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A B S T R A C T

Flow boiling is a highly efficient configuration for meeting the high heat dissipation demands of thermal
management systems. However, the complex physics of two-phase flow has hindered its broader application,
especially in terms of quantifying visual information. Recent advancements in machine learning vision tools have
revolutionized the analysis of phase change phenomena by enabling the digitalization of physically meaningful
features such as void fraction, vapor-liquid interfacial behaviors, and liquid-solid wall wetting front areas en
masse. In this study, we systematically investigate two-phase models that compute void fractions, heat transfer
coefficients, and critical heat flux using live bubble data streams under microgravity. The collected empirical
bubble data is used to supplement and validate traditional control-volume-based theoretical modeling ap-
proaches. Void fraction data is first validated with analytical frameworks. This is followed by void fractions and
wetting front areas being used to improve correlations predicting heat transfer coefficients. This work showcases
the potential of using a new machine learning-based strategy to accelerate scientific formula discovery through
the extraction of multi-level and physically meaningful features.

1. Introduction

Due to the significant advancement in high-performance electronic
applications over the past few decades, it has become difficult for
traditional single-phase thermal management systems to meet the new
heat dissipation requirements. In comparison to single-phase systems,
two-phase thermal management systems include phase change that in-
volves latent heat exchange leading to a significant improvement in heat
transfer capacity. There are many phase-change thermal management
configurations developed by researchers. Heat pipes are the most
widely-used thermal management configurations for various thermal
applications (Sauciuc et al., 1996; Delil, 2003; Huang et al., 2023; 2021)
due to their low costs, high efficiency, and simplicity. The use of mini/
microchannel, taking advantage of pumped flow, can further enhance
the cooling performance (Okawa, 2012; Koşar et al., 2005; Escher et al.,
2009; Ohadi et al., 2013) while other cooling schemes such as
jet-impingement (Huang and El-Genk, 1994; Polat et al., 1989) and
spray cooling (Horacek et al., 2005; Kim, 2007) are more aggressive and

can provide even higher heat transfer coefficients.
Understanding and designing heat acquisition systems utilizing flow

boiling is crucial to the widespread implementation of phase-change in
these thermal management systems. Across phase-change configura-
tions, the most common approach to predicting performance parameters
such as void fraction, heat transfer coefficient, and critical heat flux is
empirical and semi-empirical correlations (Schrage et al., 1988; Kawa-
hara et al., 2002; Katto, 1981; Oh and Son, 2010; Li and Wu, 2010; Li
et al., 2023). These are based on experiments performed by researchers
over a range of testing conditions based on working fluids, geometries,
and flow parameters. These tools can lose their reliability outside the
testing range due to the complex nonlinear physics involved in
phase-change systems. An improved approach has been the use of uni-
versal correlations that are developed by consolidating databases which
includes numerous working fluids, extensive ranges of geometries, and
various solid/ fluid properties. Another useful approach is conducting
full computational fluid dynamics (CFD) simulations (Polat et al., 1989;
Polat et al., 1989). However, with the advantage of high fidelity, CFD
can be both cost and time ineffective. Theoretical and analytical models
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also provide good ways to predict the performance parameters by
capturing the underlying physics behind the phenomenon with reduced
computational costs. However, they must be verified by experiments to
ensure their reliabilities for the conditions under investigation including
flow regimes and thermal transport behaviors. Recently, soft computing
techniques such as Artificial Neural Networking (ANN), Genetic Algo-
rithm (GA), and various other statistical/ machine learning modalities
(Nair et al., 2022; Anand et al., 2022; Qiu et al., 2021; Khosravi et al.,
2018) have become popular and their results are showing promise in the
validation and development of improved predicting tools for
phase-change.

1.1. Flow boiling void fraction

For a flow boiling thermal management system, the flow consists of
two phases, the liquid phase and the vapor/gas phase within the flow
channel. An important parameter useful to system performance is the
ratio between the area occupied by the vapor phase and the total area,
called the vapor void fraction. At any axial location in the flow channel,
the void fraction is defined as the cross-sectional area occupied by the
vapor relative to the total cross-sectional area of the channel. The
definition is shown in the following equation:

α =
Ag
Atotal

. (1)

In most studies, the void fraction inside a flow channel is hard to
measure directly, therefore, theoretical models and/or empirical corre-
lations have been developed and used by researchers in the literature.
Cai et al. (2021) did a comprehensive review for the void fraction
models and correlations by classifying them into four different cate-
gories: Modified Homogeneous Model, Slip Ratio Model, Drift-flux Model,
and Empirical Correlations. The simplest model that has been widely used
is the Homogeneous Equilibrium Model (HEM). The void fraction is given
by,

α =
1

1+
ρg
ρf

(
1− x
x

)

S
. (2)

where x is the quality and ρ is the density. In HEM, the velocities of the
vapor phase and the liquid phase are assumed to be the same, leading to
a velocity ratio, S = ug/uf = 1. This model is practical only when the
velocity difference between phases is small or negligible, usually in the
bubbly regions of the flow. Armand and Treščev (1959), Nishino and
Yamazaki (西野晴生 and 山崎彌三郎, , 1963), and Chisholm (1983)
developed a modified version of HEM to improve practicality. A popular

Nomenclature

A Cross-sectional area of flow channel (m2)
Bo Boiling number
Bd Bond number
b Ratio of wetting front length to wavelength in Interfacial

Lift-off Model
Cf,i Interfacial friction factor
cp,f Specific heat at constant pressure (J/kg-K)
D Hydraulic diameter of flow channel (m)
Fr Froude number
fk Friction factor for phase k
G Mass velocity (kg/m2-s)
g Earth gravity (kg/m2)
gn Normal component of Earth gravity(kg/m2)
H Height of flow channel’s cross-section (m)
h Heat transfer coefficient (W/m2-K)
hfg Latent heat of vaporization (J/kg)
Ja Jakob number
k Thermal conductivity (W/m-K)
LB Length of the vapor blanket (m)
ṁ Mass flow rate (kg/s)
MAE Mean absolute error
p Pressure (Pa)
Pcrit Critical pressure (Pa)
Pi Interfacial perimeter (m)
PF Wetted perimeter (m)
PH Heated perimeter (m)
PR Reduced pressure (m)
Pr Prandtl number
Pw Wall friction perimeter (m)
q”CHF Critical heat flux (W/m2)
q”w Wall heat flux (W/m2)
Re Reynolds number
S Phase velocity ratio
T Temperature (K)
ΔTsub,in Inlet subcooling, Tsat - Tin (K)
U Mean velocity (m/s)

ui Streamwise velocity of the liquid-vapor interface (m/s)
v Specific volume (m3/kg)
W Width of flow channel and heated walls (m)
Xtt Lockhart-Martinelli parameter
x Quality
z Axial coordinate (m)
z* Axial location for determining vapor layer critical

wavelength (m)

Greek Symbols
α Vapor void fraction
δ Mean thickness of vapor layer (m)
λ Wavelength (m)
λc Interfacial instability critical wavelength (m)
ρ Density (kg/m3)
σ Surface tension (N/m)
μ Dynamic viscosity (Pa-s)
Γfg Evaporation per unit distance
τi Interfacial shear stress (Pa)
τw Wall shear stress (Pa)

