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A B S T R A C T   

Flow boiling utilizes the latent heat of the fluid to provide an efficient thermal management solution through 
bubble-induced advective transport. In microgravity environments, flow boiling becomes even more advanta-
geous as macroscale flow helps efficiently remove bubbles from the heated wall, resulting in enhancing heat 
transfer as well as critical heat flux (CHF). However, connecting flow boiling physics and bubble information is a 
challenging task due to the complexity and high dimensionality of bubble dynamics. To overcome this challenge, 
the advances in computer vision techniques and models such as VISION-iT can be leveraged to autonomously 
extract physically meaningful features related to spatial statistics, interfacial characteristics, and bubble dy-
namics by digitalizing flow bubble information. In this study, 30,000 flow boiling images under microgravity 
conditions are used to compute ten different features of 155,000 individual bubbles. The extracted bubble in-
formation is then used to predict CHF by using a classical flow boiling model, the Interfacial Lift-off Model. This 
vision-based approach suggested here has the potential to revolutionize the study of such thermofluidic topics by 
providing visual insights that agree well with experimental data.   

1. Introduction 

Flow boiling is a primary method for thermal management in ap-
plications that require the dissipation of large heat loads from small 
surface areas. Two-phase flow boiling is preferred over single-phase flow 
because it utilizes the coolant’s latent and sensible heat with an 
enhancement in heat removal [1], resulting in significant enhancement 
in heat transfer coefficients. However, in heat flux-controlled systems, 
the advantages are only maintained before the heat flux reaches the 
upper limit, also known as the critical heat flux (CHF). CHF is a major 
concern as it can lead to boiling crises, which can interrupt the liquid’s 
access to the heat dissipating. The presence of CHF can trigger unsteady 
escalation in the wall temperature and eventual catastrophic failure of 
devices. Therefore, CHF is the one of most important design parameters, 
which serves as a terminal safety thread for two-phase thermal man-
agement systems [2]. 

Advanced satellites and other space platforms require increased 
power for these systems. This increase has resulted in a higher demand 

for effective thermal management and control systems, which in turn 
rely on two-phase heat transfer [3]. To design reliable and safe heat 
transport systems for space applications, it is important to understand 
the differences in vapor behavior between earth and microgravity con-
ditions, particularly with regards to the CHF. In microgravity, bubbles 
slide along the heated wall and coalesce into larger vapor masses instead 
of detaching into the bulk flow as in earth gravity conditions. This 
bubble behavior is primarily driven by liquid inertia that helps to 
remove the bubbles from the heated wall before they create elongated 
vapor masses which might act as an insulator [4]. As a result, flow 
boiling is an efficient thermal management method in microgravity 
whereas pool boiling is not feasible as it relies on only on gravity-driven 
bubble detachment. However, the installation of two-phase flow systems 
has been difficult due to their flow instability and system failure issues 
associated with CHF. Uncertainty in CHF conditions discourages space 
system designers from introducing such two-phase systems. Therefore, it 
is imperative to gain a fundamental understanding and accurately pre-
dict CHF in microgravity. 

Owing to the complexity and the importance of CHF in the field of 
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boiling heat transfer, more than a thousand empirical correlations have 
been developed over the last 60 years to predict CHF values [5]. Re-
searchers have proposed massive experimental verifications and me-
chanical models based on corresponding experimental results and 
theoretical reasoning to improve understanding of CHF. Several factors 
affect CHF, including wettability [6], liquid-spreading ability [7], sur-
face roughness [8], capillarity and wick ability [9], porosity [10,11], 
Rayleigh-Taylor (RT) instability wavelength [11], and critical pressure 
[12]. However, the highly complex and interactive mechanism of CHF 
remains unclear. 

There have been suggested models that can predict CHF in micro-
gravity around spatial statistics and interfacial characteristics, but these 
models require more rigorous validation. One way to validate these 
models is to use bubble information, but manually extracting bubble 
information from thousands of images has been difficult. Conventional 
computer-aided image processing methods such as thresholding (that 
converts gray-scale images into black-and-white images) or edge 
detection (that find the boundaries of objects within images by detecting 
discontinuities in brightness) [13] are ill-suited for heterogenous fea-
tures like bubbles [14]. In two-phase flows, bubbles show a range of gray 
color variations due to light reflection instead of appearing mono-
chromatic. Additionally, they do not maintain their spherical shapes as 
they flow along the channel or cycle through different stages. Flow 
boiling introduces additional complexity associated with the creation of 
vapor slugs that travel along the wall, vapor blankets that have thin 
sublayers below the bubbles, large vapor patches, Helmholtz instability 
waviness, fluctuations of liquid-vapor interfaces, and intermixing pha-
ses. Such uniquely dynamic flow boiling behaviors require the capability 
to detect and track each moving object within each frame while main-
taining their identification numbers to quantify physical descriptors. 
The key objective of the present study is to identify features related to 
flow boiling to use them in evaluating CHF values from vision data. 

