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A B S T R A C T   

This study is part of the Flow Boiling and Condensation Experiment (FBCE) and utilizes flow boiling data 
collected in both microgravity onboard the International Space Station (ISS) and Earth gravity at different 
channel orientations. The goal is to develop a prediction technique for heat transfer and critical heat flux (CHF) 
for flow boiling in both microgravity and Earth gravity using artificial neural networks (ANNs). The working 
fluid, n-perfluorohexane or FC-72, flows through a rectangular channel of 114.6 mm heated length, 2.5 mm 
heated width, and 5.0 mm unheated height with either one or two walls heated. The consolidated FBCE database 
for heat transfer coefficient comprises 29,226 datapoints spanning a mass velocity of 173 – 3200 kg/m2s, 
pressure of 102 – 238 kPa, subcooling of 0 – 44◦C, and thermodynamic equilibrium quality of -0.60 – 0.95 
(spanning from highly subcooled to high-quality saturated boiling). Following a statistical analysis of various 
input parameters relevant to flow boiling and optimization of key model parameters, a fully connected feed- 
forward ANN is developed to predict Nutp. It predicts the entire test database with an overall mean absolute 
error (MAE) of just 7.99% with consistent and accurate predictions in each subset. Similarly, 641 CHF datapoints 
from FBCE were consolidated into a database spanning a mass velocity of 99 – 3212 kg/m2s, inlet pressure of 97 
– 239 kPa, inlet subcooling of 0 – 46◦C, inlet thermodynamic equilibrium quality of -0.61 – 0.86, and CHF values 
of 4 – 54 W/cm2. A separate ANN is developed by following the same methodology as heat transfer, and it 
predicts dimensionless CHF, BoCHF, with an overall MAE of just 12.05%. Existing seminal correlations are 
assessed for subsets of the two consolidated FBCE databases, and the ANNs are shown to have better accuracies in 
each subset of the database. The ANNs’ high prediction accuracy, in conjunction with their ability to predict 
physical parametric trends in previously unseen data, shows their potential as prediction tools for both heat 
transfer and CHF for flow boiling in microgravity and Earth gravity.   

1. Introduction 

1.1. Two-phase systems in microgravity 

Two-phase systems are a prime contender for thermal management 
in future space missions [1]. Compared to single-phase systems that 
solely rely on sensible heat, two-phase provides superior heat transfer 
performance by utilizing the fluid’s latent heat of vaporization. More
over, two-phase systems can handle larger cooling loads while being 
lighter and more compact, a benefit for many aerospace applications. 
Nevertheless, designing two-phase systems for space vehicles is a chal
lenging task. Variations in body force alter system performance, such as 
heat transfer and flow characteristics, from that observed in Earth 

gravity (ge), which most design tools are developed for. Consequently, 
dependable microgravity databases are required to develop and validate 
available design tools for space applications. 

Numerous researchers have dedicated experiments to obtain boiling 
data in microgravity. Typically, short durations of microgravity are 
achieved during terrestrial experiments via drop towers, sounding 
rockets or ballistic missiles, or parabolic flights. These methods provide 
meaningful microgravity data, but each has its drawbacks. Drop towers 
provide a high quality of microgravity but for very short durations [2]. 
Sounding rockets and parabolic flights provide longer durations of 
microgravity but are prone to fluctuations in the level of g, known as 
g-jitter [3], which can artificially augment heat transfer performance. 

To circumvent these drawbacks, experiments can be conducted on
board the International Space Station (ISS) to obtain long-duration, 
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stable microgravity data. In 2011, the Microheater Array Boiling 
Experiment [3] and the Nucleate Pool Boiling Experiment [4] collected 
microgravity pool boiling data onboard the ISS. Both investigations 
revealed a decrease in heat transfer and a significant deterioration in the 
critical heat flux (CHF) in microgravity when compared to ge. Flow 
boiling experiments were performed onboard the ISS by researchers in 
collaboration with the Japanese Aerospace eXploration Agency with 
nPFH through a 4-mm-diameter copper heated tube and transparent 

glass tube onboard the ISS from 2017–2019 [5]. 
In 2022, a group of researchers supported by the European Space 

Agency outlined experiments onboard the ISS from 2019 and 2021 
called the Multiscale Boiling Project [6]. Four different categories of 
experiments were performed including pool boiling, shear flow, pool 
boiling in the presence of an electric field, and shear flow in the presence 
of an electric field. These experiments were done to investigate the 
contact line behavior of bubbles, growth of bubbles, influence of an 

Nomenclature 

Ac channel cross-sectional area, [m2] 
b bias 
Bd Bond number, g(ρf − ρg)D2/σ 
Bdθ orientation-specific Bond number,gcosθ(ρf − ρg)D2 /σ 
Bo Boiling number,q˝w/(Ghfg)

C constant 
cp specific heat, [J/(kg.K)] 
Ca capillary number, Gν/σ 
D diameter, [m] 
De equivalent heated diameter, 4Ac/Ph, [m] 
Dh hydraulic diameter, [m] 
E loss 
F convective boiling correction factor 
f(v) activation function 
Fr Froude number, G2/(ρ2gD)
Frθ orientation-specific Froude number, G2/(ρ2

f gsinθD)
G mass velocity, [kg/(m2s)] 
g gravitational acceleration, [m/s2] 
ge gravitational acceleration on Earth, [m/s2] 
µge microgravity, [m/s2] 
H height of channel, [m] 
h heat transfer coefficient, [W/(m2K)] 
hfg latent heat of vaporization, [J/kg] 
Ja** modified Jacob number, cp,f ΔTsub/hfg 

k thermal conductivity, [W/(m.K)] 
L length, [m] 
La Laplace number, σρD/μ 
Mw molecular weight, [kg/kmol] 
n exponent; mini-batch size 
N number of data points 
Nu Nusselt number, hD/k 
P perimeter, [m] 
p pressure, [Pa] 
pr reduced pressure, p/pcrit 
Pr liquid Prandtl number, cpμ/k 
q" heat flux, [W/m2] 
r Pearson’s correlation coefficient 
Re liquid only Reynolds number, GD/μ 
S nucleate boiling suppression factor 
T temperature, [◦C] 
ΔTsat fluid subcooling, Tw – Tsat, [◦C] 
ΔTsub fluid subcooling, Tsat – Tf, [◦C] 
t target value 
U velocity, [m/s] 
v weighted sum of inputs and bias at a neuron 
W width of channel, [m] 
wi weight 
We Weber number, G2D/(ρσ)
x flow quality 
xe thermodynamic equilibrium quality, h− hf

hfg 

xi input 
Xtt turbulent-turbulent Lockhart-Martinelli parameter, 

(
μf
μg

)0.1( 1− x
x
)0.9
(

ρg
ρf

)0.5 

y output 

Greek symbols 
θ orientation angle of channel, [◦] 
μ dynamic viscosity; mean, [Pa.s] 
ξ30 percentage of datapoints predicted within ±30% error, 

[%] 
ξ50 percentage of datapoints predicted within ±50% error, 

[%] 
ρ density, [kg/m3] 
σ surface tension; standard deviation, [N/m] 
φ probability value 

Subscripts 
CHF critical heat flux 
d development 
De calculated D = De 
e exit 
exp experimental 
f saturated liquid; bulk fluid 
fo liquid only 
g saturated vapor 
go vapor only 
h heated 
i index (= 1, 2, 3, …) 
in inlet 
nb nucleate boiling 
out outlet 
pred predicted 
sat saturation 
sp single-phase 
sub subcooling 
tp two-phase 
w wall, wetted 
wa heated wall (= w1 or w2) 

Acronyms 
ANN artificial neural network 
BGD batch gradient descent 
CHF critical heat flux 
FBCE flow boiling and condensation experiment 
FBM flow boiling module 
ISS international space station 
MAE mean absolute error (%) 
MBGD mini-batch gradient descent 
MST mission sequence testing 
nPFH n-Perfluorohexane 
RMSE root mean square error (%) 
SGD stochastic gradient descent  
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electric field, and influence of shear flow. In the absence of external 
forces, bubbles grew larger with increasing heat flux and decreasing 
subcooling. Introducing shear flow caused bubbles to depart from the 
nucleation site and slide along the heated surface. Similarly, pool boiling 
in an electric field promoted stable bubble detachment in microgravity, 
but bubbles lifted away perpendicular from the heated surface. 
Increasing the strength of the electric field caused the detachment of 
small bubbles. During the combination of shear flow and an electric 
field, bubbles either lift-off or slide along the heated surface depending 
on the relative magnitudes of the electric field and the flow inertia. 

In 2023, researchers associated with the Institute of Fluid Mechanics 
of Toulouse and Airbus Defense and Space in Friedrichshafen, Germany, 
published an article outlining a future experiment called CoSmo 
(Compact Small Scale Convection Loop) for implementation on the ISS 
[7]. The primary objective of this study is to investigate the effects of 
gravity on flow patterns and heat transfer during flow boiling of nPFH in 
a 6-mm-diameter copper heated tube and borosilicate glass adiabatic 
tubing. Thus far, preliminary experiments have been performed for 
vertical upflow in Earth gravity and onboard a parabolic flight. Exper
iments were performed with low mass velocities of 20 – 150 kg/m2s, 
pressures of 0.5 – 1.5 bar, subcoolings of 0 – 10 K, and inlet qualities of 
0.0 – 0.8. 

The Flow Boiling and Condensation Experiment (FBCE), a collabo
rative effort between researchers at the Purdue University Boiling and 
Two-Phase Flow Laboratory and the NASA Glenn Research Center, aims 
to explore flow boiling and condensation in microgravity at an un
precedented scale by performing extensive experiments onboard the ISS. 
Prior to the ISS experiments, a fundamental understanding of gravity’s 
influence on flow boiling and condensation was developed via experi
ments conducted in ge at different flow orientations [8] and in brief 
periods of microgravity achieved during parabolic flights [9]. Technical 
insights from terrestrial experiments led to refinements of the FBCE 
system culminating in the flight FBCE system, which can be utilized for 
both flow boiling and condensation experiments by connecting the 
appropriate test module. In early 2021, the flight system equipped with 
the Flow Boiling Module (FBM) underwent a final round of ground tests 
called Mission Sequence Testing (MST) [10]. MST was conducted in the 
vertical upflow orientation and consisted of a subset of the parameters to 
be covered during ISS experiments, especially the extremes. Based on 
the preliminary experiments up to and including MST, new correlations 
were developed for both subcooled flow boiling heat transfer [11] and 
CHF [12]. 

In August 2021, the FBCE system was launched to the ISS and 
installed in the Fluid Integrated Rack. From February 2022 until July 
2022, a variety of flow boiling experiments were performed, yielding a 
large microgravity database for flow boiling heat transfer and CHF. 
Experimental results and analysis of trends have already been reported 
for subcooled inlet with single- [13] and double-sided heating [14], and 
liquid-vapor mixture inlet with single- and double-sided heating [15]. 
The corresponding CHF results were further explored in detail along 
with prediction tools (mechanistic model and correlation) for subcooled 
[16] and two-phase inlet [17]. 

1.2. Prediction of two-phase heat transfer coefficient 

To capitalize on expertise gained from experiments in μge and ge, the 
collected data is used to develop predictive tools which can be incor
porated during the design and analysis of thermal systems. Numerous 
correlations are available in the literature for various applications 
spanning different fluids, heating configurations, and operating condi
tions. Correlations are typically designed for either saturated flow 
boiling (xe ≥ 0) or subcooled flow boiling (xe < 0) with select correla
tions capable of handling both. However, as detailed in reviews of 
existing correlations for flow boiling heat transfer [18,19], a definitive 
method for predicting h for flow boiling has not been established, but a 
few common functional forms are prominent. Enhancement type [20, 

21] correlations follow the functional form of 

htp = Chsp, (1)  

where htp can be determined from hsp and a multiplier, C, to account for 
boiling, which varies in form. 

