHF) quality
xdi dryout incipience quality
xdi* dryout incipience quality
xi ith sample input
yi ith sample output

Acronyms
ARD automatic relevance determination
CHF critical heat flux
DNB deviation from nucleate boiling
MAE relative mean absolute error

Greek symbols
ε error tolerance
θ percentage predicted within in ±30%
μ dynamic viscosity
ξ percentage predicted within in ±50%
ρ density
ρr density ratio, ρg/ρf
σ surface tension

Subscripts
crit critical
ch channel
di dryout incipience
exp experimental (measured)
f saturated liquid
fo liquid only
g saturated vapor
go vapor only
in inlet
pred predicted
r ratio
sat saturation
w wall
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were found to be superior to universal correlation, over combined as
well as individual database, and offer advantage to test any combination
of input parameters. Pearce et al. [76] used Gaussian process regression
(GPR) for solving inverse problem to determine the parameters of a
thermal model for gas turbine application. The GPR model was used to
develop a surrogate for mean – squared error function that measures the

discrepancy between simulation and experimental data. Afzal and Kim
[77] performed optimization of pulsatile flow and geometry of a
convergent – divergent micro-mixer using three different surrogate
models, viz. response surface approximation, radial – basis neural net-
works and GPR models. The results indicated that the GPR model pre-
dicted the best optimum design among the tested models. In another

Fig. 1. Schematics of axial variation of flow regime and heat transfer coefficient along uniformly heated mini/micro-channel with downstream wall dryout for (a)
nucleate boiling dominant heat transfer [48], (b) convective boiling dominant heat transfer [48], and detailed schematic depictions of (c) shattering [80] and (d) re-
wetting by collision of entrained liquid droplets in partial dryout region.

A. Afzal et al. Applied Thermal Engineering 256 (2024) 124137 

3 



study, optimization of staggered jet – convex dimple array cooling sys-
tem was conducted using GPR model by Kim et al. [78] with a suffi-
ciently high accuracy. Duan et al. [79] trained GPR models based on
experimental measurements for making predictions at positions where
there are no experimental data. The fitted model was then used to
measure the discrepancy between experiment and computational fluid
dynamics (CFD) simulation. ANNs are efficient, but require a very large
dataset for training and testing to produce reliable and accurate results.
On the other hand, Gaussian process regression (GPR) model offer the
advantage of learning from data with small sample size, ability to cap-
ture noise (generally, white gaussian noise) in the experimental data
based on its mathematical formulation.

It can be seen that GPR models have been used as a promising sur-

rogate model for the analysis and optimization of wide range of thermal
– fluid systems, but its predictive capabilities for applications involving
complex systems needs to be analyzed. In the present study, a Gaussian
process regression (GPR) model is developed to predict the dryout
incipience quality for flow boiling in mini / micro – channels based on a
consolidated database of 997 points from 26 sources [49 –72]. The
working fluids and range of operating conditions are summarized below:

− Working fluid: FC72, R113, R1234yf, R1234ze, R134a, R22, R245fa,
R290, R32, R407C, 410A, CO2 and water.

− Hydraulic diameter: 0.51 < Dh < 6.0 mm
− Mass velocity: 29 < G<2303 kg/ m2s
− Liquid – only Reynolds number: 125 < Refo < 53, 770

Table 1
Consolidated database for dryout incipience quality of saturated flow boiling in mini/micro-channel used to develop Gaussian process regression (GPR) model.

Author(s) Channel
Geometry

Dh[mm] Fluid(s) G[kg/
m2s]

Data
points

Remarks

Ali and Palm (2011) [55] C, S, V 1.22, 1.70 R134a 50 – 600 23 xdi identified by change of slope in boiling curve, and
wall temperature

Baek and Chang (1997)
[58]

C, S, V 6.0 Water 29 – 277 232 xcrit indentified by fast increase of Tw when Tw > 250 ◦C

Becker (1970) [56] C, S, V 2.4, 3.0 Water 365 –
2725

82 xcrit identified by fast increase of Tw

Del Col and Bortolin (2012)
[70]

C, S, H 0.96 R134a, R245fa, R32 101 –
902

43 xdi identified by wall temperature

Ducoulombier et al. (2011)
[39]

C, S, H 0.529 CO2 200 –
1410

48 xdi identified by falling off of htp

Greco (2008) [65] C, S, H 6.0 R134a, R22, R407C,
R410A

199 –
1079

7 xdi* identified by falling off of htp

Hihara and Dang (2007)
[64]

