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a b s t r a c t 

Two-phase flow in mini/micro-channels can meet the high heat dissipation requirements of many state- 

of-the-art cooling solutions. However, there is lack of accurate universal methods for predicting param- 

eters like pressure drop in these configurations. Conventional ways of predicting pressure drop employ 

either Homogeneous Equilibrium Model (HEM) or semi-empirical correlations. This current study lever- 

ages the availability of data collected over the past few decades to build several machine learning models 

to demonstrate the efficacy and ease of building and deploying such models. A consolidated database of 

2787 data points for flow boiling pressure drop in mini/micro-channels is amassed from 21 sources that 

includes 10 working fluid, reduced pressures of 0.0 0 06 –0.7766, hydraulic diameters of 0.15–5.35 mm, 

mass velocities of 33.1 < G < 2738 kg/m 2 s, liquid-only Reynolds numbers of 14–27,658, superficial vapor 

Reynolds number of 75.58–199,453 and flow qualities of 0 and 1. This consolidated database is utilized 

to develop four machine learning based regression models viz. , Artificial Neural Networks (ANN), KNN 

regression, Extreme Gradient Boosting (XGBoost) and Light GBM. Both input parameters and hyperpa- 

rameters are optimized for the individual models. The models with dimensionless input parameters: Bd, 

Bo, Fr f , Fr fo , Fr g , Fr go , Fr tp , Pr f , Pr g , Pe g , Pe f , Re f , Re fo , Re g , Re go , Re eq , Su f , Su g , We f , We fo , We g , We go ,We tp pre- 

dict the test data for ANN model, XGBoost model, KNN model, and LightGBM model with MAEs of 9.58%, 

10.38%, 13.52%, and 14.49%, respectively. The optimized machine-learning models performed better than 

highly reliable generalized pressure drop correlations plus showed good performance across individual 

datasets, flow regimes, and channel configurations. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Flow boiling in mini/micro-channel 

Flow boiling studies has received more and more interest in 

he last few decades, due to the increasing demand for innovative 

ompact systems in aerospace, avionics, consumer electronics and 

lectrical vehicles [1] . By utilizing coolant’s latent heat, two-phase 

ooling is able to achieve orders-of-magnitude enhancement in the 

eat transfer coefficient. This attribute makes two-phase cooling a 

ucrative alternative to conventional single phase cooling systems 

2] . Flow boiling in mini/micro-channels shows the most popular- 

ty among a variety of two-phase cooling configurations, due to 

implicity in structures, high surface to volume ratio, low coolant 
∗ Corresponding author. 
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ontent, and relative uniform surface temperature [3] . However, 

he high pressure drops caused by enhanced surface area per mass 

elocity seen in miniaturized channels is the major disadvantage of 

ini/micro channels. The high-pressure drop increases the power 

onsumption, and can critically affect the system by flashing or 

ven choking the two-phase flow system [4] . This necessitates an 

ccurate predictive tool for pressure drop for reliable and robust 

wo-phase flow based thermal system designs. 

To investigate the physics behind flow boiling pressure drop, 

ultitude of experiments have been conducted by researchers 

orldwide. Qu and Mudawar [5] measured flow boiling pressure 

rop in a two-phase micro-channel heat sink and found that pres- 

ure drop increases appreciably upon commencement of boiling in 

he micro-channels. The upstream flow pattern oscillates between 

he slug and annular flow, and downstream is predominantly an- 

ular. Copetti et al. [6] performed an experimental study of flow 

oiling with R134a in a horizontal tube of 2.6 mm inner diame- 

er. They analyzed the pressure drop under the variation of dif- 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121607
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2021.121607&domain=pdf
mailto:chirag.kharangate@case.edu
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121607
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Nomenclature 

Bd bond number, Bd = g( ρ f − ρg ) D 

2 
h 
/σ

Bo boiling number, Bo = q ′′ ;H /G h f g 

Co convection number, Co = [ ( 1 − x ) /x ] 0 . 8 ( ρg / ρ f ) 
0 . 5 

c p specific heat at constant pressure 

c v specific heat at constant volume 

D h hydraulic diameter of flow channel 

Fr f saturated liquid Froude number, F r f = 

[ G ( 1 − x ) ] 2 / ( ρ2 
f 
g D h ) 

Fr g saturated vapor Froude number, F r g = 

( Gx ) 2 / ( ρ2 
g g D h ) 

Fr fo liquid-only Froude number, F r f o = G 

2 / ( ρ2 
f 
g D h ) 

Fr go vapor-only Froude number, F r go = G 

2 / ( ρ2 
g g D h ) 

F f fluid-dependent parameter 
ˆ f KNN regression function 

G mass velocity 

g gravity acceleration; activation function 

h heat transfer coefficient 

h fg latent heat of vaporization 

k liquid conductivity 

K number of nearest neighbors 

L training error 

MAE mean absolute error 

MSE mean square error 

N o set of K-nearest training observations 

p data point vector 

P pressure 

P c critical pressure 

Pe f saturated liquid Peclet number, Pe f = Re f Pr f 
Pe g saturated vapor Peclet number, Pe g = Re g Pr g 
P F wetted perimeter of channel 

pH heated perimeter of channel 

P R reduced pressure, P R = P c /P 

Pr f saturated liquid Prandtl number, P r f = μ f c p f / k f 
Pr g saturated vapor Prandtl number, P r g = μg c pg / k g 
q data point vector 

q ′′ heat flux 

q ′′ H heat flux based on heated perimeter of channel 

R relative roughness, R = e /D h 

RSS residual sum of squares 

R 

2 coefficient of determination 

Re f saturated liquid Reynolds number, Re f = G (1-x)D h / μf 

Re g saturated vapor Reynolds number, Re g = GxD h / μg 

Re fo liquid-only Reynolds number, Re fo = GD h / μf 

Re go vapor-only Reynolds number, Re go = GD h / μg 

S output, suppression factor 

Su f saturated liquid Suratman number, 

Su g saturated vapor Suratman number, 

T temperature 

We f saturated liquid Weber number, W e f = 

[ G ( 1 − x ) ] 2 D h / ( ρ f σ ) 

We g saturated vapor Weber number, W e g = 

( Gx ) 2 D h / ( ρg σ ) 