Asymptotic models [22,23] assume htp is comprised of components 
attributed to nucleate boiling and forced convection and follow the 
form, 

hn
tp = (S × hnb)

n
+
(
F × hsp

)n
. (2) 

Superposition models are a special subset of asymptotic models with 
n = 1, and was first proposed by Chen [24] as 

htp = (S× hnb) +
(
F × hsp

)
. (3) 

The multipliers in front of each component are conventionally called 
the nucleate boiling suppression factor, S, and the convective boiling 
correction factor, F, and are respectively used to regulate the relative 
influence of nucleate boiling and convective heat transfer. Researchers 
have proposed numerous methods to determine each term [25,26]. 

Predominant mechanism models assume htp can be approximated by 
the maximum of h determined for each mechanism separately, typically 
either nucleate or convective boiling [27]. In some cases, nucleate 
boiling is preemptively considered the dominant mechanism and cor
relations do not consider other mechanisms [28]. Other researchers 
have proposed different correlations for htp based on local conditions. 
Models based on flow pattern [29] combine knowledge of flow patterns 
within a channel, such as the local wetted perimeter of the channel, with 
empirical correlations to develop a model with a more physical basis. In 
a similar vein, hybrid models propose transition criteria to capture 
different heat transfer mechanisms and determine the appropriate cor
relation to be employed [30]. 

One of the earliest fully subcooled correlations was proposed by 
McAdams et al. [31] and assumes a simple power-law relation, 

q = CΔTn
sat. (4) 

This form was adopted in a few other early subcooled flow boiling 
correlations [32,33], but correlations of this form are typically restricted 
in their applicability to broad operating ranges and fluids other than 
water. 

1.3. Application of machine learning for thermal systems 

The ever-growing capability and availability of computational re
sources favors machine learning algorithms to tackle complex problems. 
Machine learning has become a commonplace in predicting the perfor
mance of various thermal systems such as building energy consumption 
[34], ground source heat pumps [35], gas turbines [36], internal com
bustion engines [37], heat exchangers [38], and heat sinks [39]. Ma
chine learning has also been incorporated in predicting the fundamental 
heat transfer performance of nanofluids [40] and porous media [41]. 
However, most relevant to the present study is the adaptation of ma
chine learning methods for predicting heat transfer in two-phase 
systems. 

An artificial neural network (ANN) was developed by Guanghui et al. 
[42] to capture the effect of flow instability on CHF. They trained models 
for either natural circulation or pumped loops under low pressure con
ditions with inputs of conventional parameters such as average mass 
flow rate, pressure, inlet subcooling, and the ratio of heated length to 
diameter. To account for instabilities, both the amplitude and the period 
of mass flow rate oscillations were included as inputs. The output of the 
model was a non-dimensional factor describing the ratio between CHF 
with and without oscillations. Their model predicted 85% of the training 
data within ±10% relative error. 

Wang et al. [43] formed a consolidated database featuring flow 
boiling h data for R-22, R-134A, R-407C, and R-410A in horizontal 
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smooth tubes. The authors developed an ANN with a single hidden layer 
to predict h. They choose the inputs to their model by 
non-dimensionalizing the typical inputs of h correlations. The authors 
refit existing correlations to their database. Regardless, their ANN out
performed each correlation with a mean deviation of 13.0%. 

Cong et al. [44] showed the applicability of neural networks in 
predicting CHF for forced convective boiling on a heated surface with 
impinging jets. Their ANN consisted of a single hidden layer, used 
conventional dimensionless terms that influence CHF as inputs, and 
accurately predicted boiling number for their database. The authors 
additionally used a genetic algorithm to propose a correlation based on 
the inputs to their ANN but found their ANN to be more accurate. 

Zaidi [45] utilized support vector regression to predict h for boiling 
in a thermosyphon reboiler. The model was trained with a consolidated 
database of natural circulation heat transfer data featuring 8 different 
fluids. They used the logarithm of nondimensional terms affecting h to 
predict the logarithm of Nu and showed all their test data was predicted 
within 20% of the experimental data. 

An ANN for predicting h for saturated flow boiling in mini-/micro- 
channels was presented by Qiu et al. [46]. Their network was trained 
from a consolidated database of nearly 17,000 data points featuring 16 
different fluids, different channel geometries, and a broad range of 
operating conditions. They tested different combinations of dimensional 
and dimensionless inputs while optimizing their model. Finally, 
dimensionless inputs were selected for better generality, regardless of 
dimensional inputs achieving slightly better predictions. They tested the 
capability of their ANN to predict unseen data by eliminating individual 
databases from the consolidated database used for training. After 
retraining, the model proved adept at predicting data outside the 
training data set. 

Longo et al. [47] developed an ANN for predicting h for refrigerants 
inside a brazed plate heat exchanger. Adding a second hidden layer 
insignificantly improved the model so only a single hidden layer was 
used. Increasing the number of nodes within the hidden layer asymp
totically decreased the error of the model, and 12 nodes were selected in 
the final model. The minimum number of nodes to reach sufficient ac
curacy was used as the final model. Their final ANN showed better 
predictive capability than available theoretical models, and accurately 
predicted data that is not well captured by other predictive models such 
as low-pressure refrigerants at high reduced pressures. 

A neural network to estimate pool boiling h for dielectric liquids, 
refrigerants, and water on porous surfaces was developed by Sajjad et al. 
[48]. The influence of the combination of surface material and liquid on 
heat transfer was captured by including parameters of both as inputs to 
the model. The authors tested different network architectures and 
settled on a network with three hidden layers. Their preferred model 
was capable of predicting a wide range of operating conditions for 
different fluids with an overall mean absolute error of 5.74%. 

Zhou et al. [49] tested different machine learning algorithms to 
predict h for a condensing flow in mini-/micro-channels via a consoli
dated database. Their optimized ANN consisted of 15 consecutively 
narrowing hidden layers from 150 to 10 neurons and outperformed 
three decision tree-based models (Random Forest, Adaptive Boost, and 
Extreme Gradient Boosting). They used a variety of dimensionless 
groups as inputs to predict h and outperformed previously developed 
generalized correlations. The authors showed their models could predict 
individual datasets that were intentionally left out of training, provided 
the working fluid was still present within the training data. 

Zhu et al. [50] trained 2 ANNs, one for flow boiling heat transfer, and 
the other for condensation heat transfer. Each network consisted of 7 
hidden layers with the 7 most relevant dimensionless groups, deter
mined by SOBOL sensitivity analysis for either flow boiling or conden
sation. Using the appropriate ANN, the authors predicted their database 
of flow boiling and condensation of R-134a in mini-channels with 
serrated fins with respective mean absolute relative deviations of 
11.41% and 6.06%. However, the authors showed extrapolating the 

ANN to conditions outside the scope of the training data resulted in 
unreliable predictions, and the mean absolute relative deviation excee
ded 120%. 

Cho et al. [51] explored the effects of non-condensable gas on the 
heat transfer of a free-falling condensing film. They consolidated a 
database of condensing water vapor with various geometric parameters, 
operating conditions, and mass fraction of either non-condensable air or 
nitrogen. A new correlation was developed by nonlinear regression to fit 
the present database, and it outperformed those available in the litera
ture. However, the performance of empirical correlations, including 
those which were fit to the present database, was trumped by their 
trained ANN. The authors optimized their ANN by testing architectures 
of 2 – 10 uniform layers with 2 – 40 nodes in each layer and settled on 6 
layers containing 26 nodes per layer. Inputs to their model included the 
natural log of operating conditions, and properties of the working fluid 
and non-condensable gas. Their model predicted the entire database 
within ±50% error. 

Predictive models for flow condensation heat transfer in horizontal 
tubes were developed by Nie et al. [52] using different machine learning 
models including K-nearest neighbors, ANN, convolutional neural 
network, random forest, and extreme gradient boosting algorithms. 
They tested four different combinations of input parameters to train 
their models: (i) experimental parameters, (ii) experimental parameters 
with thermophysical properties, (iii) dimensionless groups, and (iv) a 
consolidated group containing all other parameters. Each model per
formed satisfactorily, but the authors favored the dimensionless input 
parameters for better scaling when comparing with other databases. The 
neural networks and extreme gradient boosting algorithm were the 
best-performing models, outperforming K-nearest neighbors and 
random forest. However, the extreme gradient boosting model per
formed the best for predicting datasets that were excluded from training. 

Qiu et al. [53] proposed a systematic approach to optimize ANN 
models for predicting flow boiling h in mini-/micro-channel heatsinks. 
Using the same database as [46], an ANN with improved accuracy was 
achieved by (1) selecting inputs utilized in previous physics-based cor
relations, (2) including additional inputs which show statistical signifi
cance in influencing h, and (3) performing a thorough grid search to 
optimize the model’s hyperparameters and network architecture. 

1.4. Objectives of present study 

The primary goal of the Flow Boiling and Condensation Experiment 
(FBCE), is to obtain crucial flow boiling and condensation data in 
microgravity, which can be used to develop and verify design tools. The 
present study capitalizes on the unique and extensive database for 
microgravity flow boiling collected onboard the ISS. The ISS micro
gravity database is combined with a pre-launch database to form a 
consolidated FBCE heat transfer database comprised of data obtained in 
microgravity and Earth gravity at different orientations. The consoli
dated database is used to train an ANN for predicting flow boiling heat 
transfer in microgravity. Development of the ANN involves a statistical 
analysis of inputs relevant to flow boiling and optimization of key model 
parameters. Then, another ANN is developed to predict flow boiling CHF 
using a consolidated FBCE-CHF database. Both the ANNs are assessed 
with respect to accuracy, predicted trends, and comparison to available 
correlations. 

2. Methodology 

2.1. Description of database 

All data consolidated in the present database was collected during 
FBCE with the Flow Boiling Module (FBM), presented in Fig. 1. FBM is 
formed by three polycarbonate plates stacked between two aluminum 
support plates and bolted together. The middle polycarbonate plate 
contains a 5.0 mm × 2.5 mm (H × W) rectangular channel. Two opposite 
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heated walls are formed by copper strips, 114.6 mm long, 15.5 mm 
wide, and 1.04 mm thick, inserted into the polycarbonate. Heat is sup
plied to the copper walls by six thick-film resistive heaters attached to 
the back side of each copper strip, opposite the flow channel. Copper- 
strip temperatures are recorded by thermocouples placed between suc
cessive heaters. The entire 327.7 mm entrance length, side walls of the 
114.6 mm heated length, and entire 60.7 mm exit length are adiabatic 
and are formed by insulating polycarbonate. Both upstream and 
downstream of the heated length, fluid temperature and pressure are 
recorded via thermocouples inserted directly into the flow and absolute 
pressure transducers, respectively. 

The database includes flow boiling heat transfer data obtained 
during 

(i) ground tests in 2015 [54] featuring different orientations (verti
cal upflow, vertical downflow, and horizontal flow with bottom 
and top wall heating), single- and double-sided heating, and 
saturated inlet conditions, 

(ii) ground tests in 2016 [55] featuring different orientations (verti
cal upflow, vertical downflow and horizontal flow), double-sided 
heating, and subcooled liquid and saturated two-phase inlet,  

(iii) ground tests during MST in 2021 [10,56] featuring vertical 
upflow, single- and double-sided heating, and subcooled liquid 
and saturated two-phase inlet conditions, and 

(iv) experiments onboard the ISS in 2022 [13–15] featuring μge, sin
gle- and double-sided heating, and subcooled liquid and satu
rated two-phase inlet conditions. 