Subscripts
avg Average
B Vapor blanket
c Critical; core
ex Exit
exp Experimental
f Saturated liquid
g Saturated vapor
h Homogeneous model
i Interfacial
k Phase k, k = f or g
ONB Onset of nucleate boiling
pred Predicted
sp Single-phase
sub Subcooling
tp Two-phase
w Heated wall
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slip ratio model to predict the void fraction is proposed by Zivi (1964).
This model is a kinetic energy model with the phase velocity ratio, S,
equal to (ρf /ρg)1/3 by utilizing the principle that in a steady state ther-
modynamic process the rate of entropy generation is minimum. Like the
Zivi model, Fauske (1961) proposed that S is equal to (ρf / ρg)1/2 to
develop their model while Smith (1969) developed another model by
equalizing the momentum fluxes of the two phases. Drift-flux models are
relatively more attractive because they include radial velocity distri-
bution, surface tension, and buoyancy effects in their formulations. The
earliest drift-flux model was developed by Zuber and Findlay (1965).
They accounted for the effect of the nonuniform flow as well as the effect
of the local relative velocity between the phases to develop the model.
Rohuani and Axelsson (1970) proposed their drift-flux model by
describing the mechanism of the detaching bubbles from evaporation
and calculating the rates of heat transfer for the vapor and liquid phases
and the rate of vapor condensation in the liquid was also included in the
development of the model. Kawahara et al. (2002) and Huq and Loth
(1992) also provide empirical correlations that are simple to use. Both
these correlations are empirical calibrations of the HEM. Beside these
four categories, Separated Flow Model (SFM) is another approach to
predicting void fraction by applying a control volume analysis to the
flow channel (Zhang et al., 2007). In this model, the flow is divided into
two layers, the vapor layer and the liquid layer, and the mass, mo-
mentum, and energy conservation equations are solved simultaneously.
The velocity of each phase is assumed to be uniform in the axial (flow)
direction, while allowing for a velocity difference between phases.
Pressure is assumed to be uniform over the entire cross-section. These
assumptions facilitate the analyses of individual phases. Based on this
approach, SFM is intended mostly for annular and stratified horizontal
flow regimes.

1.2. Flow boiling heat transfer coefficients

An important design parameter of interest in flow boiling is the heat
transfer coefficient. This parameter is very difficult to predict because of
its strong dependency on the flow regime. For example, heat transfer
coefficient has slightly negative or no relationship to the vapor quality
when the quality is low while this relationship becomes strongly nega-
tive at high vapor quality regimes (Collier and Thome, 1994). Moreover,
the heat transfer coefficient will face a sudden reduction when critical
heat flux or dryout occurs. Researchers have performed multiple ex-
periments to develop heat transfer coefficient correlations specific to
different flow boiling configurations. Lazarek and Black (1982) tested a
round tube with R-113 as the working fluid and a correlation for the
local heat transfer coefficient was developed based on their experi-
mental data. Tran et al. (1996) tested both circular and rectangular
channels with two kinds of refrigerants, R-12 and R-113 and heat
transfer data for these two fluids were correlated and presented in the
nucleation-dominant region. Gopinath et al. (2002) proposed two cor-
relations in their study for both saturated and subcooled flow boiling
based on their own experimental database. Similarly, Yu et al. (2002)
and Ducoulombier et al. (2011) also provide their own correlation by
performing their experiments. Other studies (Shah, 1982; Agostini and
Bontemps, 2005; Cooper, 1984; Hamdar et al., 2010; Kenning and
Cooper, 1989; Liu and Winterton, 1991; Li and Wu, 2010; Kim and
Mudawar, 2013; Lazarek and Black, 1982; Tran et al., 1996; Yu et al.,
2002; Kew and Cornwell, 1997) proposed their correlations by consol-
idating large databases generated by other researchers. In recent years,
correlations and predicting tools developed using machine learning
models have also been promising (Sun and Mishima, 2009; Naphon
et al., 2018; Mehrabi et al., 2013; Ghahdarijani et al., 2017). Correla-
tions are still the most common tools used for heat transfer coefficient
predictions, but improvements are necessary for them to be able to be
generalizable to a wide range of conditions.

1.3. Critical heat flux

In heat flux-controlled flow boiling systems and devices, critical heat
flux (CHF) is another crucial design parameter. CHF, also known as the
boiling crisis, is characterized by a sudden increase in the surface tem-
perature and a significant reduction in heat transfer coefficient during
flow boiling. CHF happens when the vapor generation on the heated
surface is too high to allow bulk liquid access to the surface. This phe-
nomenon can cause local burnout leading to catastrophic failure of the
thermal management system. Like heat transfer coefficients, a common
approach used in predicting CHF is the use of empirical correlations. By
performing experiments with specific working fluids and under certain
operating conditions, CHF correlations can be developed and become
reliable enough to make design decisions. One of the earliest works was
done by Katto (1981). In his study, the working fluids were water,
Freon-21. Freon-12, Freon-114, liquid nitrogen, liquid helium, and
liquid parahydrogen. By consolidating several vertical upflow experi-
mental data points, Katto developed a general correlation of CHF for
zero inlet subcooled flow which provided an accuracy R of 0.969 < R <

1.47. Later, Katto (Katto and Ohno, 1984) continued his work on the
correlations by adding more data points and improved the accuracy to R
of 0.945 < R < 1.071. Lazarek and Black (1982) performed a series of
experiments with a round tube of both vertical upflow and vertical
downflow configurations, and proposed a correlation based on their
data that produced an accuracy within ±10 %. Oh and Englert (1993)
developed a correlation for rectangular flow channel with standard
deviation of 17 % and 19 % for upflow and downflow experiments,
respectively. Some other well-known correlations by Bowring (1972),
Tan et al. (2017), and Tong (1968) have also been widely used over the
past few decades. A major drawback of empirical correlations are their
limitations to predict only within the parameter ranges they were
developed for. A better approach for predicting CHF is the use of the
theoretical or mechanistic models shown in Fig. 1. Theoretical models
are developed by capturing the flow physics and depend on a trigger
mechanism for estimating the CHF value. Kutateladze and Leont’ev
(1966) postulated one of the oldest theoretical CHF models, the
Boundary Layer Separation Model, for estimating flow boiling CHF. The
trigger mechanism for CHF was the forward liquid motion obstructed by
the heated wall vapor production. Weisman and Pei (1983) proposed the
Bubble Crowding Model. According to the model, CHF occurs when the
bubbles start crowding the bubbly layer hampering liquid from moving
to the heated wall. The Sublayer Dryout Modelwas postulated by Lee and
Mudawwar (1988). The authors claimed that the bubbles coalesce into
oblong vapor patches under the liquid sublayer close to the wall trig-
gering CHF, and CHF point occurs when the input energy exceeds the
enthalpy of the liquid from the sublayer. Galloway and Mudawar (1993)
postulated the Interfacial Lift-off Model by calculating the net momentum
of the wavy interface between the vapor and the liquid. By assuming the
ratio between the wetting front (liquid to heated wall contact area) and
the wavelength to be equal to 20 %, the CHF was estimated. This model
has been validated by various researchers but has limitations at low
mass flow rates (Zhang et al., 2005; Kharangate et al., 2016; Konishi
et al., 2015). Liu and Nariai (2000) developed a model based on the
observations of the vapor blanket and the liquid sublayer close to the
heated wall. The wavelength of the vapor blanket is assumed to be equal
to the Helmholtz instability wavelengths at the liquid-gas interface.
According to the model, CHF occurs when the liquid sublayer is
vaporized by the surface energy. Most recently, Huang and Kharangate
(2019), (2020) proposed the Hydrodynamic Instability-based CHF Model.
The model describes a wavy vapor layer that prevents liquid from con-
tacting the heat dissipated wall. Combining Taylor’s stability of inter-
face as well as Helmholtz instability of Zuber pool boiling, the model
predicts CHF and showed very good agreement compared to experi-
mental data.