C, S, H 1.0, 2.0,
4.0, 6.0

CO2 360 –
1440

16 xdi identified by falling off of htp

Karayiannis et al (2012)
[71]

C, S, V 1.1 R134a 300 3 xdi identified by falling off of htp

Kim et al (2000) [60] C, S, V 6.0 Water 99 – 277 210 xcrit identified by fast increase of Tw with Tw increase
rate of 50 ◦C/s

Lezzi et al (1994) [57] C, S, H 1.0 Water 776 –
2738

68 xcrit identified by fast increase of Tw when Tw > 250 ◦C

Li et al (2012) [54] C, S, H 2.0 R1234yf, R32 100 –
400

8 xdi* identified by falling off of htp

Martin-Callizo (2010) [51] C, S, V 0.64 R134a, R22, R245fa 185 –
541

42 xdi identified by change of slope in boiling curve, and
wall temperature

Mastrullo et al (2012) [40] C, S, H 6.0 CO2, R410A 150 –
501

28 xdi identified by falling off of htp

Oh and Son (2011a) [52] C, S, H 1.77, 3.36,
5.35

R134a, R22 200 –
400

6 xdi* identified by falling off of htp

Oh and Son (2011b) [68] C, S, H 4.57 CO2 600 –
900

8 xdi* identified by falling off of htp

Oh et al (2011) [69] C, S, H 1.5, 3.0 R22, R410A, R290 100 –
500

9 xdi* identified by falling off of htp

Ohta et al (2009) [67] C, S, H 0.51 FC72 107, 205 2 xdi* identified by falling off of htp
Roach et al (1999) [59] C, S, H 1.168, 1.448 Water 256 –

1037
42 xcrit identified by fast increase of Tw when Tw > 250 ◦C

Saitoh et al (2005) [63] C, S, H 0.51, 1.12,
3.1

R134a 150 –
300

41 xdi* identified by falling off of htp

Shiferaw (2008) [66] C, S, H 1.1, 2.88,
4.26

R134a 200 –
400

13 xdi* identified by falling off of htp

Tibirica et al (2012) [72] C, S, H 1.0 R1234ze 300 –
600

4 xdi* identified by falling off of htp

Wang et al (2009) [50] C, S, H 1.3 R134a 321 –
676

9 xdi* identified by falling off of htp

Wu et al (2011) [53] C, S, H 1.42 CO2 300 –
600

18 xdi* identified by falling off of htp

Yang and Fujita (2002) [61] R, S, H 0.976 R113 100, 200 3 xdi* identified by falling off of htp
Yu et al (2002) [62] C, S, H 2.98 Water 50 – 151 30 xcrit identified by fast increase of Tw
Yun et al (2005) [49] R, M,H 1.14 CO2 300, 400 2 xdi* identified by falling off of htp
Total 997

* R: rectangular, C: circular.
** S: single-channel, M: multi-channel.
*** H: horizontal-channel, V: vertical-channel.
**** xcrit: critical quality data reported by original authors.
***** xdi: dryout incipience quality data reported by original authors.
****** xdi*: dryout incipience quality data identified by other researchers by falling off in measured two-phase heat transfer coefficient attributed by original authors to
dryout incipience.
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− Boling number:.0.31 × 10− 4 < Bo < 44.3 × 10− 4
− Reduced pressure:.0.005 < PR < 0.78

The inputs parameters viz. liquid – only weber number (Wefo),
reduced pressure (PR), boiling number (Bo), heated to frictional
perimeter ratio (PH/PF), capillary number (Ca) and density ratio (ρg/ρf ),
and the output, dryout incipience quality, were taken similar to Kim and
Mudawar [48]. The predictive performance of the GPR model is
compared with the universal correlation of Kim and Mudawar [48]
using performance metrics, mean absolute error (MAE) and θ (per-
centage of predictions within ±30% of the data).

2. Mini / microchannel database

The hydrodynamic and thermal transport phenomena of flow boiling
in micro-channels are complicated and affected by many unpredictable
factors, but the general trends can be largely categorized into two:
nucleate and convective boiling dominant heat transfer. While the axial
transition pattern of the flow regime varies depending on the dominant
heat transfer mechanisms, which are determined by the portion of the
channel length occupied by either of them, as shown in Fig. 1(a) and 1
(b), the dryout incipience of saturated flow boiling in micro-channels
occurs in the annular flow regime when the annular liquid film