The consolidated FBCE heat transfer database contains 29,226 
datapoints of local flow parameters (G, p, T, ΔTsub, and xe), heated wall 
measurements (Tw and q"w) and calculated two-phase heat transfer co
efficient (htp) obtained during flow boiling. Flow quality (x) is a measure 
of the relative amount of vapor in the channel and is approximated 
assuming equilibrium conditions as 

x =

⎧
⎪⎪⎨

⎪⎪⎩

0, xe < 0

xe, 0 ≤ xe ≤ 1

1, xe > 1

. (5) 

The ranges of relevant parameters of the database are presented in 
Table 1. Additional details regarding the experimental setup, operating 
procedure, data processing, and uncertainty are provided in the original 
publications [10,13–15,54–56]. 

2.2. Artificial neural networks 

ANNs are black box models capable of mapping complex, nonlinear, 
relationships between large quantities of inputs and outputs [57,58]. 
They have gained widespread popularity in various fields, including 

Fig. 1. Schematic diagrams of streamwise and cross-sectional views of the experimental flow boiling module. The module’s dimensions are included along with 
placements of the wall temperature thermocouples in the heated strips. 
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security, science, engineering, medical research, agriculture, finance, 
banking, and numerous others. This popularity is attributed to their 
exceptional accuracy, fast processing speed, fault tolerance, low latency, 
high performance, large capacity, and scalability [59]. In the 1940s, 
McCulloch and Pitts [60] proposed the mathematical modeling of a 
neuron as a switch, which is either active or inactive depending on the 
weighted sum of its inputs. An example of a neuron, which serves as the 
fundamental computational unit of an ANN, is depicted in Fig. 2(a), 
where xi are the inputs to the neuron, wi are the corresponding weights 
applied to xi, and b is the bias. Each neuron passes the weighted sum of 
its inputs and a bias, v, through a non-linear activation function, f(v), to 
yield an output, y. Common activation functions include the Sigmond 
function, hyperbolic tangent function, and rectified linear unit (ReLu) 
function [61]. The ReLu activation function is preferable for mitigating 
the vanishing gradient problem (where the gradient goes to 0), accel
erating convergence of gradient descent algorithms [62], and is calcu
lated as 

f (v) =
{

v, v ≥ 0
0, v < 0 , (6) 

Fig. 2(b) depicts the architecture of a fully connected feed-forward 
neural network. The network is comprised of three types of layers. No 
computations are performed in the first layer, called the input layer, and 
its size is dictated by the number of input parameters. Following the 
input layer are hidden layers. A network contains one or more hidden 
layers, each containing any number of neurons. The final layer, called 
the output layer, yields the desired output parameters of the network. In 
a fully connected neural network, each neuron in a given layer is con
nected to each neuron in the previous and following layers. Depending 
on the types of connections, networks are classified as either feed- 
forward or recurrent. In feed-forward networks, information propa
gates from the input layer towards the output layer, such that the out
puts of one layer serve as the inputs for the following layer, and there is 
no feedback to previous layers. Networks with connections that provide 
feedback to previous layers and send information towards the input 
layer are called recurrent networks. Only feed-forward networks are 
explored in this paper. 

The back propagation algorithm, developed by Rumelhart et al. [63], 
is a commonly used gradient descent technique for training multi-layer, 
feed-forward neural networks. This algorithm enables the tuning of 

weights and biases within the network to minimize the loss function, 
which is used to measure error. Half of the Mean Squared Error (MSE) of 
the outputs is commonly employed as the loss function for regression 
problems, and, with a single output, it is calculated as 

Table 1 
Summary of consolidated FBCE heat transfer coefficient database.   

Single-sided Double-sided Overall  
Horizontal 
Bottom 

Horizontal 
Top 

Vertical 
Up 

Vertical 
Down 

μge Horizontal 
Bottom 

Horizontal 
Top 

Vertical 
Up 

Vertical 
Down 

μge 

Number of data 
points, N 

930 648 1278 688 4668 1093 1103 3420 1795 13,603 29,226 

Mass velocity, G 
[kg/m2s] 

192.52 – 
2028.09 

190.21 – 
2037.91 

179.93 – 
3199.98 

199.34 – 
2031.17 

179.97 – 
3200.10 

182.85 – 
2438.82 

182.85 – 
2438.82 

172.79 – 
3200.00 

195.18 – 
2317.96 

179.36 – 
3200.01 

172.79 – 
3200.10 

Pressure, p [kPa] 113.97 – 
178.53 

113.51 – 
176.21 

108.48 – 
174.99 

115.35 – 
176.76 

113.47 – 
176.57 

102.16 – 
195.21 

102.16 – 
195.21 

107.48 – 
228.26 

114.99 – 
238.44 

114.79 – 
196.63 

102.16 – 
238.44 

Fluid 
temperature, T 
[◦C] 

60.64 – 
74.96 

60.52 – 
74.52 

35.87 – 
74.29 

61.01 – 
74.62 

25.09 – 
74.59 

24.70 – 
75.90 

24.70 – 
75.90 

29.02 – 
75.58 

27.10 – 
76.12 

25.52 – 
78.23 

24.70 – 
78.23 

Fluid Subcooling, 
ΔTsub [◦C] 

0.00 0.00 0.00 – 
27.42 

0.00 0.00 – 
43.70 

0.00 – 
36.33 

0.00 – 
36.33 

0.00 – 
40.29 

0.00 – 
38.03 

0.00 – 
43.44 

0.00 – 
43.70 

Equilibrium 
Quality, xe 

0.005 – 
0.756 

0.005 – 
0.711 

-0.375 – 
0.777 

0.005 – 
0.751 

-0.603 – 
0.921 

-0.486 – 
0.758 

-0.486 – 
0.758 

-0.560 – 
0.865 

-0.514 – 
0.861 

-0.599 – 
0.952 

-0.603 – 
-0.952 

Approximated 
Flow Quality, x 

0.005 – 
0.756 

0.005 – 
0.711 

0.000 – 
0.777 

0.005 – 
0.751 

0.000 – 
0.921 

0.001 – 
0.758 

0.000 – 
0.758 

0.000 – 
0.865 

0.000 – 
0.861 

0.000 – 
0.952 

0.000 – 
0.952 

Wall heat flux q"w 

[W/m2] 
28,828 – 
206,940 

18,720 – 
221,769 

25,312 – 
480,917 

18,720 – 
221,769 

20,359 – 
550,738 

18,104 – 
474,821 

18,720 – 
499,901 

17,969 – 
494,884 

24,641 – 
456,610 

20,363 – 
517,965 

17,969 – 
550,738 

Heated wall 
temperature, 
Tw [◦C] 

64.92 – 
84.34 

62.05 – 
98.60 

60.50 – 
117.38 

63.57 – 
81.48 

64.47 – 
121.15 

57.45 – 
91.00 

57.46 – 
98.86 

59.74 – 
115.61 

64.10 – 
114.15 

65.70 – 
121.61 

57.45 – 
121.61 

Heat transfer 
coefficient h 
[W/m2K] 

4197.1 – 
22,364.8 

2278.5 – 
29,902.9 

1571.3 – 
29,401.9 

7083.8 – 
32,648.8 

1334.5 – 
17,744.6 

2819.7 – 
21,963.4 

2665.4 – 
29,631.4 

1426.3 – 
28,251.7 

3247.3 – 
31,706.2 

1070.4 – 
23,610.3 

1070.4 – 
32,648.8  

Fig. 2. Schematics displaying (a) the operation of a single neuron including the 
inputs, xi, corresponding weight applied to each input, wi, bias, b, input to 
activation function, v, activation function, f(v), and output, y, and (b) the 
connectivity between neurons in a fully connected feed-forward network. 
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E =
1
2
∑n

i=1
(yi − ti)

2
, (7)  

where E is the loss, yi and ti are the predicted and target output of 
observation i, respectively, and n is the total number of observations in 
each iteration. The gradient of the loss function is explicitly calculated at 
the output layer and propagated backward through the network towards 
the input layer. The weights and biases are then updated with the 
gradient of loss with respect to the local weight via the selected learning 
rule. 

The present study employs the learning algorithm called Adam [64], 
which is well suited for convergence of multilayer neural networks, to 
regulate the updating of weights and biases. Updating occurs at the end 
of each iteration; however, n is a selected value which can be varied to 
optimize and accelerate convergence. The extreme values of n are either 
1, corresponding to Stochastic Gradient Descent (SGD), or N, corre
sponding to Batch Gradient Descent (BGD) [65]. During SGD, the 
weights and biases are updated for each observation, and there are N 
iterations per epoch, which corresponds to a single passing of the entire 
training dataset. Updates are frequent in SGD, resulting in a computa
tionally expensive process and fluctuations in loss. The model is updated 
once per epoch in BGD, resulting in stable but possibly suboptimal 
convergence. The Mini-Batch Gradient Descent (MBGD) utilizes inter
mediate values of n and balances the robustness of SGD and the stability 
of BGD. During MBGD, the number of iterations per epoch is obtained by 
truncating N/n, and the remaining observations are skipped. The ob
servations used in each iteration can be shuffled at the end of each 
epoch, such that the same data is not excluded from training. 

One prevalent issue with ANNs is overtraining, where the ANN 
model becomes overly specific to the data used to train it. To mitigate 
overtraining, the database is randomly divided into three subsets. The 
training data accounts for 70% of the entire database and is used during 
the training process. The testing data accounts for 15% of the database 
and is used to assess the accuracy of the model after training is 
completed. The remaining 15% of the database is used for validation 
during training. The loss of the validation data is calculated at the end of 
each iteration. Once the loss of the validation does not improve for a 
selected number of training iterations, termed the validation patience, 
training is stopped to prevent the model from losing generality to data 
not used during training. In the present study, the validation patience is 
indicated as a number of epochs. 

2.3. Model development 

2.3.1. Selection of input parameters 
A compilation of possible input parameters is formed by assessing 

various flow boiling heat transfer coefficient correlations available in 
literature. Correlations are conventionally developed for either sub
cooled (xe < 0) or saturated (xe ≥ 0) flow boiling, due to the different 
mechanisms and trends observed in each regime [66]. Tables 2 and 3 
present selected seminal correlations developed for large, consolidated 
databases, their relevant input parameters, and corresponding dimen
sionless groups, for subcooled and saturated flow boiling heat transfer, 
respectively. The overarching characteristics of the input parameters 
describe the heated surface condition, flow inertia, state of the fluid, 
liquid film near the wall, impact of body force, and channel geometry. 
The input parameters from all listed correlations can be consolidated as 

htp = f

⎛

⎝
q″

w,Dh,De,Pw,Ph,Tw,ΔTsat,G,U, p,Tf ,ΔTsub, xe, ...

x, ρf , ρg, cp,f , μf , μf |Tw
, kf ,Tsat, σ, hfg, pcrit,Mw, g, θ

⎞

⎠. (8) 

The comprehensive list contains parameters that are irrelevant or 
redundant in describing htp for the present database. In order to develop 
an explicit model for htp, one of either q"w or Tw should be included as an 
input. For the present database, experiments were performed by 

controlling the wall heat flux, hence q"w is preserved as an input and Tw 
is removed. In the same vein, parameters dependent on wall tempera
ture, such as those describing the liquid film, are eliminated as possible 
inputs. The effect of orientation, θ, is quantified by capturing the effects 
of gravity parallel and perpendicular to the flow as g.sinθ and g.cosθ, 
respectively. The definition of θ employed in [12] is adopted in the 
present study where horizontal bottom wall heating, vertical upflow, 
horizontal top wall heating, and vertical downflow correspond to θ = 0◦, 
90◦, 180◦, and 270◦, respectively. 