C.-N. Huang et al.
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1.4. Machine learning methods

While the previous work has focused on the empirical correlations,
which necessitate numerous data points for thorough analysis, there
exists a gap in identifying the pertinent physical features. Traditional
data and acquisition methods have proven inadequate in accurately
capturing these features essential for modeling flow. This might be soon
addressed by averaging modern data analysis or machine learning (ML)
strategies. In the past three decades, we have seen unprecedented
development of soft computing techniques, such as Genetic Program-
ming (GP), Fuzzy-logic Control, and Data Mining that can be applied to
many scientific and engineering practices. However, their application to
the inference of two-phase experiments data, particularly flow boiling,
has been limited. A multitude of two-phase experiments in the past have
utilized high-speed flow visualization as an important diagnostic tool to
capture temporal and spatial two-phase interfacial features during
phase-change, yet the majority of these features have traditionally been
determined through manual analysis or rudimentary algorithmic ap-
proaches which requires significant human involvement. By integrating
ML-based framework, we demonstrate in this work that we can auto-
mate this process, allowing for the analysis of significantly larger data-
sets. Therefore, we capture new data on void fraction, bubbles,
interfacial behaviors, and wetting fronts in flow boiling based on data
from high-speed cameras (Chang et al., 2023). Ten different features
were computed based on 30,000 flow boiling images under micro-
gravity. This data can help us validate and model flow boiling perfor-
mance parameters with reasonable accuracy.

1.5. Objective of study

Flow boiling performance parameter predictions are important but
modeling tools currently available have limitations in their prediction
capabilities and generalizability. In a recent study, our team developed a
novel ML-enabled tool to autonomously capture two-phase behaviors
from flow boiling imaging data (Chang et al., 2023). This study is a
follow-up investigation on utilizing and predicting performance pa-
rameters of interest to flow boiling using this new data. The statistically
averaged information relating to void fraction, bubble behaviors,
interfacial waviness, and wetting fronts will be analyzed and correlated
with performance parameters including void fraction, heat transfer co-
efficient, and critical heat flux. The data are used in combination with
traditional modeling techniques to demonstrate the development of
improved prediction tools, theoretical models and correlations. This
study will also lay the groundwork for future validations of widely
available traditional flow boiling imaging data from multiple studies in

the literature for developing universal models for identifying
phase-change performance parameters.

2. Experimental module

The visual and numerical data analyzed and modeled in this study is
obtained from Purdue University Boiling and Two-Phase Flow Labo-
ratory’s (PU-BTPFL’s) experimental database. The specific data used
here is based on Konishi et al. (2015) with FC-72 as the working fluid in
a rectangular single-sided heating flow boiling configuration with mass
flow rates of 10, 20, and 40 g/s under microgravity conditions in a
parabolic flight. Fig. 2(a) adapted shows the schematic of the
flow-conditioning loop that provides the specific inlet temperature and
pressure conditions for the fluid entering the flow boiling module. The
flow boiling module is the main component of the flow conditioning
loop and is used to obtain data for wall temperature, pressure drops,
CHF, and interfacial behaviors. Type-E thermocouples with an accuracy
of ±0.5 ◦C are used to measure the fluid and wall temperature
throughout the flow boiling loop. Pressure at several locations along the
FBM and the flow loop are measured by STS absolute pressure trans-
ducers with an accuracy of ±0.05 %. Fig. 2(b)-(c) shows the details of
the flow boiling module that allows both single-sided and double-side
heating capability. The flow channel has a rectangular cross-section
with a width equal to 2.5 mm and a height equal to 5.0 mm. Resistive
heaters are attached to copper blocks on both the top and bottom sides of
the flow channel to ensure uniform heat flux. Thermocouples are con-
nected to the heated section to measure the wall temperature. Absolute
pressure transducers were used to measure the pressure drop across the
heated flow channel. Fig. 2(d)-(f) shows pictures of the three flow
boiling facilities whose experimental data is being utilized in this study.
A complete description of the flow-conditioning loop and the flow
boiling modules can be found in the following articles (Konishi et al.,
2015; Zhang et al., 2002; Kharangate et al., 2015).

3. Machine learning-assisted analysis

The ML-enabled framework consists of object detection, object
tracking, and data processing modules to autonomously detect and re-
cord the spatiotemporal statistics of bubbles during flow boiling as
shown in Fig. 3(a). First, high-resolution flow boiling images are passed
through a custom-trained Mask R-CNN model where instance-specific
bubble masks are generated in the object detection and segmentation
module (Suh et al., 2021). The Mask R-CNN model in this study is
trained over 100 epochs using stochastic gradient descent, with a
learning rate of 0.0008 and a momentum of 0.9. To comprehend the

Fig. 1. Flow boiling critical heat flux mechanistic theoretical models from literature (Weisman and Pei, 1983; Lee and Mudawwar, 1988; Galloway and Mudawar,
1993; Zhang et al., 2005).

C.-N. Huang et al.
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model’s predictions, its performance is assessed through the examina-
tion of typical evaluation metrics like recall, precision, accuracy, and F1
Score. The model showcases outstanding detection abilities, achieving
scores above 87 % for these standard metrics and providing a reliably

precise measurement through the MAPA metric, with a score exceeding
94 % (Chang et al., 2023). Subsequently, the object tracking module
processes these detected masks, linking unique identifiers (IDs) over
time. The tracked information is then post-processed through a data

Fig. 2. (a) Schematic of the flow loop. (b) Assembled view of the flow boiling module. (c) Heater wall construction. (d) Key dimensions of the flow channel. (e) Photo
of the flow boiling loop. Adapted from Kharangate et al. (Suh et al., 2021).

C.-N. Huang et al.
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processing module where the meaningful and spatiotemporal features
are gathered through in-house algorithms (Suh et al., 2021).

To elaborate, the vapor fraction is calculated by dividing the vapor
area by the total area of the channel as shown in Fig. 3(b). Binarization
techniques are employed to differentiate the vapor and liquid regimes.
The wetting front is quantified by measuring the distance between
bubbles at the liquid-solid interfaces. The wavelength is computed by
calculating the distance between the centroids of two adjacent bubbles
illustrated in Fig. 3(c). Upon the completion of pixel quantification, the
length measurements in terms of pixels are converted into millimeter-
scale dimensions. Detailed information regarding the framework can
be found elsewhere (Suh et al., 2023).

Physical features such as void fraction, wetting front, and wave-
length are extracted by analyzing binarized images obtained from the
object detection module. At this stage, the vapor and liquid phases in
these images can be clearly distinguished by the segmentation model
and can be post-processed using relatively simple algorithms. Because
vapor (bubble) and liquid (working fluid) regions are represented by
white and black pixels, respectively, the vapor fraction can be calculated
by tabulating the ratio between the white pixels (vapor) and total pixels
as shown in Fig. 3(b):

Local void fraction =
White pixels in column at location x

Total number of pixel in column at location x
(3)

The wetting front is quantified by counting the number of black
pixels at liquid-solid interfaces. The wavelength is computed by calcu-
lating the distance between the centroids of two adjacent bubbles
illustrated in Fig. 3(c). Upon the completion of pixel quantification, the
length measurements in terms of pixels are converted into millimeter-
scale dimensions (Chang et al., 2023). Based on the study by Ren
et al. (2015), objects can be entirely segmented from the background
with pixel-level accuracy. The accuracy for single object detection is
proved to be more than 97 % by applying the EfficientDet algorithm
with three BiFPN layers is used for hierarchical feature extraction and
three convolutional layers are used for the shared box prediction sec-
tion. We make a 2D assumption for the analysis which seems to be valid
for larger vapor voids but might lead to errors when we have smaller
bubbles like in the wetting fronts. Since a channel depth of 2.5 mm is
significantly smaller than a channel length of 80 mm, our analysis shows
that the vapor fraction can be calculated reasonably well based on the
two-dimensional assumption. To assess the validity of two-dimensional
assumption, we compared the cumulative volume of bubbles within the
channel in two scenarios. One, when all bubbles are assumed to have
fully extruded shapes by applying Volume = Area*Depth (which is fully

2D assumption), where depth refers to the channel depth which is 2.5
mm. Two, when we assume a hemispherical shape for bubble diameters
smaller than the depth of the channel, assuming no contact with the
surrounding wall by using Volume = πD3

eq/6 where Deq is the equivalent
closest spherical diameter for the small bubbles. In this second scenario,
we still use fully 2D assumption for the larger bubbles. When we
compare the two results, we only observe a 0.8 % difference in average
void fraction estimation, as shown in Fig. 3(d). This difference is sta-
tistically insignificant in terms of the vapor proportion. Therefore, we
can assume that the assumption of floating bubbles for small sizes is a
reasonable way to get an accurate estimation of the void fraction in this
scenario.