breaks. For nucleate boiling dominant heat transfer in Fig. 1(a), the
bubbly flow regime occupies a large portion of the upstream channel
length. The heat transfer is enhanced by the individual bubble motions
in the bubbly flow regime, but it starts to decrease from the slug flow
regime with suppressed bubble motions. In the annular flow regime, the
asymmetric liquid film establishment causes partial breakage, allowing
the heated wall to be exposed to vapor and decreasing the heat transfer
coefficient. This point is termed dryout incipience, and the heat transfer
coefficient steadily decreases until the liquid film is completely evapo-
rated, considered as dryout completion. For convective boiling domi-
nant heat transfer in Fig. 1(b), the annular flow regime, which is
initiated farther upstream compared to nucleate boiling, occupies the
largest portion of the channel length. Conduction through the liquid film
is the dominant heat transfer mechanism, and the heat transfer coeffi-
cient increases in an axial direction as the liquid film becomes thinner
due to interfacial evaporation. The partial annular film breakage in the
following downstream region can be triggered by non-uniform evapo-
ration or other factors that break the symmetry of the annular liquid
film. Among these explanations, one possibility is that entrained liquid
droplets generated by shattering can cause partial liquid film breakages,
as illustrated in Fig. 1(c) [80]. When deposited on the heated surface,
these entrained liquid droplets, together with the partial liquid film, can
facilitate partial heat transfer and prevent CHF occurrence, as shown in

Fig. 2. Boiling curves and variation of local heat transfer coefficient with quality for (a) water [29] a nd (b) water [6], (c) R134a [8] and (d) R134a [81] flows in
rectangular micro-channels.
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Fig. 1(d).
The detailed consolidated database for dryout incipience quality of

saturated flow boiling in mini/micro – channels for different working
fluids and range of operating conditions is provided in Table 1. The
consolidated database consisting of 997 dryout incipience qualities
amassed from 26 sources is divided into three types, xcrit , xdi, and, x*di
according to how they are identified. The first type is xcrit which corre-
sponds to the dryout completion point where the liquid film completely

dries out and partial cooling is conducted by collision of liquid droplets
entrained in mist flows as shown in Fig. 1(a) and 1(b), where the sudden
wall temperature rise from the saturation temperature is observed with
heat transfer coefficients maintained low values [56–60,62]. The dryout
completion is one of three types of critical heat flux (CHF): subcooled
departure from nucleate boiling (DNB), saturated DNB and complete
dryout, and this is the reason we termed it CHF (dryout completion)
quality, xcrit. Apparently, xcrit is different from xdi which occurs by the
partial liquid film breakage causing relatively smaller temperature rise
as shown in Fig. 1(d). However, these two, especially for water, have
similar values as the dryout completion follows dryout incipience just
right after its occurrence which is evidenced by the sharp transition from
xdi to xcrit that is shown at the wall temperature slightly higher than the
saturation temperature in boiling curve as depicted in Fig. 2(a) [29]. A
variation of heat transfer coefficient depicted in Fig. 2(b) also clearly
shows this sharp transition, which convinces to use xcrit as xdi[6]. The
water, with high surface tension, has relatively small amount of
entrained liquid droplets attributing to stable two-phase interface
maintaining high resistance to shattering, and this is the reason for
sudden heat transfer coefficient drop without liquid droplet collision
effect [6]. The drastic temperature excursion at CHF is caused by su-
perior thermophysical properties of water that enables maintaining
relatively high heat transfer coefficient while the dryout is in process
before dryout completion (CHF). Combined with complicated flow
physics under instability, the dryout completion (CHF) in mini/micro-
channel necessitates further researches to elucidate detailed trigger
mechanisms. 664 xcrit data points are amassed from 6 sources those are
all water and identified by temperature rise from Tsat by 5 to 150 ◦C [56
–60,62]. 333 data points, denoted as xdi, were collected from 20 sources,
primarily composed of fluids other than water. These data points
exhibited a gradual slope change in the boiling curve, indicating a broad
dryout range with partial dryout behavior, as shown in Fig. 2(c). This
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-5 -4 -3 -2 -1 0 1 2 3 4 5

Input, x

-4

-3

-2

-1

0

1

2

3

4
l = 0.25

l = 1

l = 2.5

O
ut

pu
t, 

f(x
)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

l = 0.25

l = 1

l = 2.5

||xp-xq||

k(
x p

, x
q)

Fig. 3. (a) covariance functions and (b) random functions drawn from the Gaussian processes with squared exponential covariance function for different values of
characteristic length parameter, σ1.

Fig. 4. Marginal log likelihood function versus number of iterations for ARD
rational quadratic kernel.