We fo liquid-only Weber number, W e f o = G 

2 D h / ( ρ f σ ) 

We go vapor-only Weber number, W e go = G 

2 D h / ( ρg σ ) 

Xtt Lockhart-Martinelli parameter, Xtt = 

( μ f / μg ) 0 . 1 [ ( 1 − x ) /x ] 0 . 9 ( ρg / ρ f ) 
0 . 5 

Y response variable 
ˆ Y fitted values 

Greek Symbols 

α vapor void fraction; coefficient 
[

2 
β aspect ratio, exponential decay rate 

ε percentage data predicted within ±50%, 

θ percentage data predicted within ±30%, 

μ dynamic viscosity, mean value 

λ learning rate 

ρ density 

σ surface tension; standard deviation 

Subscripts 

c critical 

exp experimental 

f saturated liquid, fluid 

fo liquid only 

g saturated vapor 

go vapor only 

l liquid 

n number of data points 

pred predicted 

tp two phase 

w heated wall; inner wall 

erent parameters and reported that low vapor quality and mass 

elocity resulted in less frictional pressure drops while lower sat- 

ration temperatures slightly increased the pressure drop. Satu- 

ated flow boiling characteristic of deionized water in square mi- 

rochannels were investigated by Markal et al. [7] . Their experi- 

ent was performed under different mass velocity and heat flux 

onditions. They concluded that total pressure drop increased with 

n increase in heat flux and exit vapor quality. Recently, Yin et al. 

8] explored flow boiling pressure drop with deionized water in 

pen microchannel. This innovative configuration can enhance mi- 

rochannel performance with a small pressure drop penalty. They 

oncurred that two-phase pressure drop increases with increase in 

eat flux. However, after the onset of stratified flow, pressure drop 

emains almost constant for large mass fluxes and decreases for 

maller mass fluxes. 

.2. Predicting flow boiling pressure drop 

The most widely used approaches of predicting flow boiling 

ressure drop can be classified into two categories, the homoge- 

eous equilibrium models (HEM) and the separated flow models 

SFM). The homogeneous model assumes that the two-phase mix- 

ure is well dispersed and behaves as a single pseudo fluid with 

ean properties and only latent heat transport between the phases 

9–12] . The two-phase friction factor and viscosity are two key un- 

nowns of homogeneous equilibrium model. The separated flow 

odels, which permit differences between phase velocities, are 

ostly based on the model developed by Lockhart and Martinelli 

13] . This model shows high accuracy for flow boiling in macro- 

hannels, but is less accurate for mini/micro-channels. Based on 

ockhart and Martinelli’s pioneering work, some researchers have 

ublished their own models to improve prediction for mini/micro- 

hannels [14–17] . Lee and Lee [18] used the Lockhart-Martinelli 

ype correlation with modified C parameter which took into ac- 

ount the flow rate and the channel size. Their correlations pre- 

icted the experiment data points with MAE less than 10%, and 

hey also achieved MAEs of 15% and 20% in predicting data point 

rom Wambsganss et al. [19] and Mishima and Hibiki [20] , respec- 

ively. A modification of the Chisholm correlation [16] , which is 

ased on Lockhart-Martinelli but with an interfacial shear term, 

as developed by Yu et al. [21] . The comparison between their 

redictions and measured data points showed good agreement 

ith root mean square error (RMSE) of 7%. Zhang and Webb 

22] developed a new correlation by modifying Friedel correlation 
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17] , which is also an updated Lockhart-Martinelli type correlation. 

he frictional pressure drops of R134a, R22 and R404a in small di- 

meter tubes were measured, and the new correlation predicted 

he 119 data points with a MAE of 11.5%. The drawback of this 

ind of predictive method is that it cannot always provide accurate 

rediction outside the tested range. The computational fluid dy- 

amics (CFD) approach has also shown some success in predicting 

ressure drop. CFD approaches can simulate transient flow boil- 

ng with more detailed information including void fraction, phase 

elocities and local temperatures. Alizadehdakhel et al. [23] con- 

ucted a CFD simulation of gas–liquid two-phase flow in an ex- 

erimental tube with Volume-of-Fluid (VOF) model. The CFD pre- 

ictions showed good precision when comparing with the experi- 

ental measurements and the corresponding flow regimes. Bhra- 

ara et al. [24] applied homogenous equilibrium model in their 

FD analysis. They compared CFD results with separated flow cor- 

elations, and it matched well with Muller-Steinhagen and Heck 

orrelation [25] . Overall, CFD models have seen limited utilization, 

ainly due to low accuracy in capturing two-phase flows and the 

igh computational cost. 

Over the last decade, a few researchers have developed general- 

zed predictive approaches which have shown great effectiveness. 

hese approaches are based on generating a large database amass- 

ng numerous experiments conducted by different researchers 

orldwide with various working fluids covering an extensive range 

f geometries and operating conditions. Kim and Mudawar [1] de- 

eloped a generalized universal correlation for saturated flow 

oiling pressure drop in mini/micro channels. They amassed a 

atabase of 2378 data points from 16 sources with 9 working 

uids. The correlation showed excellent accuracy, with an overall 

AE of 17.2% for the entire database. Tibirica et al. [26] developed 

 complete set of simple and optimized correlations for two phase 

ressure drop in microchannels. Their database included 1076 data 

oints, with 14 working fluid, covering a wide range of operating 

onditions and channel dimensions. The overall MAE was 13.1%, 

ith 92.1% of datapoints having an error less than 30%. 

.3. Machine learning in thermal analysis 

In recent years, both statistical models and machine learn- 

ng (ML) models, for example, artificial neural networks (ANN), 

-nearest neighbors (KNN), support vector machines regression 

SVMR) and decision trees, etc. have shown remarkable develop- 

ent and widespread applications in various data driven research 

elds. In the field of thermal analysis, some early research was 

onducted by Thibault and Grandjean [27] and Jambunathan et al. 

28] , who showed that ANNs can be used effectively in model- 

ng practical heat conduction problems and predicting heat trans- 

er coefficients, respectively. After these early studies, ML mod- 

ls have been implemented in analyzing more complex thermal 

ystems including to estimate the pressure drops. Alizadehdakhel 

t al. [23] applied an ANN trained with three inputs from ex- 

eriment data to predict average pressure drop across the tube. 

heir trained ANN model could predict two-phase pressure drop 

ith mean square error (MSE) of 0.043 Pa/m. More recently, in 

rder to predict two-phase pressure drop of refrigerants, Khos- 

avi et al. [29] applied three kinds of ML models, namely, multi- 

ayer feed-forward neural network (MLFFNN), support vector re- 

ression (SVR) and group method of data handling (GMDH) type 

eural network. They concluded that the three models can pre- 

ict the pressure drop with root mean square errors (RMSE) of 

39.42 Pa/m, 703.71 Pa/m and 131.62 Pa/m, respectively. Khame- 

chi and Bemani [30] proposed two novel ML models in predicting 

wo-phase pressure drop, namely gradient tree boosting (GTB) and 

xtreme learning machine (ELM). A comprehensive dataset was 

mplemented to train the models. By comparing with experiment 
3 
easurements, GTB and ELM models showed excellent prediction 

ith mean relative error of 0.72% and 3.43%, respectively. Longo 

t al. [31] presented a prediction of refrigerant two-phase frictional 

ressure drop with the GBM model. Their model was trained by an 

xtensive database including 2549 data points and the MAE was 

.6%. A multiple-layer perceptron neural network (MLPNN) model 

s presented to predict the pressure drop in a gas/non-Newtonian 

iquid by Shadloo et al. [32] . The model was trained by 85% of 

11 experimental data points and validated by remaining 15% data 

oints. The model estimated pressure drop with a minimum MAE 

f 4.58%. Recently, Lee et al. [33] presented an ANN based tool for 

redicting frictional pressure drop in micro-pin fin heat sink. Their 

odel is trained by 1651 data points from 22 studies. The model 

howed better prediction accuracy than existing correlations with 

n overall MAE of 14.49%. 