4. Results and discussion

The main purpose of this study is to apply the experimental data
captured by machine learning algorithms (Chang et al., 2023) into
models and correlations for estimating void fraction, heat transfer co-
efficient, and CHF during flow boiling.

4.1. Void fraction

First, we investigate the void fraction. The statistical spread and
average void fraction captured using the vision tool for three of the test
cases are shown in Fig. 3. Fig. 4(a) illustrates the case for a mass flow
rate of around 20 g/s and surface heat flux equal to 23.02 W/cm2, which
is 77 % of CHF, for flow boiling image data obtained from the experi-
ments performed by Konishi et al. (2015). As shown in the flow images,
the void fraction fluctuates between images as the vapor void fraction
behavior is wavy with discontinuous vapor patches moving along the
channel moving along with the liquid. Therefore, despite the increase in
vapor generation moving downstream in the flow channel, various re-
gions of the heated surface remain in direct contact with the liquid.
These parts are called wetting fronts. The line shown in Fig. 4(a) is the
void fraction averaged over 3,000 images captured at 2,000 frames per
second, and the gray band depicts its standard deviation. Similarly in
Fig. 4(b) and (c), as we go to higher velocities, we can see that the rate of
void fraction growth and spread reduces with flow rate. The reduction in
growth rate and the reduction in standard deviation is due to higher
shear stress at higher flow velocities. The same procedure was used to
capture void fractions for all the tests conducted in this investigation.

The captured experimental data can be validated with the models
and empirical correlations described in Section 1.1 where we introduce
prior void fraction models from literature. MAE to compare the exper-
imental data obtained from the vision tool with the models is defined as

Fig. 3. Vision-based deep learning framework: (a) The framework consists of object detection, tracking and data processing modules to automatically detect bubbles
and extract physically meaningful quantities. (b) In the data processing module, vapor fraction is obtained by tabulating white pixels (representing vapor) and black
pixels (representing working fluid). The data processing module computes the features, such as wavelength and wetting front, as illustrated in (c). Schematics are not
to scale. (d) Comparison of volume fraction estimations for 10 g/s case with 70 % of CHF between two scenarios: All vapor is assumed 2D and extruded in the 3D
plane to extract the void fraction (black), and small bubbles are assumed to be hemispherical shape while larger bubbles > 2.5 mm are extruded in the 3D plane (red).
The results indicated a 0.8 % difference in estimated volume

C.-N. Huang et al.
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follows:

MAE =
1
N
∑N

i=1

⃒
⃒αi,exp − αi,model

⃒
⃒

αi,exp
. (4)

The specific equations for all the models and correlations are listed in
Table 1. Fig. 5 illustrates the void fraction predictions using the best
performing models and correlations with the experimental data for one
of the test cases where the mass flow rate of 10 g/s and surface heat flux
equal to 19.1 W/cm2, which is 70 % of critical heat flux. The best pre-
dicting models within each group include modified homogeneous
models, slip ratio models, drift-flux models, and correlations as well as
the individual HEM and SFM models. The experimental α data below
0.05 (5 % of the channel height) was excluded from data validation/
error comparison because the vapor thickness as well as bubbles are too
small to be captured accurately before the formation of a clear vapor
blanket in the channel. In addition, the low void fraction data can be
inaccurate because it is observed that the region close to the heated
surface is slightly blurred from the original image data obtained by
Konishi et al. (2015) in their experiments. It should also be noted that all
models and correlations predictions shown in Fig. 5 have been adjusted
with the overlap point for void fraction being the z location where void
fraction is 5 % of the channel height. To clarify, we not only start at the 5
% void fraction for validation, but we also adjust the longitudinal
location of this starting point to match the experimental data. This is
deemed necessary because none of these models can capture the onset of
nucleate boiling point accurately and no prior correlations were devel-
oped for this working fluid in this specific configuration. As a result, the
data obtained from Fig. 4 is adjusted in the longitudinal direction to
cross the 5 % reference void fraction point and then used for validation
across the channel. As shown in Fig. 5, all the predicted curves cross with
each other at the same location as the first data point. Separated Flow
Model shows the best performance with the lowest MAE equal to 3.23 %.
The SFM is the only model that accounts for the actual flow configura-
tion with a control volume analysis predicting the phase velocities and
void fraction along the channel. This is followed by the model by
Nishino and Yamazaki (西野晴生 and 山崎彌三郎, 1963) with MAE
equal to 6.26 %. Their model successfully modifies the HEMby including
a slip ratio correlated with their experimental data. Rohuani and
Axelsson (1970)’s model also shows good agreement evidenced by an
MAE equal to 7.58 % as it accounts for the correct velocity distributions
in both phases. Smith (1969) and Huq and Loth (1992) provide close
MAEs of 10.77 % and 15.37 %, respectively. The HEM does not perform
so well as shown in Fig. 4 with MAE equal to 53.09 %. The reason for its

poor performance is the unsuitable assumption that the phase velocities
are equal which is typically only valid in the bubbly and the dispersed
droplet flow regimes. The observed flow for our case is more in the
wavy-separated regime. The averaged MAEs computed based on all the
10 experimental test cases are listed in Table 1. Validated by the
experimental data, the Separated Flow Model provides the lowest overall
MAE which is equal to 3.8 % while the Homogeneous Equilibrium Model
has the poorest MAE of 59.3 %.

Fig. 6 compares the predictions for all the individual test cases for
which we obtained data from the vision tool based on the Separated Flow
Model. High-speed video images adapted from Konishi et al. (2015) are
also included in Fig. 6 for reference. The Separated Flow Model performs
remarkably well not only in capturing the overall MAE but also the local
behavior along the channel with flow rate and heat flux. For the lowest
flow rate, the model initially slightly underpredicts but its predictions
improve as we move along the channel towards the exit. The higher flow
rates have much better predictions along the full channel with good
agreements between experimental data and the model predictions.
However, it should again be noted that the onset of nucleation point was
not captured by the modeling tool. When we do not adjust the longi-
tudinal location to the 5 % void fraction data point, the Separated Flow
Model is only able to capture the trend along the channel but not the
exact local behavior. We investigated various correlations for onset of
nucleate boiling but were unsuccessful. The main reason is that there is
no prior correlation specific to this configuration or the working field in
the literature. In conclusion, the experimental data of void fraction ob-
tained from machine learning algorithms are helpful to validate the
models and correlations with the Separated Flow Model providing the
best predictions among the tested models and correlations.

In terms of limitations of this assessment, we should note that our ML
framework and the validated models are developed for flow conditions
that have a dominant separated liquid-vapor domain. Utilizing this for
similar testing conditions would not require any retraining. While this
framework is valid for the regimes with the existence of distinct liquid-
vapor interfaces such as stratified and annular regimes, it will have
limited applicability to other flow regimes like churn flow regime. The
void fraction models and correlations need to be reassessed to check
applicability. Therefore, more experimental imaging data across more
geometric and testing conditions can help make this model more
generalizable.