Recent advances in computer vision and deep learning provide a 

potential for autonomous detection and data curation from visual data. 
Our group has leveraged these advancements and developed a frame-
work called Vision-Inspired Online Nuclei Tracker (VISION-iT) to 
extract useful physical descriptors from two-phase heat transfer by 
digitalizing nucleation-based videos [15,16]. VISION-iT consists of 
multiple modules based on AI technologies to recognize and track 
bubbles in a modernized way and record their statistics. Therefore, an 
optical measurement taken at 2,000 fps with high-speed camera could 
autonomously translates into rich bubble features that adequately 
represent the flow boiling system [16–18]. This paradigm shift of 
two-phase heat transfer allows us to collect physical features and build 
datasets from transient sequence of imaging. In this paper, we analyze 
30,000 images from experimental videos to collect quantitative statistics 
of 155,000 individual bubbles under ten different microgravity condi-
tions and connect them to a well-known CHF model. The full description 
of spatial statistics, interfacial characteristics, and bubble dynamics will 
allow us to identify the most important parameter impacting boiling 
crisis under microgravity conditions. 

2. Theoretical model 

Previous significant efforts have demonstrated theoretical models 
based on feature statistics to explain flow boiling mechanisms, partic-
ularly with CHF predictions. Previous CHF mechanism models include 
Bubble Crowding Model, Boundary Sublayer Model, Hydrodynamic 
Instability-based Model, and Interfacial Lift-off Model. Despite the exis-
tence of numerous models, it has been challenging to evaluate those 
models due to the lack of physical features extracted. Along with the 
advances in computer vision and data science, the capability to auton-
omously curate millions of informative physical descriptors from boiling 
images shows the potential for revisiting classical theoretical models 
from a data-driven perspective. 

The Bubble Crowding Model [19] describes the formation of a dense 

Nomenclature 

A channel cross-sectional area 
b ratio of wetting front length to wavelength, w/λ 
Ag surface area occupied by the jets 
Aw total surface area 
AR aspect ratio 
F fraction of total heat flux for evaporation 
G mass velocity 
G3 lateral mass velocity 
hfg latent heat of vaporization 
i instance 
j frame 
l interfacial length 
q″ wall heat flux 
q″

CHF critical heat flux 
q″

w wetting front lift-off heat flux 
T temperature 
Tsat saturated temperature 
ΔTsub,in inlet subcooling, Tsat,in − Tin 
U mean velocity 
m number of frames 
ṁ mass flow rate 
N bubble counts 
n number of instances 
v velocity of bubble 
w wetting front 
x quality 

Greek symbols 
α vapor fraction 
β0 y intercept of linear regression 
β regression coefficient 
δ vapor layer thickness 
λ vapor wavelength 
λc critical wavelength 
ρf density of saturated liquid 
ρg density of saturated vapor 
σ surface tension 

Subscripts 
c critical 
CHF critical heat flux 
f saturated liquid 
g saturated vapor 
in inlet 
ins instance 
loc local 
p parameters 
sat saturation 
sub subcooled 
tot total 
M sublayer 

Superscripts 
- average of total frames  
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bubbly layer close to the wall at CHF, which renders turbulent fluctua-
tions in the bulk liquid flow. Turbulent fluctuations postulate as the 
main source of liquid replenishment at the outer edge of the near-wall 
bubbly layer. As the bubbles become too crowded in the bubbly layer, 
turbulent fluctuations become too weak to transport liquid towards the 
wall. The critical heat flux q”

CHF can be expressed as: 

q″
CHF = hfgG3

(x2 − x1)

F
(1)  

where hfg is the latent heat of evaporation, G3 is the lateral mass velocity 
from the core to the bubble layer due to turbulence, x1 is the average 
quality at the core layer, x2 is the average quality at the bubble layer, 
and F is the fraction of total heat flux for evaporation. It is critical to 
understand the contribution of turbulent flow in the bubbly layer. 