.4. Objective of study 

Recently, the authors of present study applied ML models 

o develop predictive tools for mini/micro-channel flow boiling 

eat transfer coefficient [34] and mini/micro-channel condensa- 

ion heat transfer coefficient [35] , which showed excellent re- 

ults. The present study follows a similar methodology. A con- 

olidated database consisting of 2787 data points for flow boiling 

ressure drop in mini/micro-channels is amassed from 21 sources 

 5 , 6 , 36 –54 ]. Table 1 provides key information on these individual

atabases incorporated into the consolidated database. The con- 

olidated database includes a broad range of two-phase flow boil- 

ng pressure drop data points with the coverage summarized in 

able 2 . 

The objective of this study is to predict flow boiling pressure 

rop encountered in mini/micro channels by using statistical and 

L model like K -Nearest Neighbors (KNN), Artificial Neural Net- 

orks (ANN), and Gradient Boosted Trees (XGBoost and LightGBM). 

hese ML models are trained by a large set of input parameters 

rom the consolidated experimental database discussed earlier. In 

ddition, rather than taxonomizing different models that can be 

sed for prediction, the current study also offers performance re- 

ults with respect to the conventional physics based modeling to 

nalyze how they fare. Finally, some of the statutory limitation of 

L modeling will be highlighted by testing them on datasets (hold 

ut data) held out from the training examples. 

. Machine learning models 

Problems in which datasets comprises of independent variables 

long with dependent variables are known as supervised learning 

roblems. Some ML methods rely on some distance measure of 

imilarity between data points, expressed either implicitly or ex- 

licitly, which does not scale well in higher dimensions. Hence, 

hen the dimensionality of the problem increases, the perfor- 

ance of several ML algorithms deteriorates - known as the “curse 

f dimensionality”. 

A supervised learning algorithm receives a training data set S, 

ampled from an unknown distribution D and labeled by a target 

unction f. The objective of the algorithm is to find a predictor that 

inimizes the error with respect to unknown distribution and tar- 

et function. A training dataset is a sample available to the learn- 

ng algorithm. The learning paradigm to find a predictor h s , which 

inimizes the training error L s (h ) defined below, is also called Em- 

irical Risk Minimization (ERM) [55] . 

 s ( h ) = 

| { i ∈ { 1 , ....., n } : h ( x i ) � = y i } | 
n 

(1) 

The above equation is based on learning theory discussed in 

56] . One trivial way to achieve this is by memorization of the 
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Table 1 

Flow boiling pressure drop data for mini/micro-channels in the consolidated database. 

Author(s) Channel geometry ∗ Channel material D h [mm] Fluid(s) G [kg/m 

2 s] Data points 

Lezzi et al. (1994) C, single, H Stainless Steel 1 Water 776~ 2738 86 

Tran (1998) C, single, H Brass 2.46 R12, R134a 33.1~ 832.35 439 

Yan & Lin (1998) C, multi, H – 2 R134a 50~ 200 120 

Pettersen (2002) C, multi, H Aluminum 0.81 CO2 190~ 570 57 

Qu & Mudawar (2003) R, multi, H Copper + Lexan cover 0.349 Water 134.93~ 401.94 164 

Monroe et al. (2003) R, multi, H Aluminum 1.66 R134a 99~ 402 37 

Huo (2005) C, single, VU Stainless Steel 2.01, 4.26 R134a 400, 500 74 

Lee & Mudawar (2005) R, multi, H Copper + Lexan cover 0.349 R134a 128.16~ 656.72 87 

Owhaib et al. (2008) C, single, VU Stainless Steel 1.7, 1.224, 0.826 R134a 100~ 400 53 

Hu et al. (2009) C, single, H – 4.18, 2 R410A 200~ 620 48 

Quiben et al. (2009) R, multi, H Copper 3.71, 5.35, 3.5, 4.88 R22, R410A 150~ 500 264 

Ducoulombier (2010) C, single, H Stainless Steel 0.529 CO2 400, 1200 268 

Copetti et al. (2011) C, single, H Stainless Steel 2.6 R134a 240, 440, 930 86 

Tibirica et al. (2011) C, single, H Stainless Steel 2.32 R134a 99.87~ 600.3 49 

Tibirica & Ribatski (2011) C, single, H Stainless Steel 2.32 R245fa 199.3~ 700.6 142 

Wu et al. (2011) C, single, H Stainless Steel 1.42 CO2 300~ 600 254 

Costa-Patry & John (2012) R, multi, R Copper 0.246 R134a 291~ 568 110 

Kharangate et al. (2012) R, single, VU Copper + Lexan cover 3.3 FC72 340.27~ 351.45 121 

Maqbool et al. (2012) C, multi, H Stainless Steel 1.7, 1.224 Ammonia 100~ 500 235 

Anwar et al. (2015) C, single, VU Stainless Steel 1.6 R1234yf, R134a 400, 500 73 

Markal et al. (2016) R, multi, H Silicone 0.15 Water 51~92.6 20 

Total 2787 

∗ C: circular, R: rectangular, H: horizontal, VU: vertical upward, VD: vertical downward;. 

Table 2 

Range of two-phase flow boiling pressure drop data points. 

Parameter Range Mean ( μ) Standard Deviation ( σ ) 

Working fluids Ammonia, CO2, R12, R1234yf, R134a, R22, R245fa, R410a, FC72, Water – –

Reduced pressures 0.0006 < P R < 0.7766 0.1932 0.1288 

Hydraulic diameter 0.15 mm < D h < 5.35 mm 1.91 mm 1.28 mm 

Mass velocity 33.1 kg/m 

2 s < G < 2738 kg/m 

2 s 434.32 kg/m 

2 s 370.25 kg/m 

2 s 

Liquid-only Reynolds number 14 ≤ Re f o ≤ 27,658 4367.62 4082.10 

Superficial vapor Reynolds number 75.58 ≤ Re g ≤ 199,453 21,132 24,888 

Flow quality 0 < x < 1 0.37 0.24 
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raining data which however performs undesirably for unseen data 

57] . A commonly adopted solution to the problem is to apply ERM 

ule over a restricted space by selecting a list of predictors known 

s hypothesis class. The next few sections briefly discuss some of 

he predictive models evolved from learning theory. 