Fig. 4. Captured experimental data based on the vision tool with error for (a) mass flow rate 10.25 g/s with 76 % of CHF, (b) mass flow rate 19.75 g/s with 77 % of
CHF, and (c) mass flow rate 39.17 with 77 % of CHF.
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4.2. Heat transfer coefficients

This section examines the accuracy of heat transfer coefficient by
comparing different correlations with experimental data, highlighting
the variations and consistencies in the analysis of thermal system per-
formance. Several commonly used correlations for flow boiling are listed
in Table 2. Fig. 7(a) illustrates all the predictions based on the correla-
tions in Table 2 and the comparison with experimental data for the test

case with a mass flow rate of 10 g/s and surface heat flux equal to 19.1
W/cm2. It can be observed that some of the correlations such as the one
by Hamdar et al. (2010) provide a reasonable prediction in terms of the
averaged heat transfer. This can be attributed to their study using a
similar working fluid and channel geometry. Some other correlation
predictions such as Li and Wu (2010), Kim and Mudawar (2013) and Liu
and Winterton (1991) while not matching the performance of Hamdar
et al., also perform well on the averaged predictions as they pertain
information on the working fluid in their theory. Correlations such as
Lazarek and Black (1982) and Tran et al. (1996) do not do so well. The
significant differences between the correlations and experiments can be
attributed to the tested geometry configuration of the flow channel in
their experiments. Both these studies used circular tubes and not the
rectangular channels with non-uniform heating. However, as we can
clearly see that although the averaged heat transfer coefficient is
reasonable for many correlations, none of them capture the trend which
is a reduction in heat transfer coefficient along the channel as observed
in the experimental data. Specifically, as observed in the images in
Fig. 6, the vapor thickness is increasing, and the liquid wetting front
lengths are reducing as we move downstream along the channel. This
behavior should impact the thermal transport capability along the
channel, something the prior correlations are not able to account for. It
was observed that while all experimental data was seen to reduce in the
flow direction all correlations predicted either an increase or more or
less constant variation in the downstream direction. Similar behaviors
are observed in Fig. 7 (b) which illustrates the case with mass flow rate
equal to 19.76 g/s and heat flux equal to 23.17 W/cm2 (77 % of CHF).

Therefore, we can see that the correlation models are not able to
account for how the liquid and vapor phases behave in the flow channel.
We can try to capture the actual behavior we observe using the sche-
matic of the flow in Fig. 8. The flow channel consists of continuous re-
gions of vapor patches and wetting fronts moving along the flow channel
with the liquid, with two such segments depicted in the figure. What we
observe is that at any point in time, the wall is either exposed to the
wetting front or to a complete vapor patch. Using the ML vision tool, we
can capture the lengths of the wetting fronts and the corresponding
vapor patch lengths. The wetting front’s information along the channel
for all the test cases is shown in Fig. 9(a), (b), and (c) corresponding to
mass flow rates around 10 g/s, 20 g/s, and 40 g/s, respectively. Like the
data on void fraction this number is averaged over 30,000 images by the
ML vision tool. The whole flow channel is subdivided into 10 sections
equally, so the length of each section is equal to 8 mm. In Fig. 9(a), we

Table 1
Models and correlations for predicting void fraction.

Models/ Correlations Equation MAE

Homogeneous Model
Homogeneous Equilibrium αH =

1

1+
ρg
ρf

(
1 − x
x

)
59.3 %

Modified Homogeneous
Model

(Armand and Treščev,
1959)

α = (0.833 + 0.164x)αH 35.1 %

Nishino & Yamazaki (西野
晴生 and山崎彌三郎,
1963)

α = 1 −
(
1 − x
x

ρg
ρf

αH
)0.5 6.8 %

(Chisholm, 1983) α =
αH

αH + (1 − αH)0.5
32.5 %

Slip Ratio Model
(Fauske, 1961) α =

1

1+

(
1 − x
x

)(ρg
ρf

)0.5
47.6 %

(Zivi, 1964) α =
1

1+

(
1 − x
x

)(ρg
ρf

)2/3
18.5 %

(Smith, 1969) α =
1

1+ 0.79
(
1 − x
x

)0.78(ρg
ρf

)0.58
13.5 %

Drift-flux Model
(Rohuani and Axelsson,
1970) α =

x
ρg

{[1+ 0.12(1 − x)]
(
x
ρg

+
1 − x

ρf

)

+

1.18(1 − x)
[
gσ
(
ρf − ρg

)0.25
]

Gρ0.5f
}

− 1

20.7 %

(Zuber and Findlay, 1965) α =
x

1.2
[

x+
ρg
ρf

(1 − x)
]

+
0.35ρg

̅̅̅̅̅̅
gD

√

G

32.1 %

Empirical Correlation
(Huq and Loth, 1992) α = 1 −

2(1 − x)2

1 − 2x+
[
1+ 4x(1 − x)

(
ρf/ρg − 1

)]0.5

20.25
%

(Kawahara et al., 2002)

α =

0.03
[

1+

(
1 − x
x

) ρg
ρf

]− 0.5

1 − 0.97
[

1+

(
1 − x
x

) ρg
ρf

]− 0.5

52.4 %

Separated Flow Model (
Zhang et al., 2007)

3.8 %

Momentum conservation:

G2 d
dz

[
(1 − xa)2

ρf (1 − αa)

]

= − (1 − αa)
dp
dz

−
τw,f Pw,f
A

±
τia Pia
A

− ρf (1 − αa) g sinθ

G2 d
dz

[
xa2

ρg αa

]

= − αa
dp
dz

−
τw,g Pw,g
A

∓
τia Pia
A

− ρg αa g sinθ

Energy conservation:
dxa
dz

=
qʹ́wW

ṁ
(
cp,f ΔTsub,in + hfg

)

Wall shear stress equations: τw,k =
1
2

ρk U2
k fk

where the friction factor fk is given by fk = C1 +
C2

Re1/C3Dk

= C1 +
C2

(
ρk Uk Dk

μk

)1/C3

where k = f or g. C1 = 0, C2 = 16 and C3 = 1 for laminar flow (ReDk ≤ 2100), C1 =
0.0054, C2 = 2.3 × 10-8 and C3 = -2/3 for transitional flow (2100 < ReDk ≤ 4000),
and C1 = 0.00128, C2 = 0.1143 and C3 = 3.2154 for turbulent flow (ReDk > 4000)
and where Dk = 4Ak /Pk

Interfacial shear stress equations: τia =
Cf ,ia
2

ρg
(
Uga − Uf

)2 and τib =
Cf ,ib
2

ρg
(
Ugb − Uf

)2

where Cf,ia = Cf,ib = 0.5

Fig. 5. Void fraction comparisons between experimental data and predictions
based on various models and correlations.
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see that for the case of 10 g/s wetting front length decreases as we move
downstream. This is caused by the increase in vapor accumulation as we
add more heat to the boiling fluid. Exit sections of the channels show
wetting fronts rations of under 10 %. In addition, as we increase the heat
flux, the wetting front reduces at each location along the channel with
CHF critical heat flux showing the smallest wetting front lengths. This is
also expected as we add more heat, we increase the vapor accumulation
on the heated wall. Similar behaviors can be seen in Fig. 9(b) and (c)
showing wetting front length ratios corresponding to 20 g/s and 40 g/s,
respectively. One specific difference at the highest flow rate of 40 g/s,
was that the inlet section of the channel (0~8 mm) is almost fully
covered by the wetting front or liquid at all heat fluxes. This can be
attributed to the wall heat flux not being high enough for significant
vapor generation at this higher flow rate test case in comparison to the
lower flow rate test cases.