The Boundary Sublayer Model [20] estimates CHF values based on the 
formation of the vapor blanket and sublayers on the heated wall. The 
critical heat flux q”

CHF can be expressed as: 

q″
CHF =

GMδM
(
hfg + cp,f ΔT

)

LM
(2)  

where GM is the mass velocity of the sublayer with a micrometer 
thickness, δM is the sublayer thickness, LM is the length of the vapor 
blanket or sublayer, and cp,f is the specific heat of the liquid. Therefore, 
to determine CHF, it is imperative to find the sublayer’s parametric re-
lationships to describe the equivalent diameter of the vapor blanket, the 
length of the vapor blanket or sublayer, mass velocity of the sublayer in 
addition to fluid properties. 

Other representative theoretical models, such as the Hydrodynamic 
Instability-based Model [21,22] or Interfacial Lift-off Model [23,24], pre-
dict experimental CHF data for both earth gravity and microgravity 
under various heat integration conditions. In earth gravity conditions, 
the magnitude of the buoyancy force is highly correlated with vapor 
removal from the wall and the accumulation of vapor along the heated 
wall. However, in microgravity conditions, the role of buoyancy be-
comes negligible due to the absence of the gravity. Without the buoy-
ancy force, vapor accumulates along the wall due to other forces and is 
pushed in the direction of flow. Therefore, vapor bubbles are observed to 
coalesce into a wavy vapor layer that propagates along the heated wall 
prior to CHF. Flow instability is dominated by a balance between surface 
tension, inertia, and waviness. These theories rely on features such as 
interfacial instability wavelength (the critical wavelength of vapor 
waves in the parallel-to-flow direction, as a new bulk liquid is moving 
in) or Helmholtz instability wavelength (the critical wavelength of vapor 
waves in the perpendicular-to-wall direction, as liquid continually re-
plenishes evaporating vapor voids), which requires the approximation 
of instability parameters. 

The Hydrodynamic Instability-based Model explains the CHF trigger 
mechanism by combining sub-models, such as Helmholtz instability that 
calculates the critical wavelength of perpendicular-to-wall liquid-vapor 
interface, interfacial instability that calculates the critical wavelength of 
parallel-to-flow vapor wave, and Taylor’s interface stability to prevent 
the liquid from touching the heated surface completely by giving the 
tendency of CHF [21,22]. Therefore, the critical heat flux q”

CHF can be 
expressed as: 

q″
CHF = ρghfg

π
16

(
4σ
λc

)1/2
[(ρf + ρg

ρf ρg

)1/2
/(

1 +
ρg

ρf

π
16 − π

)]

(3)  

where ρg and ρf is the density of saturated vapor and liquid, respectively. 
The Interfacial Lift-off Model is based on the hypothesis that when the 

momentum of the vapor produced in wetting fronts perpendicular to the 
wall just exceeds the interface pressure force, the interface will separate 
from the wall [23,24]. This model consists of sub-models for interfacial 
instability, mass, momentum and energy conservation, and an interfa-
cial lift-off criterion [25]. By using principles of energy conservation for 

the vapor and liquid layers, a vapor velocity correlation that relates 
phase velocities to the average wall heat flux can be obtained. The liquid 
velocity can be determined using the principle of mass conservation by 
subtracting the rate of mass conversion to vapor from the total mass flow 
rate at the channel inlet. The following equation provides predictions of 
CHF based on the Interfacial Lift-off Model: 

q″
CHF = ρg

(
cp,f ΔTsub,in + hfg

)
[

4bπσsin(bπ)
ρg

]1
2δ1

2

λc

⃒
⃒
⃒
⃒
⃒

z∗
(4)  

cp,f ΔTsub,in is the inlet subcooling, hfg, σ is the surface tension, δ is the 
mean vapor layer thickness, and λc is the critical wavelength. z0 is the 
stream-wise distance from leading edge of heated wall where z∗ = z0 +

λc(z∗). This means that the combination of bubble or interfacial char-
acteristics, such as mean vapor layer thickness, wavelength, or wetting 
front as well as flow properties, such as specific heat, latent heat, or 
surface tension, determines the critical heat flux during flow boiling. 
The main weakness of the model about its CHF prediction is its reliance 
on a fixed value of b = 0.2 that represents the ratio of the liquid wetting 
front to the liquid-vapor interfacial wavelength. Taking into account 
other factors such as working fluid or gravitational force, which can 
affect the wavelength or wetting front in channel, it cannot be assumed 
that b values remain constant. 

To address this issue, this study leverages a machine learning- 
assisted framework called VISION-iT, which autonomously captures 
features from a sequence of images to predict b values. In addition to b, 
this study also assembles the sets of parameters, such as wavelength or 
vapor layer thickness, along with new features like interfacial length or 
velocity, to comprehensively validate the models that predict CHF 
values. 