.1. Artificial neural network (ANN) 

ANN is the mix of several ML concepts like perceptrons, regres- 

ion, ensemble and gradient descent. It extracts linear combination 

f input variables and maps the dependent variable as non-linear 

unctions of derived features from the input variables. They are the 

implest form of deep networks consisting of several layers of hid- 

en neurons each fully connected to the layer below (from which 

hey receive input) and those above (from which they influence). 

ny general functions can be constructed by considering networks 

aving successive layers of interconnected units. Each layer pro- 

esses the weighted linear combination of inputs and transforms 

t through an activation function. Weights ( w 

ji 
) are analogous to 

egression coefficients introduced earlier. For example, if w 

l 
ji 

is the 

eight connecting the unit j from unit i in layer l, g is the activa-

ion function, then output from j th unit is computed by: 

 j = g 

( 

d ∑ 

i =0 

w 

l 
ji x i 

) 

(2) 

There are many choices of activation function, and Rectified Lin- 

ar Unit (ReLU) is used for the present work. ANNs are capable 

f learning the feature themselves and are trained using the tech- 

ique known as “backpropagation”, which is a very popular neural 
4 
etwork learning algorithm as it is conceptually simple and com- 

utationally efficient even though the solution is not a global so- 

ution. However, getting it to work well and sometimes to work 

t all can be complicated [58] . ANN have the drawback of overfit- 

ing, and recommended approaches to solve this are by early stop- 

ing and weight decay. For the present work early stopping was 

ot used but exponential decay for first and second moment vec- 

or in Adam solver was set to 0.9 and 0.999, respectively. 

.2. Extreme gradient boosting (XGBoost) 

Boosting is the one of the most powerful concepts introduced 

n ML in the last few decades. Originally developed for classifica- 

ion problems [59] it has been successfully implemented for re- 

ression problems. Boosting algorithms amplifies the strength of 

eak learners to approximate gradually good predictors for larger 

nd harder classes to learn. Boosted trees have emerged as a ver- 

atile and adaptive approach for a wide array of problems. Tree 

oosting overcomes the problem of the curse of dimensionality in- 

roduced earlier by not relying on the distance metric rather the 

ata points relationship is learnt through adaptive adjustment of 

eighborhoods [60] . This also makes the model invariant to data 

ransformation, unlike neural networks, and scaling the features 

ecomes irrelevant. Also, the deeper the trees constructed, higher 

he interactions between the features that can be captured [60] . 

Xgboost is a variant of Gradient Boosted Decision Trees (GBDT) 

ith introduction of regularization term to prevent overfitting. 

oreover, rather than using first order derivative in GBDT, a sec- 

nd order Taylor series of loss function is adopted in XGBoost [61] . 



Y. Qiu, D. Garg, S.-M. Kim et al. International Journal of Heat and Mass Transfer 178 (2021) 121607 

Table 3 

Model parameters selected in this study. 

Model Parameter Value 

ANN Activation function ReLu 

L2 Regularization Parameter, α 0.00075 

Solver Adam 

Batch Size 200 

Learning rate, λ 0.00025 

Exponential decay rate for estimates of first moment vector, β1 0.9 

Exponential decay rate for estimates of second moment vector, β2 0.999 

Tolerance 0.001 

Hidden Layers (120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10) ∗

XGBoost η 0.1 

ϒ 0.0 

Max depth 10 

Minimum child weight 1 

Maximum delta step 0 

Subsample 1 

Sampling Method Uniform 

λ 1.3 

α 1.3 

Scale Pos Weight 1 

Refresh Leaf 1 

Grow Policy Depthwise 

Max Leaves 0 

Max Bin 256 

KNN K 2 

Weights Uniform 

Algorithm Auto 

Leaf size 30 

Power parameter for the Minkowski metric 2 

Distance metric Minkowski 

LightGBM Boosting type gbdt 

Learning rate 0.1 

Max_depth No limit 

Minimum split gain 0.0 

Minimum child weight 0.001 

Minimum child samples 20 

Subsample 1 

∗Based on optimization conducted in Table 5 . 

Fig. 1. Distribution of the target variable, pressure drop. 
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.3. K-Nearest neighbors (KNN) 

K-nearest neighbors regression (KNN-regression) is based on 

he principle of finding a set of points within a dataset which are 

losest to the “query” point as quantified by some distance met- 

ic (like Euclidean, Manhattan or Minskowski). For a given value 

f K, KNN regression identifies the K training observations that are 
5 
losest to X 0 , represented by N 0 and can be expressed as [62] . 

ˆ f ( x 0 ) = 

1 

K 

∑ 

x i ∈ N 0 
Y i (3) 

The optimal value of K depends on the bias-variance tradeoff

ith a small value of K enabling a low bias and high variance 

hile larger value of K having high bias and low variance. KNN 

lgorithm organizes the dataset into a hierarchical tree-based data 

tructure [63] . Since KNN regression is memory based it does not 

equire any model to be fit [64] . For distance between two vec- 

ors p = (p 1 ,p 2 ,….p n ) and q = (q 1 ,q 2 ,q 3 ……q n ), plausible distance

etrics are defined as [65] : 

anhattan Distance = 

[ 

n ∑ 

i =1 

| p i − q i | 
] 

Euclidean Distance = 

[ 

n ∑ 

i =1 

| p i − q i | 
2 
] 1 / 2 

Minkoski Distance = 

[ 

n ∑ 

i =1 

| p i − q i | 
α
] 1 /α

(4) 

.4. Light gradient boosting machine (LightGBM) 

The objective of Gradient Boosted Decision Trees (GBDT) is to 

inimize the training error, L(y,F(x)), introduced earlier as ERM. 

n iterative criterion to minimize this training error using line 

earch can be obtained, however, due to large number of data 
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Fig. 2. Swarm plot of the target variable across different fluids. 

Fig. 3. Kendall rank coefficient heat map for all variables in databases. 