The relation between different parameters, including the dependent 
variable, htp, is examined via Pearson’s correlation coefficient (r), which 
assesses the linear dependence between any two variables. For any two 
parameters A and B, r is defined as 

r(A,B) =
1

N − 1
∑N

i=1

(
Ai − μA

σA

)(
Bi − μB

σB

)

, (9)  

where r approaching 1, − 1, or 0, respectively indicates a positive linear 
correlation, a negative linear correlation, or no correlation, between 
variables. The r for each pair of parameters is depicted in Fig. 3 by both 
the color gradient indicating the value of r and the size of the circle 
increasing with the magnitude of r (i.e., strong and weak correlations are 
represented by large and small circles, respectively). Inspection of the 
relationship between different variables reveals the following:  

(1) Parameters such as Dh, Pf, and Mw are constant in the present 
database and are independent of other variables.  

(2) Fluid properties exhibit significant correlation, either positively 
or negatively, to pressure due to nPFH being the one and only 
fluid.  

(3) Certain parameters are redundant and describe similar physical 
attributes affecting htp, such as G and U, Tf and ΔTsub, as well as De 
and Ph. 

Parameters that show no dependence and fluid properties are 
removed from consideration as inputs for the model. Furthermore, G, 
ΔTsub, and De are selected to describe inertia, subcooling, and channel 
geometry, respectively, and U, Tf, and Ph are eliminated. After elimi
nating unnecessary parameters, the dependency of htp for the present 
database can be written as 

h = f (q˝w,De,G, p,ΔTsub, x, xe, g, g.sinθ, g.cosθ) (10) 

An F-Test is a type of hypothesis test to determine the probability that 
the response values grouped by predictor variables come from pop
ulations with the same mean. A p-value (probability value), φ, gives the 
probability that the null hypothesis, which assumes the means are un
related, is true and the variable is statistically insignificant. Null hy
pothesis is generally rejected when the p-value is less than 0.05 [73,74]. 
Fig. 4(a) depicts the importance of each predictor as –ln(φ), where 
values over 3 correspond to p-values less than 0.05, indicating statistical 
importance. Clearly, De is significantly less important than the other 
parameters considered. However, mimicking conventional correlations 
and separating the subcooled and saturated flow boiling heat transfer 
data, the influence of input parameters in each regime can be observed. 
Fig. 4(b) focuses on subcooled boiling, and De becomes a key variable 
where the heated perimeter strongly influences the fluid’s subcooling, 
impacting heat transfer performance. On the other hand, the influence of 
gravity perpendicular to the heated wall, g.cosθ, is more pronounced 
during saturated boiling in Fig. 4(c). This is attributed to the buoyancy 
causing stratified flow at low flow rates during horizontal flow in 
saturated flow boiling, where vapor production is significant. 

An ANN is first developed for subcooled flow boiling and saturated 
flow boiling, separately. Training is performed with the MATLAB Deep 
Learning Toolbox [75]. Prior to training, the inputs are standardized by 
subtracting their means and dividing by their standard deviations. The 
He initializer, which was developed for improved convergence with 

I. Mudawar et al.                                                                                                                                                                                                                               



International Journal of Heat and Mass Transfer 220 (2024) 124998

8

Table 2 
Select seminal correlations for subcooled flow boiling and their relevant parameters.  

Author(s) (Year) Correlation, Input Parameters, and Dimensionless Groups Applicability Information Prediction Accuracy for 
Entire Consolidated 
Database 

Papell (1963) [67] Nutp

Nusp
= 90

(
q˝w

hfgρgU

)0.7( hfg

cp,f ΔTsub

)0.84(ρg

ρf

)0.756 
(11a) 

Nutp

Nusp
= 90Bo0.7Ja∗∗− 0.84

(ρg

ρf

)0.056 
(11b) 

Nusp = 0.021Re0.8
fo Pr0.4

f (11c) 
Input Parameters: 

htp = f
(

q˝w,U,ΔTsub,D, hfg, ρg, ρf , ...

cp,f , μf , kf

)

(11d) 

Dimensionless groups: 

Nutp = f
(

Bo, Ja∗∗,
ρg

ρf
,Ref ,Prf

)

(11e)  

• Geometry: uniformly heated tube  
• Fluids: distilled water, ammonia  
• Consolidated database of 306 data points  
• Recommended/validated range: 
p = 110.32 – 13,789.52 kPa 
U = 0.41 – 62.22 m/s 
ΔTsub = 3.33 – 186.67◦C 
q"w = 42.49 × 103 – 91.52 × 106 W/m2 

MAE = 74.51% 

Badiuzzaman (1967)  
[68] 

Nutp

Nusp
=

C1

[( q˝w

hfgρgU

)(
hfg

cp,f ΔTsub

)1.2(ρg

ρf

)1.08(ΔTsub

Tsat

)0.6
]C2

(12a) 

Nutp

Nusp
= C1

[

BoJa∗∗− 1.2
(ρg

ρf

)1.08(ΔTsub

Tsat

)0.6
]C2 

(12b) 

Water: C1 = 178, C2 = 0.75 
Organic fluids: C1 = 759, C2 = 0.89 (used in this study) 
Nusp = 0.021Re0.8

f Pr0.4
f (12c) 

Input Parameters: 

htp = f
(

q˝w,U,ΔTsub,Tsat ,D, hfg, ρg , ρf , ...

cp,f , μf , kf

)

(12d) 

Dimensionless groups: 

Nutp = f
(

Bo, Ja∗∗,
ΔTsub

Tsat
,
ρg

ρf
,Ref ,Prf

)

(12e)  

• Geometry: Flow over horizontal rectangular strip  
• Fluids: Water, ethanol, isopropanol  
• Database of 260 data points  
• Recommended/validated range: 
U = 0.26 – 1.22 m/s 
ΔTsub = 27.78 – 70.00◦C 
q"w ≤ 1.66 × 106 W/m2 

MAE = 48.83% 

Moles & Shaw (1972)  
[21] 

Nutp

Nusp
=

78.5
( q˝w

hfgρgU

)0.67( hfg

cp,f ΔTsub

)0.5(ρg

ρf

)0.7(cp,f μf

kf

)0.46
(13a) 

Nutp

Nusp
= 78.5Bo0.67Ja∗∗− 0.5

(ρg

ρf

)0.03
Pr0.46

f (13b) 

Nusp = 0.027Re0.8
f Pr1/3

f

( μf

μf |Tw

)0.14 

(13c) 

Input Parameters: 

htp = f
(

q˝w,U,ΔTsub,D, hfg, ρg, ρf , ...

cp,f , μf , μf |Tw
, kf

)

(13d) 

Dimensionless groups: 

Nutp = f
(

Bo, Ja∗∗ ,
ρg

ρf
,Ref ,Prf ,

μf

μf |Tw

)

(13e)  

• Geometry: vertical upflow in a circular tube, vertical upflow 
in rectangular channel, horizontal flow over a heated strip 
in a rectangular channel, vertical upflow through a channel 
made of a heated circular tube placed along the center of a 
square channel  

• Fluids: water, ethanol, isopropanol, n-butanol, ammonia, 
aniline, hydrazine  

• Consolidated database of 664 data points  
• Recommended/validated range: 
Dh = 4.6 – 16.2 mm 
U = 0.03 – 62.22 m/s 
p = 101.35 – 13,789.52 kPa 
ΔTsub = 2.78 – 277.78◦C 
q"w = 72.51 × 103 – 91.42 × 106 W/m2 

MAE = 60.58% 

Gungor & Winterton 
(1986) [25] 

q˝w = htp(Tw − Tf ) = Ehsp(Tw − Tf ) + Shnb(Tw − Tsat) (14a) 

htp = Ehsp + Shnb
ΔTsat

(Tw − Tf )
(14b) 

hspD
kf

= Nusp = 0.023Re0.8
f Pr0.4

f (14c) 

hnb = 55p0.12
r (− log10pr)

− 0.55M− 0.5
w q˝0.67

w (14d) 
E = 1 (14e) 

S = (1 + 1.15 × 10− 6E2Re1.17
f )

− 1 (14f) 
For horizontal tubes with Frfo ≤ 0.05 :

E = E.Fr0.1− 2Frfo
fo (14 g) 

S = S.Fr0.5
fo (14 h) 

Input Parameters: 

htp = f
(

q˝w,G,Tf ,ΔTsub,Tw,ΔTsat ,D, hfg, ρg, ρf , ...

cp,f , μf , kf , p, pcrit ,Mw , g

)

(14i) 

Dimensionless groups: 

Nutp = f
(

Bo, Ja∗∗ ,
ΔTsat

(Tw − Tf )
,Ref , Prf , Fr, pr

)

(14j)  

• Geometry: vertical and horizontal tubes and annuli  
• Fluids: ethylene glycol, water, refrigerants  
• Consolidated database of over 4300 data points  
• Recommended/validated range: 
Dh = 2.95 – 32.0 mm 
G = 12.40 – 61,518.00 kg/m2s 
ΔTsub = 0.00 – 173.70◦C 
q"w = 350.00 – 91.53 × 106 W/m2 

MAE = 33.13% 

Liu & Winterton 
(1991) [22] 

q˝w = htp(Tw − Tf ) =

{(Ehsp(Tw − Tf ))
2
+ (Shnb(Tw − Tsat))

2
}

0.5(15a) 

htp =

{

(Ehsp)
2
+

(
ShnbΔTsat

(Tw − Tf )

)2}0.5 
(15b) 

hspD
kf

= Nusp = 0.023Re0.8
f Pr0.4

f (15c) 

hnb = 55p0.12
r (− log10pr)

− 0.55M− 0.5
w q˝0.67

w (15d) 
E = 1 (15e)  

• Geometry: horizontal and vertical tubes and annuli  
• Fluids: water, refrigerants, ethylene glycol, ethanol, n- 

butanol  
• Consolidated database of 5193 data points  
• Recommended/validated range: 
Dh = 2.95 – 32.0 mm 
G = 12.4 – 8179.3 kg/m2s 
ΔTsub = 0.0 – 173.7◦C 
ΔTsat = 0.2 – 62.3◦C 

MAE = 74.51% 

(continued on next page) 
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rectified linear activations such as ReLu [76], is used to initialize 
weights. Relevant input parameters and a preliminary set of training 
options employed to train each model, which are chosen from the 
default parameters recommended for Adam [64] and those utilized in 
the studies outlined in Section 1.3, are presented in Table 4. In the 
present study, network architectures are built such that the final hidden 
layer, preceding the output layer, always has 10 neurons. Each layer has 
10 more neurons than the following, so a network with 5 hidden layers 
has an architecture of {50–40–30–20–10} neurons between the input 
and output layers. Another example is a network with 10 hidden layers 
would have a hidden layer architecture of 
{100–90–80–70–60–50–40–30–20–10}. 

The results of each model are presented in Figs. 5(a) and 5(b). Each 
model only uses the parameters relevant for its own flow boiling regime. 
They are capable of accurately predicting htp for their respective testing 
database with MAEs of 6.31% and 11.70% for subcooled and saturated 
flow boiling, respectively. To assess if a single model can be used for 
both subcooled and saturated flow boiling, another ANN is trained for 
the entire database using the same parameters in Table 4. Fig. 5(c) de
picts results for the ANN trained with the entire database, which predicts 
the testing data with an MAE of 9.53%. The accuracy of the overall ANN 
lies between those of the models specifically trained for subcooled and 
saturated flow boiling. Interestingly, the ANN trained with the entire 
database predicts the subcooled and saturated subset of the database 
with MAEs of 6.63% and 11.79%, respectively, nearly identical to the 

ANNs trained specifically for each subset. 