Table 2
Maximum likelihood estimate of the hyperparameters of the different covariance functions and noise

Covariance Function Hyperparameters

θ =
[

σl α σf
] σn

Exponential [ 97.10 − 0.53 ] 0.10
Squared Exponential [ 627.88 − 0.41 ] 0.13
ARD Exponential

[
397.65 0.60 8.26× 10− 3 0.03 0.02 46.19 0.54 −

]
0.01

ARD Squared Exponential
[
580.94 0.14 3.76× 10− 4 0.03 0.02 0.14 0.55 −

]
0.08

Rational Quadratic [ 627.92 0.01 0.53 ] 0.12
ARD Rational Quadratic

[
4.81 0.01 1.86× 10− 4 4460 3.28× 10− 4 1.38 3.50× 10− 3 0.62

]
0.01
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behavior differs from the observed pattern in 664 xcrit data points. The
inferior thermophysical properties and relatively low Critical Heat Flux
(CHF) compared to water are attributed to this gradual transition from
dryout incipience to completion. This dataset is further divided into two
subsets: xdi and x*di. The former, xdi, was identified by previous re-
searchers through mild temperature rise [39,40,51,55,64,70,71], while
the latter,x*di, was identified based on the quality at which the heat
transfer coefficient begins to decrease [49,50,52–54,61,63,65–69,72].

3. Gaussian process regression (GPR)

A Gaussian process is a collection of random variables, such that any
finite number of those variables have a joint Gaussian distribution [82].
For regression, the random variable represents the value of the function,
f(x) at location, x. A Gaussian process is completely specified by its
mean function and a covariance function. The mean and the covariance
function, μ(x) and k(x, x́ ) of a real process f(x) are defined as:

μ(x) = E[f(x) ] (1)

and

k(x, xʹ) = E[(f(x) − μ(x) )(f(xʹ) − μ(xʹ) ) ] (2)

and the Gaussian process is written as:

f(x) ∼ GP(μ(x), k(x, xʹ) ) (3)

The mean function, μ(x), represents the trend over the design space, and
the covariance function captures the smoothness of the response. The
covariance function specifies the covariance between pair of random
variables:

cov
(
f
(
xp
)
, f
(
xq
) )

= k
(
xp, xq

)
(4)

where xp,xq ∈ Rd. In other words, it determines the similarity between
the data points xp and xq; a basic assumption that if points xp and xq are
close their response points yp and yq are also similar. Thus, training
points that are near to a test point should be informative about the
prediction at that point. The different types of covariance functions, and
their mathematical forms are summarized below:

Fig. 5. Predictions from the GPR model for different covariance functions: (a) exponential, (b) squared exponential, (c) ARD exponential, (d) ARD squared expo-
nential, (e) rational quadratic and (f) ARD rational quadratic.
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1. Exponential covariance function

k
(
xp, xq

)
= σ2

f exp
[

−

⃦
⃦
(
xp − xq

) ⃦
⃦

σl

]

(5)

2. Squared exponential covariance function

k
(
xp, xq

)
= σ2

f exp

[

−
1
2

⃦
⃦
(
xp − xq

) ⃦
⃦2

σ2
l

]

(6)

3. ARD exponential covariance function

k
(
xp, xq

)
= σ2

f exp

[
∑d

m=1

⃦
⃦
(
xpd − xqd

)⃦
⃦2

σ2
m

]1
2

(7)

4. ARD squared exponential covariance function

k
(
xp, xq

)
= σ2

f exp

[

−
1
2
∑d

m=1

⃦
⃦
(
xpd − xqd

)⃦
⃦2

σ2
m

]

(8)

5. Rational quadratic covariance function

k
(
xp, xq

)
= σ2

f

(

1+

⃦
⃦
(
xp − xq

) ⃦
⃦2

2ασ2
l

)− α

(9)

6. ARD rational quadratic covariance function

k
(
xp, xq

)
= σ2

f

(

1+
1
2α
∑d

m=1

⃦
⃦
(
xpd − xqd

)⃦
⃦2

2ασ2
d

)− α

(10)

For the exponential, squared exponential and rational quadratic
covariance functions, σf is the signal standard deviation,σl is charac-
teristic length scale and α is the positive – valued scale – mixture
parameter. However, σl ∈ Rd is a vector with a separate length scale for
each predictor for the class of ARD covariance functions. In practice, all

covariance function parameters are grouped under a single vector
parameter, θ. The form of the squared exponential covariance function,
and samples drawn from it for different values of the characteristic
length parameter, σl = 0.25,1, 2.5 are illustrated in Fig. 3. It can be seen
that low values of σl leads to sharp variations in the underlying function,
whereas high values of σl can be used to capture a slowly varying
function.