3. Experimental method 

The microgravity flow boiling experimental data used in this study is 
obtained from Purdue University Boiling and Two-Phase Flow Labo-
ratory’s (PU-BTPFL’s) experimental database. The specific data used 
here is based on the microgravity flow boiling facility developed for 
testing onboard parabolic flights [26,27]. A flow conditioning loop is 
part of the facility and can provide continuous flow of the FC-72 working 
fluid to the flow boiling module, allowing for tuning the inlet conditions 
that were set to provide low subcooling (near-saturated) at the module 
inlet in the current situation. The flow loop includes a magnetically 
driven gear pump to circulate the fluid, followed by a filter, a flow 
meter, and a preheater before entering the flow boiling module. The 
flow module includes a rectangular channel with a cross-section of 2.5 
mm by 5 mm and a heated length of 114.6 mm allowing for single-sided 
heating on the bottom wall and transparent side walls to provide flow 
visualization access, enabling the 2D assumption for the vapor volume 
extraction (Figs. 1a and S2). Exiting the flow boiling module, the 
two-phase fluid is condensed before being routed through the reservoir 
back to the pump. A total ten videos are recorded with three mass flow 
rate ranges from 10 to 40 g/s. Experiments for individual mass flow 
inlets are conducted for fixed inlet subcooling conditions with heat flux 
increments until CHF is triggered. Thermocouples are connected along 
the heated wall to make wall temperature measurements in the fluid to 
make inlet and outlet fluid temperature measurements. Absolute pres-
sure transducers are connected just upstream and just downstream of the 
heated section to make fluid pressure measurements. A high-speed 
camera obtains images in the upstream heated section of the flow 
boiling module. Each video image is 1.5 s long and is recoded with the 
frame rate of 2,000 fps, totaling the 3,000 images per case. More details 
of the experiment and the facility can be found in elsewhere [26,27]. 

4. Machine learning-assisted analysis 

A machine learning-assisted framework, VISION-iT, consists of 
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multiple modules such as object detection, object tracking, and data 
processing modules to automatically detect and record spatial statistics. 
The object detection module (Fig. 1b) uses high-resolution flow boiling 
images and first passes them through a custom-trained instance seg-
mentation model where bubble masks are assigned with unique identi-
fiers (IDs) [16]. This module specifies the type, rough size, and location 
of objects via bounding box (bbox) regression at this stage, and objects 
can be entirely segmented from the background with pixel-level accu-
racy [28,29]. The object tracking module takes the detected masks with 
linked IDs respect to time and explains in the aspect of spatiotemporal 
(Fig. 1c). The data processing module post-processes the datasets to 
filter the indistinguishable objects and extract interfacial and dynamic 
characteristics (Fig. 1d) [18]. Supplementary Information (SI) and our 
other paper [17] describe more information with steps for detailed in-
structions on specific machine learning techniques for vision modeling, 
model evaluation, and data processing modules used for extracting 
physical parameters where our model is trained with a total of 3,440 
images that account for bubbly or wavy-separate regimes under 
microgravity condition. 

5. Results and discussion 

5.1. Physically meaningful features 

The vision-based framework VISION-iT allows us to extract multi- 
level, physically meaningful features with in-house algorithms. The 
features of interest in this study are categorized into spatial statistics, 
interfacial characteristics, and dynamic characteristics, based on their 
physical significance, as listed in Table 1. 

Spatial statistics, such as bubble count, size, and aspect ratio, are 
important to understand flow boiling, as shown in Fig. 1c. In the context 
of microgravity conditions, bubbles tend to become elongated due to 
accelerating bubble-bubble connections, resulting in extended bubbles 
that reach the channel ends. To accurately depict spatial statistics, it is 
necessary to filter out these extended and cut-off bubbles or floating 
small bubbles. Additionally, bubbles with rapidly switching identifica-
tion numbers should also be filtered. Therefore, the plaid patterns in 
Fig. 2d illustrate the filtered bubbles which are not used in the data 
analysis in this paper. For the cases of 10, 20, and 40 g/s, 31%, 22%, and 
16% of total bubbles are filtered, respectively. The cases of 10 g/s have 
the largest number of filtered bubbles as lower mass flow rates show 
most elongated bubbles. It should be noted that the spatial statistics are 
recorded based on their centroids, meaning that longer bubbles will be 
located near the location up to 63–82% of the channel. (Fig. 1e), 
resulting in the peaks in Fig. 2c and f. Beyond this point, data points 
might not be meaningful. 