2.3.2. Model refinement 
A common technique to improve the generality of a correlation or 

ANN is to rely on dimensionless numbers that describe the relative 
magnitude of key parameters to one another. Based on the dimensionless 
groups observed in Tables 2 and 3, the dependency of htp expressed in 
Eq. (10) can be non-dimensionalized as 

Nutp = f
(

Bo,
De

Dh
,Re,We, pr,

ρg

ρf
, Pr, Ja∗∗, x, xe,Xtt,Fr,Bd,

g
ge

)

. (24) 

Numerous variations of each dimensionless group could be utilized 
as inputs for the ANN, however not all will significantly improve the 
model. To optimize those selected as inputs for the final model, a variety 
of models are trained using the training parameters listed in Table 4 and 
different combinations of dimensionless groups. A comprehensive list of 
inputs considered is included in Table 5. A subset of noteworthy results 
and their corresponding input parameters are further included in 
Table 6. Using only Bo, Nutp is predicted with a MAE of 47.46%. Sub
cooling and quality are added in group 2, and the MAE improved to 
31.45%. The model is then drastically improved by incorporating the 
effect of G in group 3. Continuing to add other parameters such De/Dh 
and ρg/ρf, the MAE of the model is decreased to 11.82%. Inclusion of 
additional terms to describe pressure, such as pr, only provides minor 
improvement and is deemed unnecessary. The influence of both gravity 

Table 2 (continued ) 

Author(s) (Year) Correlation, Input Parameters, and Dimensionless Groups Applicability Information Prediction Accuracy for 
Entire Consolidated 
Database 

S = (1 + 0.055E0.1Re0.16
f )

− 1 (15f) 
For horizontal tubes with Frfo ≤ 0.05 :

E = E.Fr0.1− 2Frfo
fo (15 g) 

S = S.Fr0.5
fo (15 h) 

Input Parameters: 

htp = f
(

q˝w,G,Tf ,ΔTsub,Tw,ΔTsat ,De, hfg, ρg, ρf , ...

cp,f , μf , kf , p, pcrit ,Mw , g

)

(15i) 

Dimensionless groups: 

Nutp = f
(

Bo, Ja∗∗ ,
ΔTsat

(Tw − Tf )
,Refo,Prf , Fr, pr

)

(15j)  

q"w = 348.9 – 2.62 × 106 W/m2 

x = 0.000 – 0.948 
pr = 0.0023 – 0.895 
Prf = 0.83 – 9.1 
Fr = 2.66 × 10− 4 – 2240 
Ref = 568.9 – 8.75 × 105 

Shah (2017) [69] 
q˝w = htp(Tw − Tf )= {

ψ0hsp(ΔTsat − 1.65ΔT− 0.44
sub )

0.67
, PDB

ψ0hspΔTsat . FDB 
(16a) 

ψ0= {
230Bo0.5 , Bo > 0.3 × 10− 4

1 + 46Bo0.5, Bo < 0.3 × 10− 4 
(16b) 

hspD
kf

= Nusp = 0.023Re0.8
fo Pr0.4

f (16c) 

Input Parameters: 

htp = f
(

q˝w,G,Tf ,ΔTsub,Tw,ΔTsat ,De, ...

hfg, cp,f , μf , kf

)

(16d) 

Dimensionless groups: 

Nutp = f
(

Bo,
ΔTsub

ΔTsat
,Refo,Prf

)

(16e)  

• Geometry: horizontal and vertical flow in channels of 
various geometries and annuli of different heating 
configurations  

• Fluids: water, refrigerants, chemicals  
• Consolidated database of 1340 data points  
• Recommended/validated range: 
Dh = 0.176 – 22.8 mm 
G = 59 – 31,500 kg/m2s 
ΔTsub = 0.0 – 165◦C 
pr = 0.0046 – 0.922 
Bo = 0.53 × 10− 4 – 91.2 × 10− 4 

Prf = 0.83 – 9.1 
Bd = 0.025 – 7100 
Refo = 375 – 1.27 × 106 

Pe = 631 – 1.11 × 106 

MAE = 42.36% 

Devahdhanush & 
Mudawar (2022)  
[11] 

htp

hsp
= 312.8

(
q˝w

Ghfg

)0.769(

0.1 +
cp,f ΔTsub

hfg

)− 0.632 
(17a) 

Nutp

Nusp
= 312.8Bo0.769(0.1 + Ja∗∗)

− 0.632 (17b) 

hspD
kf

= Nusp = 0.023Re0.8
fo Pr0.4

f (17c) 

Input Parameters: 

htp = f
(

q˝w,G,U,ΔTsub,D, hfg, ρg , ρf , ...

cp,f , μf , kf

)

(17d) 

Dimensionless groups: 
Nutp = f(Bo, Ja∗∗ ,Refo,Prf ) (17e)  

• Geometry: rectangular channel heated on 1 or 2 opposite 
heated walls, different orientations  

• Fluids: nPFH and FC-72  
• Consolidated database of 3009 data points  
• Recommended/validated range: 
Dh = 3.33 mm 
G = 172.79 – 3200.00 kg/m2s 
p = 102.16 – 238.44 kPa 
ΔTsub = 0.13 – 34.93◦C 
q"w = 38.0 × 103 – 482.7 × 103 W/m2 

pr = 0.059 – 0.137 
Bo = 1.65 × 10− 4 – 187.6 × 10− 4 

Prf = 5.65 – 7.4 
Refo = 966.72 – 26,883.66 
Pe = 631 – 1.11 × 106 

ρf/ρg = 48.38 – 117.66 

MAE = 30.08%  
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Table 3 
Select seminal correlations for saturated flow boiling and their relevant parameters.  

Author(s) (Year) Correlation, Input Parameters, and Dimensionless Groups Applicability Information Prediction Accuracy For Entire 
Consolidated Database 

Gungor & Winterton 
(1986) [25] 

q˝w = htp(Tw − Tf ) = Ehsp(Tw − Tf ) + Shnb(Tw − Tsat) (18a) 

htp = Ehsp + Shnb
ΔTsat

(Tw − Tf )
(18b) 

hspD
kf

= Nusp = 0.023Re0.8
f Pr0.4

f (18c) 

hnb = 55p0.12
r (− log10pr)

− 0.55M− 0.5
w q˝0.67

w (18d) 

E = 1 + 24000Bo1.16 + 1.37
( 1

Xtt

)0.86 
(18e) 

S = (1 + 1.15 × 10− 6E2Re1.17
fo )

− 1 (18f) 
For horizontal tubes with Frfo ≤ 0.05 :

E = E.Fr0.1− 2Frfo
fo (18g) 

S = S.Fr0.5
fo (18h) 

Input Parameters: 

htp = f
(

q˝w,G,Tf ,ΔTsub,Tw,ΔTsat ,D, hfg, ρg , ρf , ...

cp,f , μf , kf , p, pcrit ,Mw, g

)

(18i) 

Dimensionless groups: 

Nutp = f
(

Bo, Ja∗∗,
ΔTsat

(Tw − Tf )
,Refo, Prf , Fr, pr

)

(18j)  

• Geometry: vertical and horizontal tubes and annuli  
• Fluids: ethylene glycol, water, refrigerants  
• Consolidated database of over 4300 data points  
• Recommended/validated range: 
Dh = 2.95 – 32.0 mm 
G = 12.40 – 61,518.00 kg/m2s 
ΔTsub = 0.00 – 173.70◦C 
q"w = 350.00 – 91.53 × 106 W/m2 

MAE = 223.40% 

Liu & Winterton 
(1991) [22] 

q˝w = htp(Tw − Tf ) =

{(Ehsp(Tw − Tf ))
2
+ (Shnb(Tw − Tsat))

2
}

0.5(19a) 

htp =

{

(Ehsp)
2
+

(
ShnbΔTsat

(Tw − Tf )

)2}0.5 
(19b) 

hspD
kf

= Nusp = 0.023Re0.8
f Pr0.4

f (19c) 

hnb = 55p0.12
r (− log10pr)

− 0.55M− 0.5
w q˝0.67

w (19d) 

E =
(

1 + xPrf

(ρf

ρg
− 1
))0.35 

(19e) 

S = (1 + 0.055E0.1Re0.16
f )

− 1 (19f) 
For horizontal tubes with Frfo ≤ 0.05 :

E = E.Fr0.1− 2Frfo
fo (19g) 

S = S.Fr0.5
fo (19h) 

Input Parameters: 

htp = f
(

q˝w,G,Tf ,ΔTsub,Tw,ΔTsat ,De, hfg, ρg , ρf , ...

cp,f , μf , kf , p, pcrit ,Mw, g

)

(19i) 

Dimensionless groups: 

Nutp = f
(

Bo, Ja∗∗,
ΔTsat

(Tw − Tf )
,Refo, Prf , Fr, pr

)

(19j)  

• Geometry: horizontal and vertical tubes and annuli  
• Fluids: water, refrigerants, ethylene glycol, ethanol, 

n-butanol  
• Consolidated database of 5193 data points  
• Recommended/validated range: 
Dh = 2.95 – 32.0 mm 
G = 12.4 – 8179.3 kg/m2s 
ΔTsub = 0.0 – 173.7◦C 
ΔTsat = 0.2 – 62.3◦C 
q"w = 348.9 – 2.62 × 106 W/m2 

x = 0.000 – 0.948 
pr = 0.0023 – 0.895 
Prf = 0.83 – 9.1 
Fr = 2.66 × 10− 4 – 2240 
Ref = 568.9 – 8.75 × 105 

MAE = 52.97% 

Tran et al. (1996)  
[70] htp = 8.4 × 105(Bo2Wefo)

0.3
(ρg

ρf

)0.4 
(20a) 

Input Parameters: 
htp = f(q˝w,G, hfg,D, ρf , σ, ρg) (20b) 
Dimensionless groups: 

Nutp = f
(

Bo,Wefo,
ρg

ρf

)

(20c)  

• Geometry: horizontal, circular and rectangular 
channels  

• Fluids: R12 and R113  
• Consolidated database of 296 data points  
• Recommended/validated range: 
Dh = 2.4 – 2.92 mm 
G = 44 – 832 kg/m2s 
ΔTsat = 1.2 – 18.2◦C 
q"w = 3.6 × 103 – 129 × 103 W/m2 

pr = 0.045 – 0.2 
Bo = 2.0 × 10− 4 – 23.0 × 10− 4 

MAE = 79.43% 

Li & Wu (2010) [71] Nutp = 334Bo0.3(BdRe0.36
f )

0.4 (21a) 
Input Parameters: 
htp = f(q˝w,G, hfg,D, ρf , ρgσ, g, x, μf , kf ) (21b) 
Dimensionless groups: 
Nutp = f(Bo,Bd,Ref ) (21c)  

• Geometry: horizontal and vertical, circular and 
rectangular, mini-/micro- single- and multi-channel  

• Fluids: water, refrigerants, CO2, ethanol, propane, 
and FC77  

• Consolidated database of 3744 data points  
• Recommended/validated range: 
Dh = 0.16 – 3.1 mm 

MAE = 56.11% 

Kim & Mudawar 
(2013) [23] 

htp = (h2
nb + h2

cb)
0.5 (22a) 

Nunb

Nusp
= 2345

(

Bo
Ph

Pf

)0.70
p0.38

R (1 − xe)
− 0.51 (22b) 

Nunb

Nusp
= 5.2

(

Bo
Ph

Pf

)0.08
We− 0.54

fo + 3.5
(

1
Xtt

)0.94(ρg

ρf

)0.25 
(22c) 

Nusp = 0.023Re0.8
f Pr0.4

f (22d) 
Input Parameters: 

htp = f
(

q˝w,G, hfg,Ph,Pf , p, pcrit , x,D, ...
ρf , σ, μf , μg, ρg , kf

)

(22e) 

Dimensionless groups: 

Nutp = f
(

Bo,
Ph

Pf
, pR, x,Wefo,Xtt ,

ρg

ρf

)

(22f)  

• Geometry: horizontal and vertical, circular and 
rectangular, mini-/micro-, single- and multi-channels  

• Fluids: water, refrigerants, FC-72, and CO2  

• Consolidated database of 10,805 data points  
• Recommended/validated range: 
Dh = 0.19 – 6.5 mm 
G = 19 – 1608 kg/m2s 
x = 0.0001 – 0.999 
pr = 0.005 – 0.69 
Prf = 0.9 – 6.7 
Refo = 57 – 49,820 

MAE = 72.30% 

(continued on next page) 
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level and channel orientation are encompassed within 3 terms. The level 
of gravity is explicitly provided as g/ge, and the orientation of the 
channel is captured within the modified version of 1/Fr and Bd (origi
nally proposed by the present authors in [12]), which capture the 
component of body force parallel and perpendicular to the flow, 
respectively. Inclusion of these 3 terms to account for body force im
proves the MAE of the model to 8.78%. Further additions of other pa
rameters such as those in groups 7–9 provide no meaningful 
improvements. 