Given a set of n training data points,
{(
xi, yi

)
, i = 1,2,⋯, n

}
, where

xi ∈ Rd and yi ∈ R, a Gaussian process regression (GPR) model aims to
predict the value of a response variable, y* given the new input vector,
x* ∈ Rd. In realistic modeling situations, there is always some noise
present in the data, and therefore the problem becomes:

y = f(x)+ ∈ (11)

where ∈ N(0, σ2n) is an additive independent identically distributed
Gaussian noise with noise variance, σ2

n . The covariance function is
modified to incorporate noise, and is expressed as:

cov
(
yp, yq

)
= k
(
xp, xq

)
+ σ2

nδpq (12)

where δpq is a Kronecker delta which is equal to 1 if p = q, and
0 otherwise. The joint distribution of the observed training outputs, and
the test outputs according to the prior is:
[
y
f ∗
]

∼ N

(

0,

[
K(X,X) + σ2

n K(X,X*)

K(X*,X) K(X*,X*)

])

(13)

If there are n training points, then K(X,X*) denotes the n× 1matrix of the
covariances evaluated at all pairs of training and test points, K(X, X)
denotes the n× n* matrix at all pair of training points, and similarly for
K(X*, X*), and K(X*, X). By conditioning the joint Gaussian prior dis-
tribution on the observations we get,

f ∗|X*,X, y ∼ N(f
∗
,V(f∗) ) (14)

Themean, f* and variance, V(f*) of the prediction at test points are given
by:

f
∗
= K(X*,X) |

[
K(X*,X) + σ2

nI
]− 1y (15)

and

V(f∗) = K(X*,X*) − K(X*,X)
[
K(X,X) + σ2

nI
]− 1K(X,X*) (16)

For making prediction on test data, the GPR model requires the

Fig. 6. Comparison of predictions from (a) approved GPR model and (b) universal correlation of Kim and Mudawar [48] for consolidated 997 point database.
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knowledge of parameters, θ and the noise variance, σ2n which are esti-
mated by maximizing the marginal log likelihood function given by:

logp(y|X) = −
1
2
yT
[
K(X,X) + σ2

nI
]− 1y −

1
2
log
⃒
⃒
⃒
[
K(X,X) + σ2

nI
]− 1
⃒
⃒
⃒ −

n
2
log2π

(17)

The estimates of hyperparameters, θ and noise variance, σ2
n can be ob-

tained as follows:

θ̃, σ̃2
n = max

θ, σ2n
logp(y|X) (18)

4. Results and discussion

In the present study, the GPR models were developed using MATLAB
[83] running on an Intel Core i7 processor, 16 GB RAM and a clock speed
of 2.90 GHz in serial processing mode. Quasi – newton method using
trust – region, and symmetric rank – 1 based approximation to the
hessian was used to perform minimization of the negative marginal log
likelihood function. The GPR model was invoked using ‘fitrgp’ function
available in ‘Statistics and Machine Learning Toolbox’ in MATLAB [83].
The input parameters were liquid – only weber number (Wefo), reduced
pressure (PR), boiling number (Bo), heated to frictional perimeter ratio
(PH/PF), capillary number (Ca) and density ratio (ρg/ρf ). The response
variable was dryout incipience quality, xdi. The consolidated database of
997 points from 26 sources was partitioned randomly with 75% for
training the GPR model and 25% for testing the prediction accuracy of
the model. The accuracy of the approved GPR models on the training
and testing sets was assessed using mean absolute error (MAE) similar to
Kim and Mudawar [48], which is defined as:

MAE =
1
n
∑

⃒
⃒xdi,pred − xdi,exp

⃒
⃒

xdi,exp
× 100% (19)

where ‘n’ is the number of data points in training and testing sets,
respectively. Also, the percentage of predictions within ±30% and ±

50% of the data are presented using parameters, θ and ξ, respectively.
As a preliminary step, a systematic investigation was carried out to