6 
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Fig. 4. Univariate distribution of (a) Fr g , (b) Fr f , (c) Fr go , and (d) Fr fo with pressure drop. 

p

r

r

b

i

s

n

a

c

a

u

c

t

d

a

2

t

n

t

t

s

L

n

b

c

p

e  

A

t

M

e

p

s

2

a

g

p

t

oints and high number of features the conventional GBDT dete- 

iorates. In the light of this, LightGBM is a relatively new algo- 

ithm, proposed by Nielsen [66] with the idea to make gradient 

oosting on decision trees faster. This is based on the concept that 

nstead of checking all possible splits while creating leaves only 

ome of them are selected. This is facilitated by two novel tech- 

iques which are the Gradient based One-Side Sampling (GOSS) 

nd the Exclusive Feature Bundling (EFB). With GOSS, a signifi- 

ant proportion of data instances with small gradients is excluded 

nd only the rest is used to estimate information gain. EFB is 

sed to reduce the number of features by bundling mutually ex- 

lusive ones. With these two implementations LightGBM achieves 

he same accuracy as XGBoost but with a speed-up of 20 times. In 

epth discussion is provided in [66] . The LightGBM code is avail- 

ble at https://github.com/Microsoft/LightGBM . 

.5. Parametric optimization 

For the ANN model, parametric optimization was done using 

he manual search technique similar to [34] . Optimization of neural 

etwork is not straightforward as it depends primarily on data dis- 

ribution, batch size, learning rate and optimizer. Previous attempts 

o optimize ANN includes alternatives to backpropagation like tabu 
7 
earch [67] . The important parameters like the learning rate, λ, and 

2 regularization parameter ( αr ) are set to 0.001, while the expo- 

ential decay rate of the first and second moments is specified to 

e 0.9 and 0.999, respectively. Mean Squared Error ( MSE) was the 

hosen loss function [68] . 

KNN regression first identifies the ‘ k ’ (user defined) closest 

oints in the space and averages the target value for the near- 

st ‘ k ’ points. For the present study the optimal value of ‘ k ’ is 2.

ll the points in the neighborhood are weighted equally. The dis- 

ance metric selected to compute distance between two points is 

inkowski. 

The final hyperparameters used in this study for the ML mod- 

ls are summarized in Table 3 . Some optimization of the model 

arameters will be discussed in detail in the results and discussion 

ection later. 

.6. Model evaluation 

The model coding is performed in Python, and Pandas, Numpy 

nd Scikit-learn [69] libraries are used to develop the ML al- 

orithms. Because of the limited size of our dataset (2787 data 

oints) when compared to traditional ML studies, the computa- 

ional cost for training and testing the models is low and can 

https://github.com/Microsoft/LightGBM
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Fig. 5. Feature selection results obtained by mutual information (MI) feature selection method. 
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e completed within minutes even with desktop computers. The 

plit ratio between training and test datasets is usually 70% −30%, 

5% −25%, or 80% −20%. It is necessary that training dataset should 

e 3–4 times more than test data size as the bulk of the model 

erformance depends on training dataset volume. Different com- 

inations of test and train datasets have been investigated and 

5% −25% split ratio is seen to be acceptable. Therefore, the con- 

olidated dataset was split into training and test datasets with 

5%–25% split ratio with 2090 training data points and 697 test 

ata points. Model fit is evaluated using four metrics viz. R 

2 , Ad- 

usted R 

2 , Mean Absolute Error (MAE) and Explained variance re- 

ression score. R 

2 is the fraction of variance explained and equals 

or r (Y, ̂  Y ) 2 , the square of correlation between response and fit- 

ed values. On the other hand, explained variance regression score 

quals 1 − ( var { Y − ˆ Y } / var { Y } ) . R 

2 and explained variance regres- 

ion score equal each other only when mean of the error is zero. 

t turns out that R 

2 monotonically increases upon addition of pre- 

ictors regardless of the strength of the association between it and 

he response variable. Hence, the adjusted R 

2 “adjusts” this mono- 

onic increase of R 

2 by incurring a penalty term for every variable 

rought into the model. It’s preferable to evaluate the model on 

AE for the output parameter, pressure drop, rather than mean 

quared error (MSE) as the penalty for latter is higher than for- 

er if the response variable distribution contains outliers. Two 

ore parameters will be used to understand model performance, 

, which is the percentage data predicted within ± 30%, and ε, 

hich is the percentage data predicted within ± 50%. 

. Results and discussion 

.1. Data distribution and correlations 

Fig. 1 shows the distribution of the target variable (depen- 

ent or response variable), i.e., pressure drop for flow boiling in 
8 
ini/micro-channels. The mean value ( μ) is 122.19 kPa/m while 

he standard deviation ( σ ) is 238.18 kPa/m. Fig. 2 shows the box 

lot of the target variable across different fluids. The box shows 

he quartiles of the distribution while the whiskers extend to cover 

he remaining distribution, except the outliers which are shown 

s points. The supervised learning model is performed on fea- 

ures that qualify both the physics-based and data-driven criterion. 

onsidering strong dependency on the regression models with the 

urse of dimensionality and the underlying assumptions in each of 

he ML models, only relevant and non-redundant features should 

e processed by the models [70] . Fig. 3 shows the Kendall rank 

oefficient heat map to visualize monotonic relationship between 

ll variables in the dataset. It’s a non-parametric method in the 

ense that it does not rely on any underlying distribution. It is 

sually preferred over Spearman’s correlation map [71] , especially 

hen the sample size is small and there are outliers (as shown in 

ig. 2 ) in the data. Interestingly, the heatmap shows strong corre- 

ation ( > 0.6) with Fr tp , Fr g , Fr go and Fr fo . Such pattern of strong

arget variable correlation with these dimensionless numbers was 

lso seen in previous studies [ 34 , 35 ]. The univariate distribution of 

hese four variables with the target is shown in Fig. 4 . This explains

hy these four variables are picked up as significant predictors and 

lthough none of the physics based models include them [1] , yet 

here is evidence that these variable are candidates to be used in 

hysics based correlations. 

.2. ML model performance comparison 

The consolidated data from flow boiling in mini/micro-channels 

hich is amassed in this study is utilized to develop and analyze 

he predicting performances for the four ML models. A combina- 

ion of input parameters, including flow parameters, geometric pa- 

ameters, fluid properties, and relevant dimensionless numbers are 

tilized to setup the model with the total pressure drop being the 
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Fig. 6. Pressure drop predictions of (a) ANN model, (b) XGBoost model, (c) KNN model, and (d) LightGBM model with input parameters Bd, Bo, Fr f , Fr fo , Fr g , Fr go , Fr tp , Pr f , Pr g , 

Pe g , Pe f , Re f , Re fo , Re g , Re go , Re eq , Su f , Su g , We f , We fo , We g , We go and We tp . 
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equired output parameter. The input parameter selection is made 

o achieve prediction accuracy as well as facilitate model scalability 

ithout unnecessary redundancy. 