The bubble counts N are recorded during a period of 1.5 s based on m 
= 3,000 images with a frame rate of 2,000 , totaling 10,000 to 25,000 
bubbles per case. The bubble count per each frame ranges from 3 to 8, 
depending on the mass flux rates (Fig. 2a). The total bubble counts in 
Fig. 2d are calculated by accumulating total bubbles in each frame. At 
higher heat fluxes or lower mass flow rates, larger bubbles are produced, 
which lead to a decrease in the total number of bubbles. 

The bubbles’ size (Fig. 2b and c) or aspect ratio AR (Fig. 2e and f) are 
indicators of the boiling regimes. At higher heat fluxes or lower mass 
flow rates, the bubbles tend to coalesce into elongated shapes, resulting 
in larger bubble sizes up to 80 mm2 and aspect ratios up to 9. Conversely, 
larger mass flow rates inhibit bubbles coalescence, resulting in smaller 
bubble size as small as 0.1 mm2 and aspect ratio as low as 0.04. Due to 
the coexistence of small and large bubbles in the channel simultaneously 
at 10 g/s, the deviations in the bubble sizes are exceptionally high in 
Fig. 2b. 

Flow boiling is complex interfacial phenomena that involves simul-
taneous interactions between liquid, vapor, and solid phases, resulting 
in flow instabilities. These interfacial characteristics can be characterized 
by computing the wetting front, interfacial length, their ratios, wave-
length, and vapor thickness or fraction from a sequence of images, as 

Fig. 1. Vision-based deep learning 
framework. (a) View of the flow boiling 
module with key dimensions. High- 
speed optical images are collected at a 
framerate of 2,000 fps. (b) The raw 
images are processed through an object 
detection module where objects are 
automatically detected in forms of 
segmented masks. The masks are then 
linked and tracked throughout time 
using a tracking module. The tracked 
results are then processed using a data 
processing module to extract physical 
descriptors based on digital flow bub-
bles. Schematics are not to scale. (c) The 
tracking module enables the detection 
of bubbles with unique IDs for different 
timestamps. A set of spatial statistics 
can be obtained to analyze the size, 
number, and aspect ratio of bubbles, 
etc. (d) Through data processing mod-
ule, interfacial characteristics and dy-
namic characteristics are obtained. (e) 
The framework enables to analysis all 
bubbles in sets of 3,000 images. The 
scatter plot shows both size and aspect 
ratio of bubbles based on their centroid 

information. The inset shows an example of a cut-off bubble exiting the channel which results in downward trend in shaded region. These cut-off bubbles are filtered 
out for further analysis (Figs. 2–6) as they do not depict real shapes.   

Table 1 
Features of interest regarding flow boiling.  

Spatial statistics Interfacial characteristics Dynamic 
characteristics 

Counts, size, and 
aspect ratio. 

Wetting front, interfacial length, 
wavelength, vapor layer thickness, their 
ratios, and vapor fraction. 

Bubble velocity.  
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illustrated in Fig. 1d. 
The wetting front w, an interface between the fluid and solid phases, 

represents a region between discrete vapor bubbles. It plays a key role in 
providing a continuous access of bulk liquid to the heated wall. The 
interfacial length l , an interface between the fluid and vapor phases, 
identifies the quantity of liquid molecules that can be potentially 
evaporated by absorbing heat. Unlike flow boiling in earth gravity 
conditions, bubbles tend to attach to the bottom surface, which yields 
smaller wetting fronts and longer interfacial lengths. The wetting front 
quickly decreases toward end of the channel (Fig. 3a) as bubble-bubble 
interactions are intensified. In addition, the operating conditions with 
higher heat fluxes or lower mass rates accelerate bubble growth and 
merging events, which decreases the wetting front or increases the 
interfacial length (Fig. 3b and c). The local wetting front length, the 
average of the total wetting front length, and the average of interfacial 
length in the channel are calculated by following equations: 

wloc =
1
n

(
∑n

i=1
wi

)

(5)  

wtot =
1
m
∑m

j=1

(
∑n

i=1
wi

)

(6)  

l tot =
1
m

∑m

j=1

(
∑n

i=1
l i

)

(7)  

where wi and li represent the wetting front and interfacial length for 
individual instances (e.g., bubbles in this case). In addition, n is the 
number of instances which could be either within the regime of interest 
or over the channel, and m is the number of the frames. 