select the best covariance function for the given input – output data. Six
– different types of covariance functions, namely exponential, squared
exponential, ARD exponential, ARD squared exponential, rational
quadratic and ARD rational quadratic were tested. Fig. 4 shows a typical
plot of minimization of the negative marginal log likelihood function
with number of iterations for the ARD rational quadratic kernel. The
relevant hyperparameters for each covariance function were determined
from optimization as shown in Table 2. For ARD covariance functions,
the characteristic length scales are listed for each input in the following
order:Wefo, PR, Bo, PH/PF, Ca and ρg/ρf . Fig. 5 shows the comparison of
predicted and experimental dryout incipience quality for the entire 997
points consolidated database for the chosen covariance functions. A
perfect regression line (solid black line) where the predicted response is
equal to the true response, and ±30% error bands (dashed black lines)
are also drawn for interpretation of model prediction accuracy. It can be
seen that exponential, squared exponential and rational quadratic
covariance functions showed significant and uneven scatter of test
points around the line with high levels of under – and over – predictions.
However, the discrepancy between the predicted and experimental re-
sults is significantly reduced with the use of ARD exponential, ARD
squared exponential and ARD rational quadratic functions with points
scattered roughly close and symmetric around the regression line indi-
cating small prediction errors. Also, a very small number of points lying
outside the ±30% error band. The superior performance of ARD class of
covariance functions can be attributed to different characteristic length
scales for each input variables compared to a constant length scale for
non – ARD covariance functions. The MAE and θ were found to be
6.42%, 8.95%, 6.03% and 99.30%, 96.28%, 99.80% for ARD exponen-
tial, ARD squared exponential and ARD rational quadratic, respectively
for the test data. The corresponding values of MAE and θ for the training
data were 0.28%, 8.01%, 0.21% and 100%, 95.72%, 100%, respectively
for the above ARD covariance functions. Therefore, the GPR model with
ARD rational quadratic covariance function showed the best overall
performance among all the tested cases, and therefore, will be selected
as the final approved GPR model for further analysis.

A detailed comparison between approved GPR model and universal
correlation proposed by Kim and Mudawar [48] in the prediction of
dryout incipience quality using the full database (997 points) is shown in
Fig. 6. For the present GPR model, the predictions on the test data are
scattered very close to the regression line, which means the model has

Fig. 7. Comparison of predictions from approved GPR model and universal
correlation of Kim and Mudawar [48] for (a) water, (b) refrigerants and (c) CO2.
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small errors and a good generalization ability. On the other hand, the
predictions from the universal correlation showed slightly higher
amount of error with 6.4 % of data points falling outside the ± 30 %
error bands. Overall, the approved GPR model showed a superior pre-
diction accuracy with MAE of 6.03 % and θ of 99.80 % compared to the
universal correlation of Kim andMudawar [48] that has MAE of 12.50%
and θ values of 93.60 %.

The prediction accuracy of the approved GPR model on the test data
is further examined to study the effect of different working fluids i.e.
refrigerants, water, CO2, and compared with the universal correlation of
Kim and Mudawar [48] as shown in Fig. 7. The results show that the
present GPR model showed the better prediction results for water and
refrigerants having lower MAE values of 3.44 % and 9.52 %, respec-
tively, compared with 9.20 % and 15.30 % obtained by using the uni-
versal correlation of Kim and Mudawar[48]. A slight increase in MAE
values, with 11.70 % for GPR model and 9.21 % for Kim and Mudawar
[48], was observed for CO2 which can be attributed to the low sample
size of training data for CO2 dryout incipience database for the GPR
model compared with Kim and Mudawar [48]. In fact, only 75 % of the
database was available for training the GPR model. Therefore, it is ex-
pected that the prediction accuracy of GPR model on CO2 database can

be improved if more training data is provided, particularly in regions of
low dryout incipience qualities where there are high chances of under –
and over – predictions as shown in Fig. 7. A similar trend is observed for
predictions from universal correlation [48], but with relatively lower
intensity of under – and over – predictions. This will also help to increase
the overall accuracy of the GPR model for the entire consolidated
database. Also, the percentage data predicted within ± 30 % error band
is be 100%, 98.44%, 100% for water, refrigerants, CO2, respectively for
the GPR model which is promising in terms of variance of the
predictions.

Fig. 8 shows the predictions on the test data using the approved GPR
model and the universal correlation of Kim and Mudawar [48] for some
selected individual databases. The corresponding MAE on individual
databases is shown in Fig. 9. The choice of individual databases was
made to cover different working fluids i.e. water, refrigerants and CO2
with appreciable sample sizes. Baek and Chang [58] and Kim et al. [60]
based on water showed test data scattered very close to the regression
line, and they have low MAE of 2.86 % and 2.51 %, respectively.
Similarly, Martin – Callizo [51], which contains data for three different
refrigerants, R134a, R22, and R245fa, showed all test points lying very
close to the regression line, except for one outlier as shown in Fig. 8,