After designating the inputs of the ANN, select model parameters, or 
hyperparameters of the training algorithm, including batch size, vali
dation patience, learning rate, and network architecture, were tuned to 
improve the performance of the model, while other parameters listed in 

Table 4 are preserved. There is no definitive rule to optimize the 
hyperparameters and architecture of an ANN [46,52]. A manual search 
is employed within the ranges presented in Table 5, in which different 
combinations of hyperparameters are tested by trial-and-error until 
satisfactory performance is achieved. The finalized model including 
input parameters, architecture, and training parameters are listed in 
Table 5 and are employed for the ANNs discussed in the following 
section. 

3. Prediction results, trends, and discussion 

3.1. ANN prediction results 

The trained ANN predicts the testing subset of the database with an 
overall MAE of 7.99%, and parity plots comparing the predictions of the 
ANN to the database are presented in Fig. 6. The parity plots are pre
sented for subcooled flow boiling with single-sided heating in Fig. 6(a) 
and double-sided in Fig. 6(b), and saturated flow boiling with single- 
sided heating in Fig. 6(c) and double-sided in Fig. 6(d). The ANN pre
dicts each subset of the test database consistently and with good accu
racy. For each subset of the database, over 96% of the database is 
predicted within ±30% error, while over 99% is predicted within ±50% 
error. Furthermore, the ANN predicts 87.06% of the entire testing subset 
of the database within ±15% error. 

3.2. Comparison of ANN to correlations 

To gauge the predictive accuracy of the ANN against that of seminal 
correlations in the literature, a prediction assessment is performed for 
those correlations listed in Tables 2 and 3. The choice of seminal cor
relations encompasses all the general types discussed in Section 1.2. 

The h correlations considered for subcooled flow boiling include 
Papell [67], Badiuzzaman [68], Moles and Shaw [21], Gungor and 
Winterton [25], Liu and Winterton [22], Shah [69], and Devahdhanush 
and Mudawar [11]. All correlations were developed from consolidated 
databases comprising different geometries, fluids, and/or wide ranges of 
operating conditions; see Table 2 for applicability information. The best 
performing correlation is one previously proposed by the present au
thors [11] for subcooled flow boiling of FC-72 and nPFH in rectangular 
channels. The database used for development was in fact consolidated 
from pre-launch data obtained from ground experiments at different 
channel orientations. After manually segregating the 2589 local data
points into Partially Developed Boiling (PDB), Fully Developed Boiling 
(FDB), and Nucleate Boiling Degradation (NBD) regimes, the correlation 
was developed using the FDB datapoints alone. The resulting correlation 
yielded MAEs of 9.59, 6.91, and 41.71% for PDB, FDB, and NBD data, 
respectively, and an overall MAE of 20.06% [11]. It was also concluded 
that h for subcooled flow boiling is insignificantly affected by heating 
configuration and flow orientation. The present consolidated database 

Table 3 (continued ) 

Author(s) (Year) Correlation, Input Parameters, and Dimensionless Groups Applicability Information Prediction Accuracy For Entire 
Consolidated Database 

Fang et al. (2017)  
[72] 

Nutp =

Ff M− 0.18
w Bo0.98Fr0.48

fo Bd0.72
(ρf

ρg

)0.29[

ln
(μf |Tf

μf |Tw

)]− 1

Y(23a) 

Y =

{
1, pr ≤ 0.43

1.38 − p1.15
r , pr > 0.43 

(23b) 

Ff = 1850,Tabulated for different fluids 
Input Parameters: 

htp = f
(

Mw , q˝w,G, hfg, ρf , ρg,D, g, σ, ...
μf , μf |Tw

, p, pcrit , kf

)

(23c) 

Dimensionless groups: 

Nutp = f
(

Bo, Frfo,Bd,
ρf

ρg
,

μf |Tf

μf |Tw

, pr

)

(23d)  

• Geometry: horizontal, vertical, and inclined, circular 
and rectangular, single- and multi-channels  

• Fluids: water, CO2, nitrogen, ammonia, refrigerants  
• Consolidated database of 24,442 data points  
• Recommended/validated range: 
Dh = 0.137 – 32.0 mm 
G = 10 – 1782 kg/m2s 
q"w = 200 – 4.8 × 106 W/m2 

x = 0.0001 – 0.999 
pr = 0.0045 – 0.93 
Prf = 0.9 – 6.7 
Ref = 4.9 – 1.69 × 105 

Reg = 7.9 – 5.13 × 105 

MAE = 55.55%  

Fig. 3. Pearson’s correlation coefficients (r) for the comprehensive list of input 
parameters: two-phase heat transfer coefficient (htp), wall heat flux (q"w), hy
draulic diameter (Dh), equivalent heated diameter (De), wetted perimeter (Pw), 
heated perimeter (Ph), mass velocity (G), fluid velocity (U), pressure (p), bulk 
fluid temperature (Tf), degree of subcooling (ΔTsub), thermodynamic equilib
rium quality (xe), flow quality (x), density of liquid (ρf) and vapor (ρg), specific 
heat of liquid (cp,f), dynamic viscosity of liquid (µf), thermal conductivity of 
liquid (kf), saturation temperature (Tsat), surface tension (σ), latent heat of 
vaporization (hfg), molecular weight (MW), critical pressure (pcrit), gravity (g), 
and gravitational components (g.sinθ and g.cosθ) with respect to the channel’s 
orientation (θ). The size of each circle represents the strength of correlation 
(with larger circles meaning stronger correlation), and the color represents the 
actual value of r. 
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essentially contains the recently obtained ISS microgravity data in 
addition to the previous consolidated database, and the overall MAE 
with this correlation is 30.08%, meaning the correlation is reasonably 
applicable for subcooled flow boiling in microgravity as well. However, 
as already shown for the Earth gravity data in [11], the large MAE for 
this correlation and others stems from the substantial NBD datapoints in 
the consolidated database, which the correlations are generally poor at 
predicting. However, the newly developed ANN can predict the entire 
subcooled flow boiling portion of the database (including the NBD 
regime) with an overall MAE of ~6%, clearly outperforming all the 
seminal correlations assessed. 

The h correlations considered for saturated flow boiling include 
Gungor and Winterton [25], Liu and Winterton [22], Tran et al. [70], Li 
and Wu [71], Kim and Mudawar [23], and Fang et al. [72]. Once again, 
most correlations were developed from consolidated databases 
comprising different geometries and fluids, and wide ranges of operating 
conditions; see Table 3 for applicability information. Several correla
tions predict at ~50% MAE, due to a considerable portion of the 
consolidated database belonging to the boiling regime between dryout 
incipience and CHF. This is due to the way the experiments were per
formed, with priority given to the accurate capture of CHF, requiring 
several fine increments of heat flux closer to CHF. Moreover, the 
empirical constants in these seminal correlations were determined using 
Earth-gravity data, leading to a questionable applicability to micro
gravity data. This is because saturated flow boiling is more dependent on 
flow orientations and body force compared to subcooled flow boiling. 
Saturated flow boiling is also more dependent on heating configuration 
due to differences in the evolution of flow regime and the associated 
heat transfer performance. Nevertheless, the ANN accurately predicts 
the saturated flow boiling datapoints independent of the boiling regime 
or gravitational environment. With an overall MAE of just ~9% for 
saturated flow boiling regime, the ANN is evidently much more accurate 
than the correlations assessed in this study, indicating its superiority as a 
prediction tool. 

3.3. Assessment of the capability of ANN to predict physical trends of 
subcooled flow boiling in microgravity 

The ANN has proved itself very accurate in predicting flow boiling 
heat transfer coefficients for both subcooled and saturated conditions 
over the entire consolidated database. However, neural network models 
are typically developed with a goal of predicting the entire database 
with the least error. ANNs are purely founded on empirical trends in the 
training data, and there is no flow boiling physics-based modeling done 
within the ANN framework. So, an assessment is required to confirm if 
the developed ANN can predict important parametric trends resulting 
from the physics of each boiling regime and environment. 

To assess the trends predicted by the ANN, it is retrained while 
withholding select data from training, covering a broad range of oper
ating conditions. These data, which are unknown to the model, are 
compared to the retrained ANN’s predictions in select ranges of 

Fig. 4. F-test results of key parameters, φ, for the (a) entire database, (b) 
subcooled flow boiling subset of the database, and (c) saturated flow boiling 
subset of the database. The key parameters include wall heat flux (q"w), 
equivalent heated diameter (De), mass velocity (G), pressure (p), degree of 
subcooling (ΔTsub), flow quality (x), equilibrium quality (xe), gravity (g), and 
gravitational components with respect to the channel’s orientation (θ). 

Table 4 
Parameters used for training neural networks.  

Parameter Value 

Max Epochs 5000 
L2 Regularization 0.001 
Gradient Decay Factor 0.9 
Squared Gradient Decay Factor 0.999 
Denominator Offset 1 × 10− 8 

Learning Rate 0.001 
Mini-batch Size, n 256 
Validation Patience 10 
Hidden Layers 5 
Inputs Subcooled h = f(q˝w,De,G,p,ΔTsub ,g, g.sinθ, g.cosθ)
Inputs Saturated h = f(q˝w,De,G,p,x, g, g.sinθ, g.cosθ)
Inputs Consolidated h = f(q˝w,De,G,p,ΔTsub ,x,xe, g, g.sinθ, g.cosθ)
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Fig. 5. Parity plots of the preliminary ANN’s predictions trained for (a) the subcooled subset of the database, (b) the saturated subset of the database, and (c) the 
entire database. The ANN’s prediction accuracy is assessed by a combination of mean absolute error (MAE), root mean square error (RMSE), and statistical inliers 
within ±30% (ξ30) and ±50% (ξ50) of experimental values. 

Table 5 
Ranges of parameters tested during optimization.  

Parameter Range Tested Finalized Model 

Input Parameters Bo, xe, Ja∗∗ , x, ...

Refo,Rego,Ref ,Reg , ...

Wefo,Wego,Wef ,Weg, ...

pr,Prf ,Prg ,
ρg

ρf
, ...

g
ge
,Ca,Bd,Bdθ , ...

1
Frfo

,
1

Frgo
,

1
Frf

,
1

Frg
,

1
Frθ

, ...

Lafo, Lago,
De

Dh 

Bo, xe, Ja∗∗, x, ...

Refo,Rego,Ref ,Reg , ...

ρg

ρf
,

g
ge
,

1
Frθ

,Bdθ ,
De

Dh 

Mini-batch Size, n 16 – 512 64 
Learning Rate 0.0001 – 0.01 0.001 
Validation Patience 1 – 50 10 
Hidden Layers 1 – 20 12  

Table 6 
ANN results for select groups of dimensionless inputs.  