The flow visualization shows the vapor layer exhibits fluctuation 
along the flow direction, which can be represented by the wavelength λ 
that refers to the distance between two obvious wave valleys. The larger 
mass flow rate accelerates fluctuations, resulting in smaller wavelengths 

(Fig. 3d). The average of the wavelength for each instance and average 
of the total wavelength in the channel are given by: 

λins =
1
m
∑m

j=1

(
1
n
∑n

i=1
λi

)

(8)  

λtot =
1
m

∑m

j=1

(
∑n

i=1
λi

)

(9)  

where the subscripts ins and tot refer to the instance-based average and 
the total summation over the regime of interest. 

To compare the interfacial characteristics, the constant b is intro-
duced, which represents the ratio between the wetting front and 
wavelength. As discussed in the theoretical background section, the 
value of b is necessary to calculate CHF, as expressed in Eq. (4). How-
ever, assuming b to be a constant value of 0.2 for all cases is not prac-
tical, as it can vary and increase with higher heat fluxes or lower mass 
flow rates. In this study, the constant b is extracted from our feature 
extraction module and ranges from 0.1 to 0.8, as plotted in Fig. 3e and 
listed in Table 3. The constant b used in this study is calculated: 

b =
wtot

λtot
(10) 

The vapor layer thickness δ is calculated by averaging the bubble 
height over the channel length, and the vapor fraction α is calculated as 
the ratio of the vapor phase to the total volume. By verifying that 
assuming spherical bubbles has negligible effects on the total vapor 
volume calculations, we assume extruded bubble shapes for the 
simplicity (Fig. S2). The local vapor fraction αloc increases in the flow 
direction as more vapor is produced at the wall by evaporation and 
boiling of the liquid sublayer covering the upstream portion of the 
heater or by boiling in the wetting fronts (Fig. 3g). With higher heat 
fluxes or lower mass flow rates, the vapor layer thickness or fraction will 
significantly increase (Fig. 3f and h). Additionally, a vapor fraction at 

Fig. 2. Spatial statistics. (a) Bubble count per frame with smoothed plot portrays individual bubbles that are identified and counted from 3,000 images of each frame. 
(b) The average bubble size decreases as the mass flow rate increases, indicating a quantitative competition between bubble growth and removal. (c) The local bubble 
sizes show an increasing trend until the cut-off point (insert) along the channel. Three lines represent average size of bubbles for each mass flow rate of 10, 20, and 
40 g/s. (d) The accumulated total bubble counts from (a) range from 10,000 to 25,000 bubbles. In this study, elongated bubbles that reach the end of channels, cut-off 
bubbles, are filtered for the size and aspect ratio calculations. Filtered bubbles are represented in a plaid pattern, which is 30–35%, 20–25%, 16–18% for each mass 
flow rate. After the filtering process, total 155,000 bubbles are used for this study. (e) The average aspect ratio increases as the heat flux increases or the mass flow 
rate decreases. (f) The local aspect ratio also shows an increasing trend until the cut-off point. All error bars indicate the 16th and 84th percentile of the data set. 
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CHF is shown to be 51%, 44%, and 30% for 10, 20, and 40 g/s, 
respectively while previous studies postulated that CHF occurs when the 
vapor fraction exceeds the critical value of 0.82 [20]. The average of 
vapor layer thickness for each instance, the local vapor fraction, and the 
average of vapor fraction in the channel can be expressed as: 

δins =
1
m

∑m

j=1

(
1
n

∑n

i=1

(
# of vapor pixels in an instance i

length of instance i

)

i

)

(11)  

αloc =

(
# of vapor pixels

# of liquid pixels + vapor pixels

)

j
(12)  

αtot =
1
m

∑m

j=1

(
# of vapor pixels

# of liquid pixels + vapor pixels

)

j
(13) 

During flow boiling, liquid and vapor phases flow independently and 
separately. This is mainly due to the interfacial interactions between 
different sets of phases, resulting in bubble dynamics. For example, forces 
applied to the bubbles (e.g., drag or adhesion forces, etc.) hinder the 
bubbles from flowing together with the working fluid. Instead, bubbles 
tend to flow along the heated wall and coalesce into larger vapor masses 

before detaching into the bulk flow without buoyancy force conditions 
[30]. To characterize such phenomena, bubble velocities are calculated by 
measuring the traveling distances of bubble centroids over a certain time 
period. In Fig. 4a, the average velocities for mass flow rates of 10, 20, 
and 40 g/s are shown to be 0.5, 0.9, and 1.8 m/s, respectively. These 
average velocities show the comparable velocities with flow inlet ve-
locity, but the individual bubble velocities vary and increase in the di-
rection of flow in the channel, as described in Fig. 4b. This increasing 
trend can be attributed to the existence of the bubble-bubble in-
teractions that introduce locally and temporally high velocities. Such 
interactions are more prominent at lower mass flow rates rather than 
larger mass flow rates. In SI, we confirm that the individual bubble ve-
locities based on centroid movements of bubbles are comparable with 
the computed velocities by tracking bubble edges. 