The image data shows us that vapor patches and the wetting fronts
move along the channel continuously providing all parts of the heated
wall intermittent access to the incoming liquid. This access is provided
at the wetting fronts and the wetting fronts are the locations of bubble
nucleation and two-phase heat transfer will be dominant. Similar
behavior was investigated by Thome et al. (2004) where they tried to
estimate the heat transfer during evaporation in microchannels with
intermittent boiling and vapor coverage on the heated surface. As
depicted in Fig. 8, at any fixed location on the heated wall, the cooling
process includes a vapor patch passing followed by a wetting front
passing. This cycle repeats itself as continuous vapor patches and wet-
ting fronts are generated and move along the channel. As the wall has
access to vapor and wetting front over a cycle, the total time per cycle is

ttotal = tdry + twet (5)

where tdry and twet are defined as follows:

tdry =
Length of dry surface

Vapor velocity
(6)

and twet =
Length of wetting front

Liquid velocity
(7)

By calculating the time of wetting and the time of dry patch passing,
we can calculate the time averaged heat transfer coefficients. The ve-
locities here are not measured but computed based on the void fraction
predictions from the vision tool as follows:

ug =
qʹ́
wz

ρg(αH)
(
cp,fΔT + hfg

), (8)

and uf =
UH

H − αH −
qʹ́ z

ρf (H − αH)
(
cp,fΔT + hfg

), (9)

where ug is the vapor velocity and uf is the liquid velocity. The revised
heat transfer coefficient can be expressed as the combination of single-
phase and two-phase heat transfer coefficient based on the heated
wall vapor and liquid access as follows:

hrevised =
tdry
ttotal

hsp +
twet
ttotal

htp. (10)

In Eq. (10), hsp is the single-phase heat transfer coefficient, and htp is
the two-phase heat transfer coefficient. If the flow is laminar, the single-
phase heat transfer coefficient is calculated using the following equation
(Shah and London, 2014):

Nu = 8.235
(
1 − 1.883β+ 3.767β2 − 5.814β3 +5.361β4 − 2.0β5). (11)

If the flow is turbulent, hsp is calculated based on the famous Dittus-
Boelter correlation (Dittus and Boelter, 1985). Two-phase heat transfer
coefficient, htp, in Eq. (10) is calculated based on the original correla-
tions listed in Table 2. Using Eq. (10), the revised heat transfer co-
efficients along the flow channel are plotted in Fig. 10(a) for the same
test case shown in Fig. 7(a). Please note that the individual phase ve-
locity data is only available when we have the film developing, hence
the heat transfer model predictions begin after the initiation of the vapor
film as depicted in Fig. 6. We can observe that the models now are able
to clearly capture the reduction in trend in local hat transfer coefficient
along the channel. It should be noted that the modification to heat
transfer coefficient changed the average behaviors of heat transfer, but
the trends are now more appropriate. There are clearly observable
variations in predictions in the inlet section. For the inlet section, this
can be attributed to our model equation assuming a two-phase heat
transfer coefficient for the full inlet region even if the liquid might be
subcooled and not boiling. However, as we are not demarcating an onset
of nucleate boiling point, this result is expected. This error would not
propagate downstream as boiling has initiated upstream for all other
locations. For the downstream section. Similar comparison can be
observed in Fig. 10(b) for the flow rate of 19.76 g/s even though the
predictions are not as good as at the lower mass flow rate. Overall, for
the complete dataset as shown in Table 2, the MAEs between the original

Fig. 6. Comparison between Separated Flow Model predictions and the experimental data for (a) mass flow rate around 10 g/s, (b) mass flow rate around 20 g/s, and
(c) mass flow rate around 40 g/s.
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Table 2
Correlations for predicting heat transfer coefficient.

Author(s) Equation Remarks MAEorigin MAErevised

(Kim and
Mudawar,
2013)

hKim =
(
h2nb + h

2
cb

)0.5

hcb =

[

5.2
(

Bo
PH
PF

)0.08
We− 0.54 +3.5X− 0.94

tt

(ρg
ρf

)0.25
](

0.023Re0.8f Pr0.4f
kf
D

)

hnb =

[

2345
(

Bo
PH
PF

)0.7
PR0.38(1 − x)− 0.51

](

0.023Re0.8f Pr0.4f
kf
D

)

Ref =
ρf ufDf

μf
Bo =

qʹ́

Ghfg

Dh = 0.19-6.5 mm, FC72, R11, R113, R123,
R1234yf, R1234ze, R134a, R152a, R22, R245fa,
R32, R404A, R407C, R410A, R417A, CO2, water

24.88 % 70.38 %

(Li and Wu,
2010) hLi = 334Bo0.3

(
BdRe0.36f

)0.4kf
D
,Bd =

g
(
ρf − ρg

)
D2

σ
Dh = 0.16-3.1 mm, water refrigerants, FC-77,
ethanol, propane, CO2

23.38 % 57.50 %

(Oh and Son,
2010) hOh = 0.034Re0.8f Pr0.3f

(
1.58X− 0.87

tt
)
(
kf
D

)

Xtt =

(
1 − x
x

)0.9(ρf
ρg

)0.5
(

μf
μg

)0.1

D= 1.77, 3.36, 5.35 mm, R134a, R22 89.92 % 97.67 %

(Tran et al.,
1996) hTran = 8.4× 105

(
Bo2Wef

)0.3 ( ρf/ρg
)− 0.4

,Wef =
G2D
ρfσ

D= 2.46, 2.92 mm, Dh=2.40 mm, R12, R113 125.1 % 35.77 %

(Lazarek and
Black, 1982) hLazarek = 30Bo0.714Re0.857fo

kf
D
,Refo =

ρf ufD
μf

D= 3.15 mm, R113 233.6 % 28.22 %

(Gopinath et al.,
2002) hWarrier =

[
1 + 6Bo1/16 − 5.3(1 − 855Bo)x0.65

]
(

0.023Re0.8f Pr0.4f
kf
D

)
Dh= 0.75 mm, FC84 36.55 % 55.85 %

(Liu and
Winterton,
1991)

hLiu =
[(
Ehsp

)2
+ (Shnb)2

]0.5

E =

[

1+ xPrf
(ρf

ρg
− 1
)]0.35

,hsp = 0.023Re0.8f Pr0.4f
kf
D

S =
(
1+ 0.055E0.1Re0.16f

)− 1
,hnb = 55P0.12R

(
− log10PR

)− 0.55M− 0.5qʹ́ 0.67

D= 2.95 – 32.0 mm, water, R11, R12, R13, R114,
R22, ethylene, glycol

23.11 % 69.91 %

(Kenning and
Cooper, 1989) hKenning =

(
1 + 1.8X− 0.87

tt
)
(

0.023Re0.8f Pr0.4f
kf
D

)
D= 9.6-14.4 mm, water 67.20 % 89.91 %

(Agostini and
Bontemps,
2005)

hAgostini = {
28qʹ́ 2/3G− 0.26x− 0.1, forx < 0.43
28qʹ́ 2/3G− 0.64x− 2.08, forx > 0.43

Dh= 2.01 mm, R134a 147.5 % 37.07 %

(Cooper, 1984) hCooper = 55P0.12R
(
− log10PR

)− 0.55M− 0.5qʹ́ 0.67 6000 data points for nucleate boiling 21.96 % 68.23 %

(Yu et al., 2002)
hYu = 30Re0.857fo Bo0.714

(
1

1 − x

)0.143kf
D

D= 3.15 mm, R113 234.5 % 28.24 %

(Hamdar et al.,
2010) hHamdar = 6942.8

(
Bo2Wef

)0.2415
(ρg

ρf

)0.22652kf
D

Dh= 1.0 mm, R152a 15.88 % 64.51 %

(Sun and
Mishima,
2009)

hSun = 6
(
Re1.05fo Bo0.54We− 0.191f

)(ρg
ρf

)0.142kf
D

Dh= 0.21-6.05 mm, R11, R12, R123, R134a, R141b,
R22, R404a, R407c, R410a, CO2, water

108.4 % 36.07 %
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.H
uang

etal.



International Journal of Multiphase Flow 179 (2024) 104928

11

and the revised correlations show a change with some improving in
predicting capability while others becoming worse. In addition, five
representative correlations data for all test conditions are plotted in
Fig. 10 (c). The best performing one shown is by Lazarek and Black
(1982), while the worst performing is Oh and Son (2010). However, we
can clearly see that the vision tool is helping us improve the capture of
heat transfer trends.