Fig. 8. Comparison of predictions from approved GPR model and universal correlation of Kim and Mudawar [48] on test data points from selected individual
databases (a) Del Col and Bortolin [70], (b) Martin – Callizo [51], (c) Baek and Chang [58], (d) Kim et al. [60], (e) Ducoulombier [39] and (b) Wu et al. [53].
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with a MAE of 4.93 %. However, the data points were relatively more
scattered for Del Col and Bortolin [70] which is also developed by only
three refrigerants, R134a, R245fa and R32, with a MAE of 12.78 %, and
over – predictions in low quality dryout and under – predictions in high

quality dryout regions.
The GPR model predictions on the test data for three types of indi-

vidual databases, based on xcrit, xdi, and, x*di, are shown in Fig. 10. The
model showed the best results for dryout incipience quality, xdi followed
by dryout completion quality, xcrit and dryout incipience quality, x*di
databases with MAE values of 5.32 %, 6.05 % and 7.52 %, respectively.
It can be concluded that the individual predictions are quite consistent,
and with high accuracy. Also, the GPR model predictions were observed
to be superior compared with the universal correlation of Kim and
Mudawar [48] which predicted a nearly constant MAE value of
approximately 10.50 % for all the three types of individual databases.

An exercise was carried out to check the generalization ability of GPR
models for datasets outside its training set. The numerical experiment
was carried by training on one of the three types of individual databases
based on, xcrit, xdi, and, x*di, and predicting on the remaining two. But, to
check the prediction on the training database it was partitioned
randomly with 75% for training and 25% for testing. Fig. 11 shows the
GPR model predictions for individual databases based on, xcrit, xdi, and,
x*di, respectively. The GPR models showed good generalization ability on
test sets sampled from individual databases based on, xcrit, xdi, and x*di,
with low MAE values of 4.02 %, 7.51 % and 5.63 %, respectively, as
shown in Fig. 11(a), (e), and (i). Therefore, provided that the training
and test data comes from the same sample, GPR models can learn in a
very efficient manner even with small datasets. Thus, GPRmodels can be
a promising data efficient machine learning technique when obtaining
large dataset can be either expensive or challenging as in experimental
studies. For the database of dryout completion quality, xcrit, the GPR
model showed a relatively poor prediction performance on excluded
datasets based on xdi and x*di. A close examination reveals that the
working fluid in the training set of water is completely different for the
excluded datasets of refrigerants and CO2, and therefore, without any
history of working fluid in the training set, the GPR model was not able
to perform well resulting in increase in MAE for the excluded datasets.
Another important observation was the limited range of operation of
dimensionless numbers for dryout completion quality, xcrit, database,
therefore, rendering many test points from excluded dataset as outliers
due to which the MAE was found to increase significantly. A similar
trend was observed for the remaining individual databases based on xdi
and x*di as depicted in Fig. 11 (d)(f) and (g)(h), respectively. Both data-
bases predicted the dryout completion quality, xcrit with low MAE,
14.12 % for xdi and 16.13 % for x*di, due to the wide range of operation of
dimensionless numbers covered leading to high diversity in the training

Fig. 9. Comparison of MAE evaluated on test points from selected individual databases using GPR model and universal correlation of Kim and Mudawar [48].

Fig. 10. Predictions from approved GPR model and universal correlation of
Kim and Mudawar [48] for (a) xcrit, (b) xdi and (c) x*di.
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set, and therefore better learning. On the other hand, both predicted
individual excluded databases with high MAE. The individual databases
based on xdi and x*di comprise of 203 and 130 data points, out of which
the refrigerants – CO2 pairs were 118 – 85 and 102 – 28, respectively.
When the GPRmodel was trained on databases based on xdi, the training
set has fewer data points than the test set, excluded database, using
refrigerant as working fluid, and consequently, it did not generalize well
on the test set leading to high MAE. This behavior is typical of any
machine learning model. However, for the GPR model trained on da-
tabases based on x*di, the training set has significantly small number of
data points using CO2 as working fluid, and therefore, showed predictive
poor performance on CO2 test points in the excluded dataset leading to
high MAE. Overall, the databases based on xdi showed the best overall

performance on excluded datasets with lowest MAE of 15.46 % followed
by x*di and xcrit those are showing 18.08 % and 25.31 % of MAE for
excluded datasets, respectively.