Group Dimensionless Groups Used as Inputs to Model MAE 

1 Bo 47.46% 
2 Bo,xe,Ja∗∗ ,x 31.45% 
3 Bo,xe,Ja∗∗ ,x,Refo,Rego,Ref ,Reg 15.44% 
4 Bo,xe,Ja∗∗ ,x,Refo,Rego,Ref ,Reg,

De

Dh
,
ρg

ρf 

11.82% 

5 Bo,xe,Ja∗∗ ,x,Refo,Rego,Ref ,Reg,
De

Dh
,
ρg

ρf
,pr 

11.36% 

6 Bo,xe,Ja∗∗ ,x,Refo,Rego,Ref ,Reg,
De

Dh
,
ρg

ρf
,

g
ge
,

1
Frθ

,Bdθ 
8.78% 

7 Bo,xe,Ja∗∗ ,x,Refo,Rego,Ref ,Reg,
De

Dh
,
ρg

ρf
,

g
ge
,

1
Frθ

,Bdθ ,
1

Xtt 

9.11% 

8 Bo,xe,Ja∗∗ ,x,Refo,Rego,Ref ,Reg,
De

Dh
,
ρg

ρf
,

g
ge
,

1
Frθ

,Bdθ ,Lafo,Lago 
8.94% 

9 Bo,xe,Ja∗∗,x,Refo,Rego,Ref ,Reg,
De

Dh
,
ρg

ρf
,
g
ge
,

1
Frθ

,Bdθ,Wefo,Wego,Wef ,

Weg  

9.31%  
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operating parameters. Fig. 7 compares Nutp trends predicted by the ANN 
with data excluded from training for single-sided heating in μge and 
focusing on subcooled conditions (with some protuberance into satu
rated). Each subfigure plots Nutp with respect to xe at different q"w for a 
given range of G and p. Figs. 7(a-c) feature predictions for highly sub
cooled conditions at G ≈ 200, 800, and 2400 kg/m2s, respectively. At 
each G, the ANN captures relatively constant Nutp with respect to xe, but 
increasing Nutp upon increasing q"w. A similar trend is observed for fixed 
q"w, where increasing G yields nearly constant Nutp, as shown at q"w ≈

20 W/cm2, resulting in Nutp ≈ 300 at each G. These trends are traits of 
nucleate boiling dominance, which is expected during highly subcooled 
flow boiling. Figs. 7(d-f) respectively depict, for G ≈ 200, 800, and 2400 
kg/m2s, a much higher xe, which even transitions to saturated flow 
boiling in some cases. At low G, Fig. 7(d), Nutp is predicted to increase 
with increasing xe for q"w = 5.34 W/cm2 but decrease for q"w = 9.72 W/ 
cm2 as the flow becomes saturated, capturing the physics of degradation 
of nucleate boiling at relatively high q"w. However, at G ≈ 800 kg/m2s, 
Fig. 7(e), Nutp is predicted to increase with increasing xe, even at q"w =

19.55 W/cm2, and predictions overlap for different q"w due to the 
growing influence of convective boiling. At G ≈ 2400 kg/m2s, Fig. 7(f), 
predictions of Nutp are greater for q"w = 24.69 than 33.67 W/cm2, and 

different trends are captured. At the lower q"w, the ANN predicts Nutp 
increasing with increasing xe as the flow approaches saturation but 
relatively constant Nutp at high q"w, capturing the degradation of 
nucleate boiling offsetting the enhancement of Nutp as the fluid becomes 
saturated. 

Fig. 8 depicts similar plots as Fig. 7 but for double-sided heating. 
During double-sided heating, a broader range of xe is captured compared 
to single-sided, due to heat addition from two walls. Fig. 8(a) shows 
ANN predictions for G ≈ 200 kg/m2s with high subcooling. At q"w =

9.64 W/cm2, the range of xe is relatively small and Nutp marginally in
creases with xe. However, at higher q"w, the range of xe increases, and the 
increase in Nutp is greater. As the fluid approaches saturation, Nutp 
predictions for q"w = 14.50 and 19.77 W/cm2 converge. At higher G, 
Figs. 8(b) and 8(c), the span of xe is lesser than in Fig. 8(a), and the ANN 
predicts a relatively constant Nutp. Fig. 8(d) shows predicted trends for G 
≈ 200 kg/m2s with low subcooling and transitioning to saturated. At low 
q"w of 5.07 and 9.64 W/cm2, the ANN captures the increase in Nutp as the 
flow becomes saturated. At q"w = 17.02 W/cm2, the fluid is mostly 
saturated, and the ANN predicts the degradation of Nutp as xe increases 
for high q"w and low G. Fig. 8(e) presents predicted trends for G ≈ 800 
kg/m2s. The ANN predicts Nutp to be the largest for the intermediate q"w 

Fig. 6. Parity plots of the final ANN’s predictions for subcooled flow boiling with (a) single- and (b) double-sided heating and saturated flow boiling with (c) single- 
and (d) double-sided heating. The ANN’s prediction accuracy is assessed by a combination of mean absolute error (MAE), root mean square error (RMSE), and 
statistical inliers within ±30% (ξ30) and ±50% (ξ50) of experimental values. 
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of 20.16 W/cm2 and captures trends of Nutp near the transition to 
saturated flow boiling. At G ≈ 2400 kg/m2s, Fig. 8(f), the ANN captures 
greater Nutp at q"w = 32.20 than 23.06 W/cm2 but appears to overpredict 
the slope of Nutp with respect to xe as saturation is approached. The ANN 
compensates for the first point at each q"w that is significantly lower than 
those closer to saturation, which are nearly constant, resulting in a trend 
where the ANN predicts a steady increase in Nutp as saturation is 
approached. Overall, the ANN still predicts Nutp reasonably well in this 
range. 

3.4. Assessment of the capability of ANN to predict physical trends of 
saturated flow boiling in microgravity 

Fig. 9 plots ANN predictions of Nutp in μge for saturated flow boiling 

with single-sided heating. Figs. 9(a) and 9(b) include cases with rela
tively low xe and G ≈ 180 and 2400 kg/m2s, respectively. At both G, the 
ANN captures the degradation of Nutp as q"w increases. However, upon 
increasing xe, Nutp is constant at low G but increases at high G due to 
stronger convective effects. Predictions for a higher range of xe are 
shown in Figs. 9(c) and 9(d) for G ≈ 380 and 790 kg/m2s. At high xe, the 
ANN captures decreasing Nutp with increasing q"w, similar to low xe, and 
diminishing Nutp as xe is further increased. 

Fig. 10 compares the predictions of the ANN for saturated flow 
boiling in μge with double-sided heating to the corresponding data 
excluded from training. At low xe and G ≈ 180 kg/m2s, the ANN predicts 
nearly identical Nutp at q"w = 5.32 than 10.36 W/cm2, but different 
trends are observed. Nutp increases upon increasing xe at q"w = 5.32 W/ 
cm2 but decreases upon increasing xe at q"w = 10.36 W/cm2, capturing 

Fig. 7. Parametric trends of two-phase Nusselt number, Nutp, with respect to equilibrium quality, xe, predicted by the ANN compared to corresponding experimental 
data excluded from training. Each plot shows predictions for single-sided heating at different heat fluxes, q"w, for high subcooling at mass velocities of G ≈ (a) 200, (b) 
800, and (c) 2400 kg/m2s and near-saturation at mass velocities of G ≈ (d) 200, (e) 800, and (f) 2400 kg/m2s. 
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the enhancement of convective boiling and the degradation of nucleate 
boiling, respectively. At G ≈ 2400 kg/m2s, shown in Fig. 10(b), similar 
Nutp is predicted at both q"w = 23.89 and 33.66 W/cm2. However, 
similar to Figs. 8(f) and 9(b) the ANN smoothens the abrupt increase in 
Nutp that occurs near the transition to saturated flow boiling at q"w =

23.89 W/cm2. At the highest q"w of 37.97 W/cm2, the ANN accurately 
predicts Nutp and captures the diminishment of Nutp as xe increases. In 
Fig. 10(c) and 10(d), featuring high xe and G ≈ 380 and 790 kg/m2s, 
respectively, the ANN predicts a relatively constant Nutp at the lower q"w, 
but the experimental trend shows a slight decrease in Nutp. However, at 
higher q"w, the degradation of Nutp with increasing xe is more apparent 
and the trend is accurately captured by the ANN. 

3.5. Assessment of the capability of ANN to predict physical trends of flow 
boiling in different body force environments 

The ANN has displayed proficiency in predicting Nutp during flow 
boiling at a wide variety of conditions in μge. But its performance in 
predicting the physical trends of flow boiling in different body force 
environments is still uncertain; this aspect is assessed here. 

Fig. 11 shows trends captured by the ANN in μge compared to those 
predicted for flow boiling in ge at different orientations. Figs. 11(a) and 
11(b) focus on single-sided heating during high-quality saturated flow 
boiling and double-sided heating during low-quality subcooled flow 
boiling, respectively. In Fig. 11(a), the ANN predicts a relatively con
stant Nutp with respect to xe at each orientation, while the experimental 
data show some variation. Regardless, Nutp is predicted with good 

Fig. 8. Parametric trends of two-phase Nusselt number, Nutp, with respect to equilibrium quality, xe, predicted by the ANN compared to corresponding experimental 
data excluded from training. Each plot shows predictions for double-sided heating at different heat fluxes, q"w, for high subcooling at mass velocities of G ≈ (a) 200, 
(b) 800, and (c) 2400 kg/m2s and near-saturation at mass velocities of G ≈ (d) 200, (e) 800, and (f) 2400 kg/m2s. 
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accuracy at each orientation. In Fig. 11(b), both the trend and value of 
Nutp is predicted well by the ANN, and the predicted Nutp is similar at 
different orientations due to the dominance of nucleate boiling at high 
subcooling. 

3.6. Application of ANNs to other fluids and heating configurations 

The present ANN is developed and trained using the FBCE consoli
dated heat transfer database which features flow boiling data for a single 
fluid, nPFH, in a partially heated rectangular channel with 1 or 2 
opposite heated walls. The present database highlights the gravitational 
effects on flow boiling, which is of particular interest to nPFH due to its 
for potential as the working fluid for thermal management systems in 
aerospace applications [77]. However, it is of interest to explore the 
predictive capability of the developed ANN to other unique databases. 
The trained ANN is used to predict the database of Cioncolini et al. [78], 
which contains 133 data points of water flow boiling in a uniformly 
heated tube. The same ANN that predicted the consolidated FBCE heat 
transfer database with an MAE of 7.99% is incapable of predicting the 
Nutp for the water database of Cioncolini et al. [78] evidenced by a 
comparatively high MAE. However, if the developed ANN is again 
retrained, but including the water data prior to dividing the database into 
the training, testing, and validation subsets, the water data in the testing 
subset is predicted with an MAE of 13.04%. The massive improvement in 
MAE for the water data was compensated for with a small decrease in the 
accuracy of the nPFH predictions, which was still predicted with an MAE 
of 8.29%. While the scope of the FBCE database limits the accuracy of 
the model when extrapolated to other fluids or channel geometries, the 
methods used to develop the ANN in this study can be applied to other 

databases to achieve high accuracy predictions for other fluids and 
heating configurations. 

4. Artificial neural network for critical heat flux 

4.1. Consolidated database, model development, ANN’s predictive 
performance, and comparison to correlations 

Because of the success of the ANN developed for heat transfer coef
ficient, an ANN is developed to predict flow boiling CHF for a consoli
dated FBCE CHF database, presented in Table 7. 