Table 4 shows the model performance for different combina- 

ions of predictor variables for various ML models. For the first two 

ases, developing the model with limited variables takes a heavy 

oll on model accuracy. Even though the model fit, measured by 

 

2 is more than 0.98, the residuals measured by MAE are quite 

nsatisfactory. For the next three cases, the model fit as well as 

esiduals improve significantly as the complete list of predictors 

re included. However, bringing in redundant predictors (as shown 

n Case 5) doesn’t yield optimal results as it can lead to model 

verfitting. This behavior is consistent between the four models. 

o aid in model scalability in the features, the authors would like 

o include only the set of dimensionless variables in the current 

odel; hence, the final proposed list of variables are Bd, Bo, Fr f , 

r fo , Fr g , Fr go , Fr tp , Pr f , Pr g , Pe g , Pe f , Re f , Re fo , Re g , Re go , Re eq , Su f ,

u g , We f , We fo , We g , We go and We tp . Use of dimensionless variables

s consistent with developing generalized predicting tools for two- 

hase performance parameters that can be utilized to predict over 

 large range of fluid, geometric and operating parameters [ 34 , 35 ]. 

Fig. 5 shows the feature selection results obtained by mutual 

nformation (MI) feature selection method for the final proposed 
9 
ist of input variables. MI is a powerful statistical method to mea- 

ure the extent of relatedness between datasets. The KNN method 

72] is used to plot the feature importance. The absolute values 

re not of significance rather only the relative value of each fea- 

ure shows the importance by this method. The results show that 

he five most important features selected are Re fo , Re go , Fr fo , Su g 
nd Bd . This can be further corroborated from the universal corre- 

ation proposed by Kim and Mudawar [1] that shows pressure drop 

ependence on four out of these five features (except Bd ). 

The ANN architecture was optimized manually for the cur- 

ent study and results for hidden layer optimization are shown in 

able 5 . Fig. 6 (a) shows the comparison between experimental and 

redictions made by the optimized ANN model with input param- 

ters: Bd, Bo, Fr f , Fr fo , Fr g , Fr go , Fr tp , Pr f , Pr g , Pe g , Pe f , Re f , Re fo , Re g ,

e go , Re eq , Su f , Su g , We f , We fo , We g , We go , and We tp , and hidden lay-

rs (120,110,100,90,80,70,60,50,40,30,20,10) . Of all the models con- 

idered, ANN yields the lowest MAE of 9.6% with the percentage 

ata predicted within ± 30% is 93.4% and percentage data pre- 

icted within ± 50% is 97%. The results show how well the model 

an capture the pressure drop behavior across the whole range of 

he consolidated data. 

Fig. 6 (b) shows the comparison between experimental and pre- 

icted data made by the XGBoost model with input parameters: 
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Fig. 7. Comparison between predictions of the generalized correction by Kim and Mudawar [1] with test data predictions based on the (a) ANN model and (b) XGBoost 

model. Comparison between predictions of the generalized correction by Tibirica et al. [26] with test data predictions based on the (c) ANN model and (d) XGBoost model. 
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d, Bo, Fr f , Fr fo , Fr g , Fr go , Fr tp , Pr f , Pr g , Pe g , Pe f , Re f , Re fo , Re g , Re go ,

e eq , Su f , Su g , We f , We fo , We g , We go , and We tp . This model gives

n MAE of 10.38% and percentage data predicted within ± 30% is 

4.98% and percentage data predicted within ± 50% is 98.85%. This 

odel performs slightly better than KNN model but not as good as 

he ANN model. 

Table 6 compares the predicting performance for the KNN 

odel based on different hyper parameters. The algorithm to con- 

truct the tree is the ball tree method where each node’s point 

s assigned to the node’s two closest children. The leaf size se- 

ected to construct the tree is 30 (optimal value depends on the 

ature of the problem). To find the distance between the points, 

he ‘Minkowski distance’ metric is used. Selecting the model with 

 nearest neighbors and distance as the weights gives the low- 

st MAE of 13.53%. Fig. 6 (c) shows the comparison between ex- 

erimental and predicted data made by this KNN model with in- 

ut parameters: Bd, Bo, Fr f , Fr fo , Fr g , Fr go , Fr tp , Pr f , Pr g , Pe g , Pe f , Re f ,

e fo , Re g , Re go , Re eq , Su f , Su g , We f , We fo , We g , We go , and We tp . About

8.67% of the datapoints lie within ±30% of the predicted value 

hile 94.84% of the points lie within ± 50% of the predicted value. 

Fig. 6 (d) shows the comparison between experimental and pre- 

ictions made by Light GBM model with input parameters: Bd, Bo, 

r f , Fr fo , Fr g , Fr go , Fr tp , Pr f , Pr g , Pe g , Pe f , Re f , Re fo , Re g , Re go , Re eq , Su f ,
10 
u g , We f , We fo , We g , We go , and We tp . To the best of our knowledge,

his is the first time Light GBM is being used to predict pressure 

rop in thermal system modeling. LightGBM can be modeled with 

hree types of gradient boosting methods, viz. , gradient boosted 

ecision trees (GBDT), dropout meet multiple additive regression 

rees (dart) [61] , and gradient based one side sampling (GOSS). 

e noticed the best performance by GBDT, for which the MAE is 

4.49% with the percentage data predicted within ± 30% is 89.81% 

nd percentage data predicted within ± 50% is 95.98%. 

ANN outperforms all models because of its ability to learn com- 

lex relationship between input and output parameters by virtue 

f nonlinear activation function manifested in the hidden layers of 

he network. They are robust even in the presence of noisy data 

nd even when input parameters have different statistical distri- 

ution with respect to the response function [73] . Tree boosting 

s highly effective and versatile approach for ML problems. The 

econd best performing model, XGBoost, usually can outperforms 

any other ML algorithms since it uses Newton’s method which 

mploys higher order alternative to optimization problem [60] . Ad- 

itionally, XGBoost has extra randomization parameters which is 

sed to de-correlate individual trees and reduce overall variance 

f the model. The aforementioned reasons make XGBoost a highly 

daptive ML model which considers bias-variance trade-off into ev- 
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Fig. 8. Test data points from individual datasets of Tran et al. [47] predicted by (a) ANN model, (b) XGBoost model, (c) KNN model and (d) LightGBM model; Test data points 

from individual datasets of Ducoulombier et al. [46] predicted by (e) ANN model, (f) XGBoost model, (g) KNN model and (h) LightGBM mode. 
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ry aspect of the learning theory [60] . Prior work has shown that 

ight GBM performance is usually better than XGBoost [74] . How- 

ver, we saw its MAE being higher than XGBoost as well as KNN. 

his could be possibly due to lack of best hyperparameters tuning, 

lthough both grid search and random search were investigated to 

nd the optimal hyperparameters for this model. 