Feature analysis is performed to evaluate the relative importance of
each input feature on the dryout incipience quality, xdi. Permutation
feature importance (PFI) algorithm [84] measures the discrepancy in the
prediction error by randomly permuting a particular feature values in
the data, thus breaking the relationship between the feature and the true
output. A feature importance (FI) parameter is defined to measure the
relative importance of each input feature; more important features
generally have higher FI values. In the present study, the FIi (i = 1,2,⋯,

6) for each feature is defined as the difference between original MAE
(without random permutation) and permuted MAEi (with random

Fig. 11. Predictions on test points using GPR model trained on for (a)(b)(c) xcrit, (d)(e)(f)xdi and (g)(h)(i) x*di.
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permutation for each i = 1, 2,⋯, 6) on the test data. Since the permu-
tation was random, the PFI algorithm was run 10 times to eliminate any
bias to randomness. Box plots are used to present the results of this
analysis as shown in Fig. 12. The dimensionless parameters, capillary
number, Ca and weber number Wefo showed highest impact on predic-
tive performance of the GPR model followed by boiling number, Bo,
reduced pressure, PR, density ratio, ρg/ρf and heated to frictional
perimeter ratio, PH/PF. In fact, a GPR model developed by excluding the
least significant features, ρg/ρf and PH/PF resulted in a very small change
in original MAE (from 6.03% to 6.41%).

Four dimensionless numbers,Wefo,PR,Bo and Ca, are able to describe
the complex physics related to partial liquid film dryout and intermittent
dryout. They are estimated to have a greater impact on the prediction
results, having higher FI values compared to the other two, PH/PF and
ρg/ρf . Wefo and Ca can explain the dryout incipience by partial liquid
film breakage, which is induced by interfacial instability known as
Kelvin-Helmholtz instability. The unstable interface condition is estab-
lished when the liquid flow inertia and corresponding drag force
exerting on the interface dominate over the surface tension, as they are
related to imbalance and stabilizing force, respectively. When the
interface becomes unstable and the troughs of the wavy interface touch
the heated surface, the incipience dryout by partial liquid film breakage
occurs. For the incipience of intermittent dryout, PR and Bo can address
the phenomenon as they are related to the liquid film evaporation rate.
When the liquid film under periodic flow conditions is completely
evaporated before the next flow surge period starts, intermittent dryout
is triggered. The boiling number, Bo, represents the phase change rate,
while the reduced pressure, PR, determines the latent heat of evapora-
tion, hfg, which is related to the film evaporation rate.

5. Conclusions

A systematic study to develop an efficient GPR model to predict the
dryout incipience quality for saturated flow boiling in mini/micro –
channels has been performed in the present study. A consolidated
database of 997 points from 26 sources was used to develop the GPR
model which includes 13 different working fluids over a wide range of
operating conditions: hydraulic diameter (0.51 – 6.0 mm), mass veloc-
ities (29 – 2303 kg/ m2 s), liquid – only Reynolds number (125 –
53,770), boiling number (0.31 – 44.3 × 10-4), and reduced pressure
(0.005 – 0.78). Dimensionless variables,Wefo, PR, Bo, PH/PF, Ca and ρg/
ρf were passed as inputs to the GPRmodel, and dryout incipience quality

was chosen as the output for learning. The consolidated database of 997
points from 26 sources was divided into training and test (75 % − 25 %)
sets. Using training data, different types of covariance functions were
tested, and as a result the ARD rational quadratic covariance function
was selected based on the predictive performance on the test data. The
superior performance can be attributed to different characteristic length
scales for each input variables. The GPR model showed a very good
accuracy with significantly low MAE of 6.03 %, and 99.80 % of data
falling within the ±30% error band. A comparison with a popular uni-
versal correlation of Kim and Mudawar [48] showed a superior pre-
diction ability of GPRmodel on the overall test data, and even individual
test sets collected based on different working fluids i.e. refrigerants,
water, CO2 and selected individual databases. To check the extrapola-
tion ability of GPR models, three different datasets grouped on the basis
of identification of dryout incipience quality were generated. A GPR
model was trained on one dataset at a time, and used to predict the
excluded datasets. Results indicate a robust and good prediction ability
of GPR models on reduced dataset (self), but a poor prediction ability on
excluded sets due to the nature of working fluids in individual datasets,
and the ranges of dimensionless parameters covered in the training
samples. Even when the training samples are low, but a sufficient ranges
of dimensionless parameters are included, the performance of GPR
model was found to improve demonstrating data efficient behavior of
GPR models. Finally, a feature importance analysis reveals the impor-
tance of each dimensionless parameter in descending order, Ca, Wefo,
Bo, PR, ρg/ρf and PH/PF. Future research aims to improve the robustness
and prediction accuracy of the GPR model through strategic selection of
important features from all relevant dimensionless parameters affecting
the dryout incipience quality for saturated flow boiling in mini/micro –
channels.
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