5.2. CHF predictions 

Interfacial Lift-off Model validation requires the extraction of inter-
facial characteristics, such as the mean vapor layer thickness δ at the 
CHF, the critical wavelength λc (=λins at CHF) and the ratio of wetting 

Fig. 3. Interfacial characteristics. (a) Local wetting front wloc of a mass flow rate of 20 g/s within the regime of interest. (b) Average of total wetting front over the 
channel wtot for different mass flow rates (10 – 40 g/s) with varying heat flux. (c) Average of total interfacial length ltot . (d) Average wavelength of individual bubbles 
λins. (e) Constant b representing the ratio of overall wetting front length to overall wavelength. (f) Average vapor layer thickness of individual bubble δins. (g) Local 
vapor fraction profile αloc of mass flow rate of 20 g/s. The lines represent average values from 3,000 images, and bands represent one standard deviation for each heat 
flux. (h) Average of total vapor fraction αtot . Error bars from (a – d, and f) indicate the 16th and 84th percentile of the data, while error bars in (e) represent one 
standard deviation. 
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front length to wavelength b. The values listed in Tables 2 and 3 are used 
to predict CHF values. We hypothesize that acquiring b values experi-
mentally, which account for the dynamic nature of evolving interfacial 
information, can improve the CHF predictions of existing models. A 
predetermined b value of 0.2 is fixed, which infers that the wetting front 
length is always 20% of the wavelength in CHF conditions. However, the 
constant b should differ based on varying experimental conditions, such 
as mass flow rate or heat flux. To explore this, we apply varying b values 
computed from the feature extraction in the previous section along with 
other values listed in Tables 2 and 3, to predict CHF data. Also, it should 
be noted that Table 3 lists the values of λins. 

The results presented in Fig. 5a strengthen our hypothesis that 
considering bubble statistics can reduce the discrepancies between 
measurement and prediction CHF values. Our prediction achieves 39%, 
22%, and 1% error for the mass fluxes of 10, 20, and 40 g/s, respectively. 
The good agreement of 1% error at 40 g/s can be explained by the use of 
a more accurate b value of 0.46 from the feature extraction. However, 
the discrepancy between the experimental and theoretical values at 10 
and 20 g/s can be explained by the method of data acquisition, which 
suffers from the viewing window effect. As illustrated in Fig. 5b–d, the 
viewing window effect describes the difficulty of accurately computing 
the wavelength of end bubbles, cut-off bubbles, continuous bubbles, or 
elongated bubbles, which becomes more pronounced at lower mass 
fluxes. Despite the current state-of-the-art data curation method used 
here, a significant number of cut-off bubbles (16%–35% of the total 
bubble numbers) are filtered out during our post-processing, which 
might affect the accuracy of the computations. To further improve the 
computation accuracy, increasing the viewing window to physically 
measure additional bubbles by minimizing the effects of the channel 
ends can be helpful. Other future work will include improving the post- 
processing algorithms that can create virtual bubbles beyond the 
channel ends to enhance the accuracy of constant b calculations. These 
calculations can account for the wavelength for end bubbles, cut-off 
bubbles, or elongated bubbles. 

5.3. Regression analysis 

We employ regression analysis to visualize the relationship between 
multiple explanatory variables and a response variable. Multivariate 

linear regression (MLR) is one of the simplest and most common ma-
chine learning algorithms. It is a mathematical method used for evalu-
ating and quantifying the relationship between the variables considered, 
allowing for the prediction of their effects. Regression analysis estimates 
dependent variable ‘y’ based on the range of independent variable 
values ‘x,’ as illustrated in Fig. 6a and following equation [31]: 

y = β01 + β1x1 + β2x2⋅⋅⋅βpxp (14)  

where β0 is the y-intercept and β1− p are the regression coefficients that 
indicate the change in y relative to an one-unit change in x1− p. 

In the previous section, we demonstrate the capability to quantify ten 
parameters related to spatial statistics, interfacial characteristics, and 
bubble dynamics. Therefore, we investigate the importance between 
individual parameters as explanatory variable values and heat flux or 
heat transfer coefficient as response variables with an acceptably accu-
rate indication as mean absolute error of < 3.5 × 10− 10, as demonstrated 
in Fig. 6b and c. 