.3. Comparison with generalized flow boiling pressure drop 

orrelations 

In order to show the capability of the four ML models based 

n the consolidated database, their results were compared with 
11 
redictions of the generalized corrections for flow boiling pressure 

rop proposed by Kim and Mudawar [1] and Tibirica et al. [26] . 

hese two universal/generalized saturated flow boiling heat trans- 

er correlations are presented in Table 7 . In Fig. 7 (a–d), we can

ee that the MAEs for Kim and Mudawar [1] and Tibirica et al. 

26] are 23.3% and 25.4%, respectively, while the MAEs obtained 

rom ANN and XGBoost models are 9.6% and 10.4%, respectively. 

lso, the number of data points predicted within ± 30 and ± 50% 

f the actual data is in the range of 93–95% and 97,98% for the ML

odels. Comparatively, the correlations have a wider error band 

f 68–70% and 86–88% of the data points lying within ± 30 and 
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Table 4 

Model predictions for different combinations of input parameters. 

Case Parameters Models MAE R 2 Adjusted R 2 
Explained variance 

ratio 

1 D h , T, G, x, q’’, P KNN 21.08 0.989 0.989 0.989 

ANN 12.88 0.998 0.998 0.998 

XGBoost 10.39 0.979 0.978 0.979 

LightGBM 17.61 0.996 0.996 0.996 

2 Bd, Bo, Fr f , Pr f’ , Pe f , Re f , Su f, We f , KNN 73.43 0.793 0.793 0.794 

ANN 43.60 0.986 0.986 0.986 

XGBoost 93.06 0.959 0.958 0.958 

LightGBM 62.97 0.981 0.981 0.981 

3 D h , T, G, x, q’’, P, P C , ρ f , ρg , h fg , Cp g , Cp f , μf , 

μg, k f , k g , σ

KNN 22.77 0.992 0.992 0.992 

ANN 11.35 0.997 0.997 0.997 

XGBoost 10.29 0.995 0.995 0.995 

LightGBM 16.16 0.996 0.996 0.996 

4 Bd, Bo, Fr f , Fr fo , Fr g , Fr go , Fr tp , Pr f , Pr g , Pe g , Pe f , 

Re f , Re fo , Re g , Re go , Re eq , Su f , Su g , We f , We fo , 

We g , We go , We tp 

KNN 13.53 0.988 0.988 0.988 

ANN 9.58 0.988 0.987 0.988 

XGBoost 10.38 0.987 0.986 0.987 

LightGBM 14.24 0.996 0.996 0.996 

5 Bd, Bo, Fr f , Fr fo , Fr g , Fr go , Fr tp , Pr f , Pr g , Pe g , Pe f , 

Re f , Re fo , Re g , Re go , Re eq , Su f , Su g , We f , We fo , 

We g , We go , We tp , D h , T, G, x, q’’, P 

KNN 13.53 0.988 0.988 0.988 

ANN 12.64 0.998 0.998 0.998 

XGBoost 10.12 0.996 0.996 0.996 

LightGBM 12.66 0.996 0.996 0.996 

Table 5 

ANN model predictions for fixed input parameters and different combinations of hidden layers. 

Test Case ANN Model Hidden Layers Input Parameters MAE R 2 Adjusted R 2 

Explained 

variance 

ratio 

0 (180,170,160,150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) Bd, Bo, Fr f , Fr fo , Fr g , 

Fr go , Fr tp , Pr f , Pr g , 

Pe g , Pe f , Re f , Re fo , 

Re g , Re go , Re eq , Su f , 

Su g , We f , We fo , 

We g , We go , We tp 

13.83 0.985 0.985 0.986 

1 (170,160,150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) 11.45 0.962 0.961 0.963 

2 (160,150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) 13.31 0.987 0.986 0.987 

3 (150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) 9.97 0.971 0.971 0.972 

4 (140,130,120,110,100,90,80,70,60,50,40,30,20,10 11.56 0.977 0.976 0.978 

5 (130,120,110,100,90,80,70,60,50,40,30,20,10) 12.43 0.987 0.986 0.987 

6 (120,110,100,90,80,70,60,50,40,30,20,10) ∗ 9.58 0.988 0.987 0.988 

7 (110,100,90,80,70,60,50,40,30,20,10) 12.33 0.982 0.981 0.982 

8 (90,80,70,60,50,40,30,20,10) 12.39 0.984 0.983 0.984 

9 (60,50,40,30,20,10) 15.25 0.987 0.987 0.987 

10 (30,20,10) 36.20 0.983 0.983 0.983 

∗Final selected ANN model configuration. 

Table 6 

KNN predictions for different hyper parameter K . 

K MAE R 2 explained variance ratio 

2 13.53 0.988 0.988 

4 17.57 0.988 0.988 

6 20.91 0.985 0.985 

8 24.97 0.979 0.979 

10 29.45 0.971 0.971 
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50%. This shows that the generalized flow boiling pressure drop 

orrelations are typically outperformed by the ML models. 

.4. Understanding sub-dataset predictions 

In this section, we want to understand the ability of ML models 

n capturing various sub-divided datasets and check the predicting 

erformance uniformity across the database. One way is dividing 

he database into individual datasets by the authors. Fig. 8 shows 
12 
omparison between predictions of the 4 ML models and the 

eneralized correlation developed by Kim and Mudawar [1] for 

he two largest datasets in the consolidated databases. The two 

atasets are by Tran [37] and Ducoulombier [46] , with the lat- 

er having higher pressure drop values ( > 10 kPa/m), while the 

ormer has mostly lower pressure drop values (80% of the data 

oints are less than 10 kPa/m). These two databases span 3 work- 

ng fluids: R134a, R12 and CO 2 , mass velocity: 33.1–1200 kg/m ²s, 

ydraulic diameter: 0.529, 2.46 mm, reduced pressure: 0.08 –0.47, 

uality: 0 and 1.0, and fluid only Reynolds number: 353 –11,517. 

he first database by Tran [37] has R12 and R134a as the work- 

ng fluids. As shown in Fig. 8 (a~d), the four ML models have 

AEs of 18.07%, 16.19%, 31.10% and 34.38%, respectively, while the 

AE of the correlation by Kim and Mudawar is 20.76%. ANN pre- 

ictions at the low pressure drop ranges ( < 1 kPa/m) are seen to 

e slightly overpredicted in comparison to XGBoost. The second 

atabase by Ducoulombier [46] has CO 2 as the working fluid. As 

hown in Fig. 8 (e~h), the four ML models have MAEs of 3.53%, 
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Table 7 

Generalized condensation heat transfer correlations. 