Our approach to validating the heat transfer coefficient models is
based on first comparing the experimental data to prior correlations
which is a common approach in literature to validate them. The reason
we use multiple correlations is to check which of the correlations best
captures the experimental data obtained in our study. As can be seen in
Table 2, none of the prior correlations have been developed specific to
only our testing configuration and working fluid. The results from just
testing these prior correlations show that not only do most of the cor-
relations not capture the averaged data well, but they are also unable to
capture the trend of reduction in heat transfer coefficient along the

channel observed in the experiments. With the use of extracted auton-
omous vision data on wetting fronts, we can enhance the correlations
and show that we can better capture the heat transfer with most
resulting correlations following the expected trends. However, as these
correlations are not specific to our configuration, we still cannot select a
correlation most applicable to our study based on this analysis.

In terms of limitations of this assessment, we need to understand that
this effort in heat transfer coefficient assessment is preliminary because
we directly used prior correlations developed for two-phase flow re-
gimes in the wetting regions and supplemented with single-phase cor-
relations in the dry regions to enhance predictions. With this assessment,
we were able to understand the major shortcomings of prior correla-
tions, but future efforts need to go into understanding the wetting front
flow boiling behaviors in more detail to model the heat transfer accu-
rately in that region. In addition, current wetting front data from flow
visualization assumes that the side-view 2-dimensional flow imaging is
sufficient to capture the 3-dimensions wetting behavior of the wall,

Fig. 7. Heat transfer coefficient comparison between experimental measurements and correlation predictions for (a) mass flow rate of 10.25 g/s with heat flux 76 %
of CHF, and (b) mass flow rate of 19.76 with heat flux 77 % of CHF.

Fig. 8. Schematic depicting the continuous wetting front and dry surface behavior observed along the flow channel.

Fig. 9. The ratios of wetting fronts in each 8 mm section of the flow channel for (a) mass flow rate around 10 g/s, (b) mass flow rate around 20 g/s, and (c) mass flow
rate around 40 g/s

C.-N. Huang et al.
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Fig. 10. Revised heat transfer coefficient comparisons between the experimental measurements and the correlation predictions for (a) mass flow rate of 10.25 g/s
with heat flux 76 % of CHF, (b) mass flow rate of 19.76 g/s with heat flux 77 % of CHF (c) comparison between the experimental data and five correlation
predictions.

C.-N. Huang et al.
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which is not fully accurate. Therefore, this measurement needs refine-
ment with better diagnostic measurements like wall phase distribution
capture of the wetting region if we use a transparent heater.

4.3. Critical heat flux

CHF formulations are mostly based on mechanistic understanding of
the trigger mechanism as discussed in Section 1.3 above and some
correlations. We will limit ourselves to only validating with those
models that can use data from our vision tool as input. In a very early
study, Tong (1968) developed a correlation that predicts the CHF as
follows,

qʹ́
CHF = 0.23foGhfg

[

1+0.00216
(
pex
Pcrit

)1.8

Re0.5Ja

]

, (12)

where

Ja =
cp,f (Tsat − Tsub)

hfg
ρf
ρg
, (13)

and the Reynolds number is defined as

Re =
GD

μf (1 − α). (14)

fo is defined as

fo =
8(Dh/Do)0.32

Re0.6
, (15)

where Do is the reference diameter equal to 0.0127 m. Tong claims that
the predicted CHF is based on the exit of the flow channel. Therefore, the
captured void fraction at the outlet is applied to calculate the Reynolds
number in Eq. (13) and the corresponding CHF. The predictions based
on the revised and the original Tong model are shown in Table 3. The
absolute errors for the revised Tong model ranges from 1.2 % to 38.2 %,
while the absolute errors for the original Tongmodel ranges from 26.8%
to 54.3 %. The absolute error is defined by the following equation,

AbsoluteError =
⃒
⃒CHFexp − CHFpred

⃒
⃒

CHFexp
. (16)

In another study, Liu and Nariai (2000) developed their model based
on the observations of the vapor blanket and the liquid sublayer close to
the heated wall. The final form of their CHF is given as follows,

qʹ́
CHF =

ρfδhfg
LB

UB, (17)

where δ is the thickness of the sublayer, hfg is the latent heat, LB is the
wavelength vapor blanket and UB is the velocity of the vapor blanket. UB
is calculated by the following equation,

UB =
Uc

1+ ρb
, (18)

where

ρb =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ρc + ρg

)/
ρc

√

, (19)

and Uc and ρc are the average velocity and average density of the core
region, calculated by the following relation,

Vc = G/ρc, (20)

and ρc = (1 − α)ρf + αρg. (21)

Void fractions captured by our ML vision analysis are plugged into
Eq. (21) to calculate the average density ρc. Average wavelengths data
from our analysis are used to estimate the vapor blanket wavelengths.
The predictions based on the revised and the original model by Liu et al.
are also shown in Table 3. We see that there is a significant difference
betweenmodel prediction and experimental measurements at the lowest
mass flow rate. However, the predictions improve as the mass flow rate
increases for the revised model.

Galloway and Mudawar (1993) postulated the Interfacial Lift-off
Model by claiming that, just before CHF, bubbles would coalesce into
long wavy vapor patches. The cooling happens in the wetting fronts
between the patches. CHF occurs when the momentum of vapor pro-
duced in wetting fronts exceeds the pressure force induced across the
vapor-liquid interface due to interfacial curvature. The CHF can be
calculated as follows,

qʹ́
CHF = ρg

(
cp,fΔTsub,in + hfg

)
[
4bπσsin(bπ)

ρg

]1/2δ1/2

λavg

⃒
⃒
⃒
⃒
z∗
, (22)

where δ is the mean thickness of the vapor layer, λavg is the average
wavelength, and b is the ratio of wetting front length to overall wave-
length, which is assumed to be 0.2 in this original model. For the
rigorous validation, input parameters to the Interfacial Lift-off Model,
such as b, δ and λavg are computed using ML vision analysis as shown in
Fig. 11. All three parameters are averaged for the entire flow channel.
because the Interfacial Lift-off Model states that b and the δ/ λavg ratio are
consistent along the channel length. Like other models, predictions seem
to improve with increasing mass flow rate. For this model, the deviation
at low mass flow rates can be attributed to the interfacial lift-off model
being less applicable at lower flow rates as discussed by their authors
(Zhang et al., 2005; ). In addition, another reason for the lower accuracy
is the assumption in the original model that the wetting front ratio is
constant and equal to 0.2. We see from the data that this parameter is
actually equal to 0.14, 0.2, and 0.46 for mass flow rates of 10, 20 and 40
g/s, respectively. It has to be noted that the original form of Interfacial
Lift-off Modelmight not be able to capture the CHF trend as themass flow
rate increases due to the assumption of a constant wetting ratio 0.2.

In a recent study, Huang and Kharangate (2019), (2020) proposed
the Hydrodynamic Instability-based Model to predict the CHF mechanism
based on liquid access to the heated wall preventing CHF. They postu-
lated that CHF occurs when liquid access is restricted in both the parallel
to flow and perpendicular to the heated wall directions. Combining
Taylor’s stability wavelength criterion of the interface in the parallel
direction with the Helmholtz instability of the interface in the perpen-
dicular direction, the final form of the predicted CHF is expressed as

qʹ́
CHF = ρghfg

π
16

(
4σ
λc

)1/2
[(ρf + ρg

ρfρg

)1/2
/(

1+
ρg
ρf

π
16 − π

)]

. (23)

In this model the only unknown parameter is the critical wavelength,
λc, which varies along the flow channel as seen in Fig. 12. Therefore,
choosing the correct λc is important. According to Huang and Khar-
angate (2019), (2020), the Hydrodynamic Instability-based Model

Table 3
Experimental data and model predictions for CHF.