The MLR confirms that the wavelength has the highest impact on 
both heat flux and heat transfer coefficient, which validates the use of 
wavelength-based analysis for flow boiling under microgravity. The 
parameters that quantify the vapor such as vapor fraction, constant b, 
and bubble size in addition to bubble velocity also show a high influence 
compared to the other parameters. It should be noted that the classical 
Interfacial Lift-off Model employs interfacial characteristics that include 
vapor layer thickness, wavelength, and wetting front. Consequently, it 
gives an idea that including vapor fraction or other parameters will give 
another approach to make correlation between the heat flux or heat 
transfer coefficient. Moreover, as discussed in previous section, our 
future work needs to consider the viewing window effect to compute 
parameters accurately which can weight importance differently. 

6. Conclusion 

In this study, a machine learning-assisted framework plays a key role 
in extracting physically meaningful and quantitative data during flow 
boiling under microgravity conditions. The framework detects and 
tracks 155,000 bubbles with high fidelity based on 30,000 optical im-
ages, providing sets of parameters such as spatial statistics, interfacial 
characteristics, and bubble dynamics. These parameters help illustrate 

Fig. 4. Bubble dynamics. (a) Average velocity plots for three different mass flow rates (10–40 g/s) with varying heat flux. Each mass flow rate represents 0.5, 0.9 and 
1.8 m/s, which is comparable with flow inlet velocity. (b) Local velocity profiles of mass flow rates of 20 g/s within the regime of interest where the other mass flow 
rates are shown in Fig. S4. Individual bubble velocities increase in the direction of flow in the channel potentially due to bubble-bubble interactions. The filtered 
bubbles after 45 mm of channel are not depicted in this plot. Both error bars of (a) and (b) indicate the 16th and 84th percentile of the data set for each case. 

Table 2 
Thermophysical properties of FC-72 in experimental condition at CHF.  

Mass flow rate (g/s) Tsat ( ◦C) ρg (kg/m3) hfg (J/g) σ (N/m) 

10 65.52 17.46 79.17 0.00771 
20 65.47 17.46 79.17 0.00771 
40 70.24 20.34 79.72 0.00729  

Table 3 
CHF parameters for validating Interfacial Lift-off Model.  

Mass flow rate (g/s) b δ (mm) λc (mm) 

10 0.14 2.05 10.14 
20 0.20 1.79 7.36 
40 0.46 1.20 5.19  
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the relationships between operating conditions, such as mass flow rate 
or heat flux, and their effects of hindering or merging events in the 
perspective of bubbles. Based on the bubble information derived from 
the framework, the effectiveness of the Interfacial Lift-off Model under 
microgravity conditions is evaluated in this study. The model pre-
dictions show errors of 39%, 22%, and 1% for 10, 20, and 40 g/s, 
respectively. While the results demonstrated good agreement, particu-
larly for larger mass flow rates, discrepancies between experimental and 
prediction values at lower mass flow rates can be attributed to two 
limitation factors: a viewing window effect and the intrinsic transient 
nature of bubble dynamics. Classical CHF prediction models heavily rely 
on parameters such as spatial statistics of individual instances or inter-
facial characteristics. However, current meaturement methodology 
makes it challenging to accurately quantify the actual length scales of 
bubbles in a lengthy channel (due to the distortion at the edge and 
measurement angles), and capture continuous bubble appearances (e.g., 
elongated and/or cut-off bubbles). This motivates not only high-fidelty 
measurement efforts that minimize window effects but also modeling 
efforts that can overcome these limitations by generating the views 
beyond the scenes to observe holistic flow structures. Furthermore, 
classical models infer transient and dynamic CHF phenomena using 
static images instead of sequences of images or videos, failing to capture 
dynamic bubble characteristics such as explosive growth of vapor bub-
bles, flow instability, or bubble-bubble interactions. These limitations 
highlight the need for a new approach that can capture transient and 
dynamic bubble phenomena. 
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Fig. 5. CHF predictions. (a) Comparison of CHF data measured (circles) and Interfacial Lift-off Model predictions with constant (empty square) or computed (solid 
square) b values. The error bars indicate one standard deviation. The viewing window size works as a constraint and make it difficult to accurately compute the 
wavelength of (b) end bubbles, (c) cut-off bubbles, continuous bubbles, or (d) elongated bubbles while other interfacial characteristics (e.g., interfacial length l ) are 
preserved and included in the calculation. 

Fig. 6. Multivariate linear regression with heat flux and heat transfer coefficient for flow boiling data set. (a) Multivariate linear regression using the weighted sum 
of input features (independent variables) to estimated output (dependent variable). Values of importance between explanatory variable values and response pa-
rameters such as (b) heat flux and (c) heat transfer coefficient are normalized. 
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