In a previous study by the present authors [12], an exhaustive 
literature review and correlation assessment was performed with the 
consolidated database prior to the addition of the microgravity data 
obtained onboard the ISS. The authors assessed the importance of 
various dimensionless groups and proposed the following correlation, 

BoCHF = 0.353We− 0.314
De

(
Lh

De

)− 0.226(ρf

ρg

)− 0.481

...

(

1 −

(ρf

ρg

)− 0.094

xe,in

)(

1 + 0.034
1

Frθ,De

)

...

(

1 + 0.008
Bdθ,De

We0.543
De

)

.

(25) 

The correlation proved its robustness with an overall MAE of 17.44% 
for the prelaunch database, outperforming all other correlations tested. 
The correlation later showed its superiority over others in predicting 
q"CHF in μge for data obtained onboard the ISS with subcooled inlet 
having 18.5% MAE [16] and saturated two-phase inlet having 22.4% 

Fig. 9. Parametric trends of two-phase Nusselt number, Nutp, with respect to equilibrium quality, xe, predicted by the ANN compared to corresponding experimental 
data excluded from training. Each plot shows predictions for single-sided heating at different heat fluxes, q"w, for relatively low xe at mass velocities of G ≈ (a) 180 
and (b) 2400 kg/m2s and relatively high xe at mass velocities of G ≈ (c) 380 and (d) 790 kg/m2s. 
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MAE [17]. The entire consolidated FBCE CHF database is predicted with 
an MAE of 18.07%. Hence, the dimensionless groups included in Eq. 
(25) are employed as input parameters for the ANN to predict BoCHF 
developed in this section. 

The overall methodology of setting up the ANN for CHF and opti
mization using the manual search method is identical to that described 
for heat transfer in Section 2.3.2. Table 8 shows the final selected pa
rameters to train the model, with other parameters identical to Table 4. 
A parity plot of the testing data for the final ANN is shown in Fig. 12. 

Even with the relatively small size of the CHF database, the trained 
model is accurate in predicting the testing data with a 12.05% MAE. 

The ANN clearly outperforms the correlation in Eq. (25), which 
predicted the testing subset of the database with a 23.41% MAE and has 
previously shown its superiority to other correlations for the present 
database [12,16,17]. 

Fig. 10. Parametric trends of two-phase Nusselt number, Nutp, with respect to equilibrium quality, xe, predicted by the ANN compared to corresponding experimental 
data excluded from training. Each plot shows predictions for double-sided heating at different heat fluxes, q"w, for relatively low xe at mass velocities of G ≈ (a) 180 
and (b) 2400 kg/m2s and relatively high xe at mass velocities of G ≈ (c) 380 and (d) 790 kg/m2s. 

Fig. 11. Parametric trends of two-phase Nusselt number, Nutp, with respect to equilibrium quality, xe, predicted by the ANN compared to corresponding experimental 
data excluded from training. Each plot shows trends predicted in μge and different orientations in ge for (a) single-sided heating at mass velocity of G ≈ 800 kg/m2s, 
heat flux of q"w ≈ 10 W/cm2, and high xe, and (b) double-sided heating at G ≈ 800 kg/m2s, q"w ≈ 23 W/cm2, and low xe. 
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4.2. Assessment of the capability of ANN to predict physical trends of 
CHF in microgravity 

Once again, the capability of the ANN in predicting physical trends is 

assessed for CHF. Fig. 13 depicts parametric trends predicted by the 
ANN for data within the testing subset of the CHF database. Fig. 13(a) 
shows predictions for single-sided heating with the inlet condition 
ranging from subcooled to low-quality saturated. Generally, as xe,in in
creases, BoCHF is predicted to decrease, level off, and even slightly in
crease as inlet conditions transition to saturated. Overall, the ANN 
predicts the transition to saturated inlet reasonably well. Moreover, it 
accurately captures the expected trend of BoCHF deteriorating upon 
increasing G. Fig. 13(b) shows predictions for ranges within the testing 
subset of the database with double-sided heating, which comprises 
broader ranges of xe,in. At highly subcooled conditions, i.e., low xe,in, the 
ANN captures decreasing BoCHF with increasing xe,in. The ANN predicts 
BoCHF to be relatively constant near saturation, and it to decrease at high 
xe,in, confirming the ANN’s capability to capture various physical trends 
within the database. 

5. Conclusions 

This study, a part of the Flow Boiling and Condensation Experiment 
(FBCE), had the goal of developing a prediction tool for heat transfer and 
CHF for flow boiling in both microgravity and Earth gravity based on 
artificial neural networks (ANN). The experimental database, used for 
developing/training the ANN, was made by consolidating data from 
experiments onboard the International Space Station (ISS) and at 
different orientations on Earth. A summary of this study is provided 
below:  

(1) The consolidated FBCE heat transfer coefficient database 
comprised 29,226 datapoints spanning a wide range of operating 
conditions for nPFH or FC-72 flow boiling in a rectangular 
channel heated along one or two walls. The ranges of parameters 
include mass velocity of 173 – 3200 kg/m2s, pressure of 102 – 
238 kPa, subcooling of 0 – 44◦C, and thermodynamic equilibrium 
quality of -0.60 – 0.95 (spanning all the way from highly sub
cooled to high-quality saturated boiling). The resulting heat 
transfer coefficients ranged from 1070 to 32,649 W/m2K. The 
entire database is randomly divided into training data (70%), 
testing data (15%) and validation data (15%). 

(2) Following a meticulous statistical analysis of various input pa
rameters relevant to flow boiling and optimization of key model 
parameters and options, a fully connected feed-forward ANN was 

Table 7 
Summary of consolidated FBCE-CHF database.  

Heating Configuration Single-sided Double-sided Overall 
Flow Orientation/ 
Environment 

Horizontal 
Bottom 

Horizontal 
Top 

Vertical Up Vertical 
Down 

μge Horizontal Vertical Up Vertical 
Down 

μge  

N 54 53 55 32 108 74 72 47 146 641 
G [kg/m2s] 99.09 – 

3199.28 
194.89 – 
3200.9 

179.70 – 
3199.97 

199.34 – 
2030.27 

179.99 – 
3199.98 

144.24 – 
3211.55 

175.30 – 
3199.96 

200.97 – 
2314.43 

179.90 – 
3199.97 

99.09 – 
3211.55 

pin [kPa] 98.41 – 
184.26 

97.12 – 
180.72 

110.33 – 
181.75 

119.38 – 
182.29 

117.19 – 
178.84 

97.10 – 
221.04 

109.71 – 
229.77 

107.20 – 
239.48 

109.77 – 
200.44 

97.10 – 
239.48 

Tin [◦C] 23.35 – 
76.87 

28.55 – 
77.29 

34.32 – 
79.10 

58.88 – 
80.60 

23.55 – 
77.84 

23.15 – 
78.75 

26.12 – 
80.00 

27.93 – 
81.30 

25.51 – 
80.69 

23.15 – 
81.30 

ΔTsub,in [◦C] 0.00 – 
28.31 

0.00 – 31.17 0.00 – 
31.65 

0.00 0.00 – 
45.59 

0.00 – 
35.63 

0.00 – 
36.67 

0.00 – 
37.54 

0.00 – 
43.71 

0.00 – 
45.59 

xe,in -0.362 – 
0.633 

-0.401 – 
0.658 

-0.420 – 
-0.686 

0.000 – 
0.668 

-0.609 – 
0.863 

-0.455 – 
0.635 

-0.477 – 
0.678 

-0.495 – 
0.656 

-0.585 – 
0.862 

-0.609 – 
0.863 

pout [kPa] 96.70 – 
159.11 

95.68 – 
158.13 

108.02 – 
167.90 

114.83 – 
154.38 

112.88 – 
167.37 

96.51 – 
215.65 

106.93 – 
223.68 

107.81 – 
234.23 

108.07 – 
181.19 

95.68 – 
234.23 

Tout [◦C] 34.52 – 
67.74 

31.88 – 
67.48 

39.94 – 
71.41 

53.66 – 
66.52 

34.82 – 
70.61 

37.45 – 
78.27 

40.83 – 
79.62 

37.84 – 
79.00 

43.06 – 
79.08 

31.88 – 
79.62 

ΔTsub,out [◦C] 0.00 – 
23.07 

0.00 – 25.22 0.00 – 
20.51 

0.00 0.00 – 
34.50 

0.00 – 
23.49 

0.00 – 
29.01 

0.00 – 
27.93 

0.00 – 
20.55 

0.00 – 
34.50 

xe,out -0.308 – 
0.779 

-0.302 – 
0.720 

-0.269 – 
0.794 

0.027 – 
0.766 

-0.452 – 
0.936 

-0.391 – 
0.781 

-0.495 – 
0.901 

-0.420 – 
0.866 

-0.256 – 
0.974 

-0.495 – 
0.974 

q"CHF [W/cm2] 11.31 – 
42.31 

3.77 – 42.89 8.38 – 
50.62 

6.48 – 
23.09 

7.87 – 
53.91 

4.05 – 
50.81 

8.82 – 
50.57 

6.15 – 
23.42 

6.12 – 
48.88 

3.77 – 
53.91  

Table 8 
Final selected parameters for the ANN for CHF.  

Parameter Finalized Model 

Input Parameters WeDe,
Lh

De
,
ρf

ρg
,xe,in,

1
Frθ,De

,Bdθ,De 

Mini-batch Size 16 
Learning Rate 0.0001 
Validation Patience 30 
Hidden Layers 13  

Fig. 12. Parity plot comparing the predictions of the ANN trained for CHF to 
the testing subset of the consolidated FBCE CHF database. The prediction ac
curacy of the CHF ANN is assessed by a combination of mean absolute error 
(MAE), root mean square error (RMSE), and statistical inliers within ±30% 
(ξ30) and ±50% (ξ50) of experimental values. 
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developed to predict flow boiling heat transfer. The final ANN 
relies upon dimensionless inputs relative to flow boiling, consists 
of 12 hidden layers, and is trained using Adam to predict Nutp. 
The final ANN predicts the entire test database with an overall 
MAE of just 7.99%, with consistent and high accuracy predictions 
of each subset (subcooled or saturated flow boiling with single- or 
double-sided heating). For each subset, over 96% of the testing 
database is predicted within ± 30% error, while over 99% is 
predicted within ±50% error. The ANN outperformed existing 
seminal correlations for both subcooled and saturated flow 
boiling, proving its superiority. Moreover, the model proved its 
robustness by accurately predicting physical parametric trends in 
previously unseen data, including constant independence of Nutp 
on xe during nucleate boiling dominant subcooled boiling, 
enhanced heat transfer with increasing G, and the transition from 
subcooled to saturated flow boiling.  

(3) Similar to heat transfer, the CHF datapoints from FBCE were 
consolidated into a database of 641 points spanning mass velocity 
of 99 – 3212 kg/m2s, inlet pressure of 97 – 239 kPa, inlet sub
cooling of 0 – 46◦C, inlet thermodynamic equilibrium quality of 
-0.61 – 0.86, and CHF values of 4 – 54 W/cm2.  

(4) A separate ANN was developed and trained to predict flow 
boiling CHF. The overall methodology of this ANN was main
tained identical to the heat transfer ANN. The final model consists 
of 13 hidden layers and is optimized to predict dimensionless 
CHF, BoCHF. The CHF ANN was very accurate in predicting the 
testing data with an overall MAE of just 12.05%. This is far better 
than the most accurate CHF correlation, which was incidentally 
one by the present authors and predicts the consolidated FBCE 
CHF database with an MAE of 18.07%.  

(5) The artificial neural networks’ high prediction accuracy, in 
conjunction with their ability to predict parametric physical 
trends, shows their evident superior capability of serving as 
prediction tools for both heat transfer and CHF for flow boiling in 
microgravity and Earth gravity. 
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