Mass flow rate (g/s) 10 20 40
Experimental measurement (W/cm2) 28.8 34.2 40.6
Original model by Tong (W/cm2) 36.5 46.3 62.6
Revised model by Tong (W/cm2)* 17.8 23.1 41.1
Original model by Liu et al. (W/cm2) 13.5 17.5 22.5
Revised model by Liu et al. (W/cm2)* 14.4 26.5 50.6
Original Interfacial Lift-off Model (W/cm2) 34.2 31.8 32.1
Revised Interfacial Lift-off Model (W/cm2)* 8.5 15.3 35.1
Original Hydrodynamic Instability-based Model (W/cm2) 22.4 25.0 29.6
Revised Hydrodynamic Instability-based Model (W/cm2)* 25.9 36.5 36.1

* Revised models use machine learning vision tool data we generate for pre-
dicting CHF in combination with their original formulations.
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provides the most conservative predictions of CHF by choosing the
wavelengths in the upstream flow channel location. As the flow boiling
process is pseudo-steady with the interface having a wavy behavior, to
be consistent with the model, we need to capture the smallest wave-
lengths during this process. As the ML vision analysis provides a mini-
mum wavelength for each frame in the 3,000 frames/second imaging
data, we select the smallest 10 wavelengths in the inlet channel domain
or the first 5 mm of the flow channel to compute the λc. The average is
important because using the smallest wavelength might not be appro-
priate as a single frame data might be erroneous, while averaging 10 was
selected as an appropriate number to capture the smallest wavelengths.
It is observed that averaging the lowest 50 or 100 wavelengths, changes
results slightly but the overall predictions from the model are similar.
The corresponding CHF predictions are listed in Table 3. Good agree-
ment is observed using this revised model with errors equal to 10%, 7%,

and 11 % for mass flow rates of 10, 20 and 40 g/s, respectively. This can
be attributed to the model being less empirical and being specifically
developed for a non-uniform heated rectangular configuration flow
boiling configuration as investigated in this study. The original pre-
dictions based on the Hydrodynamic Instability-based Model are listed
at the end of Table 3 for the comparison. The revised Hydrodynamic
Instability-based Model performs better than its original model that esti-
mates wavelength based on a combination of control volume and
instability analysis.

Fig. 13 compares the predictions based on the four models where we
use the vision data in combination with the mechanistic or semi-
empirical formulations for predicting CHF from literature. Both the
models by Tong and the model by Liu et al. are improved when using as
input the experimental data from the vision tool. These models predict
the CHF at the outlet based on the void fraction at the exit. By feeding

Fig. 11. Average wavelengths, wetting fronts, and wetting front ratios for the three flow rates at CHF based on the vision tool.

Fig. 12. Vapor wavelength variations along the flow channel over each 8 mm section at CHF for three mass flow rates.
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the actual data, the accuracy of the models improves significantly. The
Interfacial Lift-off Model predictions are slightly worse than that of the
original model. However, the assumptions of wetting front ratio used in
the original Interfacial Lift-off Model do not match the vision tool data on
wetting front ratios observed. This shows the need for more validation in
order to improve the model framework. the revised Hydrodynamic
Instability-based Modelwith practical wavelengths improves the accuracy
of the model.

In terms of the limitations of this assessment, we need to understand
that the test cases under investigation here for CHF were limited to three
flow rates drawing major conclusions. Even though the imaging data
size and the time to train the models for that data were significant, the
work was not validated for a wide range of testing and geometric con-
ditions yet. In addition, similar to the heat transfer coefficient results,
the 2-dimensional side view imaging data limits the capture of the sta-
tistical and accurate 3-dimensional wetting region waves data. This
shortcoming can be improved in future studies by developing a trans-
parent heater and capturing the wall phase distribution during flow
boiling.

5. Needs for future studies based on limitations of the dataset

While this study shows that we can significantly improve the HTC or
CHF models based on visual data, it should be noted that the models still
need more data to be generalized for other conditions, including oper-
ating conditions and channel geometries.

This study focuses on the operating conditions in microgravity using
data obtained from parabolic flights (Konishi et al., 2015). It emphasizes
the impact of forces like fluid inertia, fluid viscosity, surface tension, and
others rather than gravity for predicting performance parameters.
Although the general modeling approach can be broadly applied, the
modified models or correlations will not be generally applicable to all
terrestrial conditions. For example, at high mass flow rates (≥ 20 g/s for
our test channel), inertia dominates gravity and flow boiling behaviors
in microgravity are similar to those in terrestrial conditions (Zhang

et al., 2007; Zhang et al., 2007; Konishi et al., 2013), making the ML
framework applicable in these scenarios. More scenarios that combine
various orientations, flow rates, and heating rates should be added to
this work to improve the model generalizability.

Also, it should be noted that a limited dataset using a thin rectan-
gular channel has been used in this study. With the current configura-
tion, we assume that side-view 2-dimensional flow imaging is sufficient
to capture the 3-dimensions wetting behavior of the wall for the
collection of bubble-related statistical features. This assumption may not
be necessarily accurate for different configurations, such as thicker
channels, circular channels, or channels with 3D geometries. To gain full
access to the visual information, it might be necessary to collect visual
data from multiple views and angles, potentially with the implementa-
tion of transparent heaters.

It needs to be recognized that ML models may not work for
completely unknown or unseen datasets. In the past, we have success-
fully shown our model works on two-phase flow configurations like pool
boiling and dropwise condensation (Chang et al., 2023; Suh et al., 2021,
2024, 2021). To make this model work for our scenario, the previous ML
frameworks based on pool boiling and dropwise condensation were
re-trained by including thousands of images from the current micro-
gravity flow boiling experiments at different mass flow rates and heat
flux conditions, where a fine-tuning process is also performed to
generate the final tool. Particularly, we train the ML model based on the
convective boiling-dominant regime instead of the nucleate
boiling-dominant regime. The execution of this additional step ensures
that our model applies to similar scenarios. The nucleate boiling is
presented by bubbly and slug flow while the convective boiling is shown
as annular flows where the interfacial characteristics are extracted here.
The nucleate or convective regimes are determined depending on the
combination of working fluid, geometric, and operating conditions (Kim
and Mudawar, 2013). Future studies need to add new data and perform
new training to include more flow scenarios as well as other
phase-change configurations.

Overall, this study shows how different theoretical models for

Fig. 13. Comparison between original and revised model predictions for CHF with experimental data.
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predicting flow boiling parameters can be improved with the use of ML
vision data. This work can play a significant role in improving our
mechanistic understanding and modeling capabilities for predicting in-
dividual performance parameters in flow boiling. However, there is a
need to include more datasets in training across more testing conditions
to make the ML vision framework more applicable and generalizable.

6. Conclusions

In this study we obtain physically meaningful features from ML
enabled vision tools to validate models for estimating important per-
formance parameters in flow boiling. Experimental features, such as
void fraction, vapor and liquid wavelengths, wetting fronts, etc. are
computed systematically using the autonomous vision tool and model
formulations tested for the individual parameters, void fraction, heat
transfer coefficients, and CHF. Key findings from the study are listed
below.

1. ML-enabled vision framework computed two-phase features, such as
void fraction along the channel for three flow rates and up to 4 heat
flux scenarios. We validate 11 modeling formulations and correla-
tions including the Homogeneous Equilibrium Model and the Separated
Flow Model, where the Separated Flow Model shows the best perfor-
mance evidenced by the lowest MAEs.

2. Conventional heat transfer coefficient correlations perform poorly in
estimating the local heat transfer behavior along the channel and
completely miss the trend in heat transfer coefficient variation along
the channel. A novel approach which includes obtaining the ratio of
the wetting front length and the dry surface length from the vision
tool is proposed in this study. The resulting predictions of the revised
heat transfer coefficient show significant improvement with the
models being able to capture the trend observed in the experimental
data.

3. Traditional CHF models were derived based on different trigger
mechanisms. Assumptions and sub-models are needed to calculate
the parameters. In the present study, we successfully reassess these
CHF modeling frameworks by feeding features, such as void fraction,
bubble wavelengths and wetting front ratios. The Hydrodynamic
Instability-based Model shows the best performance among the 4
models that we have.

4. This work is laying the groundwork for further validation of larger
flow boiling image datasets for better generalizability of the models.
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