Author(s) Correlation Formulation 

Kim & Mudawar [1] . ( dP 
dz 

) F = ( dP 
dz 

) f φ
2 
f 

Where φ2 
F = 1 + 

C 
X 

+ 

1 
X 2 

, X 2 = 

( dP/dz ) f 
( dP/dz ) g 

, 

−( dP 
dz 

) f = 

2 f f υ f G 
2 ( 1 −x ) 

2 

D h 
, −( dP 

dz 
) g = 

2 f g υg G 
2 x 2 

D h 
, 

f k = 16 Re −1 
k for Re k < 2 . 0 0 0 , 

f k = 0 . 07 Re −0 . 25 
k for 2 , 0 0 0 ≤ R e k < 20 , 0 0 0 , 

f k = 0 . 046 Re −0 . 2 
k for R e k ≥ 20 , 0 0 0 , 

For laminar flow in rectangular channel, 

f k R e k = 24( 1 − 1 . 3553 β + 1 . 9467 β2 − 1 . 7012 β3 + 0 . 9564 β4 − 0 . 2537 β5 ) , 

where subscript k denotes f or g for liquid and vapor phases, respectively, 

Re f 
G ( 1 −x ) D h 

μ f 
, Re g = 

Gx D h 
μg 

, R e f o = 

G D h 
μ f 

, S u go = 

ρg σD h 
μ2 

g 
, W e f o = 

G 2 D h 
ρ f σ , Bo = 

q ′′ H 
G h f g 

. 

Liquid Vapor (gas) C non-boiling 

Turbulent Turbulent 0 . 39 Re 0 . 03 
f o 

Su 0 . 10 
go ( 

ρ f 

ρg 
) 0 . 35 for R e f ≥ 20 0 0 , Re g ≥ 20 0 0 (tt) 

Turbulent Laminar 8 . 7 × 10 −4 Re 0 . 17 
f o 

Su 0 . 50 
go ( 

ρ f 

ρg 
) 0 . 14 for R e f ≥ 20 0 0 , Re g < 20 0 0 (tv) 

Laminar Turbulent 0 . 0 015 Re 0 . 59 
f o 

Su 0 . 19 
go ( 

ρ f 

ρg 
) 0 . 36 for R e f < 20 0 0 , Re g ≥ 20 0 0 (vt) 

Laminar Laminar 3 . 5 × 10 −5 Re 0 . 44 
f o Su 0 . 50 

go ( 
ρ f 

ρg 
) 0 . 48 for R e f < 20 0 0 , Re g < 20 0 0 (vv) 

C 

R e f ≥ 20 0 0 C non −boiling [ 1 + 60 We 0 . 32 
f o 

( Bo P H 
P F 

) 
0 . 78 

] 

R e f < 20 0 0 C non −boiling [ 1 + 530 We 0 . 52 
f o 

( Bo P H 
P F 

) 
1 . 09 

] 

Tibirica et al. [26] Homogenous void fraction: αhom = ( 1 + 

1 −x 
x 

ρg 

ρ f 
) −1 

Homogenous density: ρhom = α · ρg + ( 1 − α) · ρ f 

Homogenous viscosity: μhom = x · μg + ( 1 − x ) · μ f 

Homogenous Reynolds number: Re hom = 

G ·D h 
μhom 

New two-phase frictional factor: f new = 1 . 415 · ( ρ f 

ρg 
) −0 . 3263 · Re −0 . 2342 

hom · ( ρ f −ρg 

ρ f 
) 6 . 0858 

Two-phase frictional pressure drop: ( dp 
dz 

) = f new · G 2 

2 ·ρhom ·D h 
Range of applicability 

349 ≤ Re hom ≤ 96862 

0 . 02 ≤ f hom ≤ 0 . 08 

7 . 8 ≤ ρ f / ρg ≤ 840 

0 < x ≤ 1 

Fig. 9. Distribution of 697 test data points in the 4 flow regimes, namely, laminar-laminar (vv), turbulence-laminar (tv), laminar-turbulence (vt) and turbulence-turbulence 

(tt) with a transition Reynold number of 20 0 0. 
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.99%, 4.51% and 3.66%, respectively, whereas Kim and Mudawar’s 

orrelation predicted with a MAE of 13.96%. A peculiar aspect 

bout this dataset is all the target values are high and the ML 

odels developed in this study have shown accurate predictions 

t high pressure drop values in comparison to low ones. The bet- 

er performance at the higher pressure drops can also be attributed 
13 
o an overall reduction in uncertainty in measurement of the ex- 

erimental data as the pressure drops values increase. Overall, the 

erformance of ML models across all the individual databases is 

een to be better than the universal correlation by Kim and Mu- 

awar [1] . 
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Fig. 10. ANN model predictions for each flow regime: (a) laminar-laminar, (b) turbulent-laminar, (c) laminar-turbulent, and (d) turbulent-turbulent; XGBoost model predic- 

tions for each flow regime: (e) laminar-laminar, (f) turbulent-laminar, (g) laminar-turbulent, and (h) turbulent-turbulent. 
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Another way to divide the database is into the flow 

egimes. Flow boiling in mini/micro-channels can be divided 

nto 4 flow regimes, including laminar-laminar (vv), turbulence- 

aminar (tv), laminar-turbulence (vt) and turbulence-turbulence 

tt). Fig. 9 shows the cluster of 697 data points subdivided into 

 flow regimes with a transition Reynold number of 20 0 0. Fig. 10

a~d) shows that the ANN model predicts the data points in each 

ow regime with MAEs of 7.39% (vv), 16.84% (tv), 10.60% (vt) and 

.89% (tt), respectively. Fig. 10 (e~h) shows that the XGBoost model 

redict the data points in each flow regime with MAEs of 9.66% 

vv), 19.81% (tv), 11.11% (vt) and 9.67% (tt), respectively. For both 
14 
odels, the predictions for turbulence-laminar (tv) flow regime are 

one on a single data point, because our consolidated test database 

nly has one data point located within the turbulence-laminar flow 

egime with the remaining 4 going into the training dataset. Over- 

ll, the performance is consistently good across the flow regimes 

ith a slightly lower MAE for the dataset with the single data 

oint. 

One more way to divide the database is into channel con- 

gurations, single-channel vs. multi-channels. There are 416 test 

atapoints for single-channel, and 281 test datapoints for multi- 

hannels configurarions. From Table 8 , we can see that ANN and 
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Fig. 11. (a) ANN model predictions for single-channel test data. (b) XGBoost model predictions for single-channel test data. (c) KNN model predictions for multi-channels 

flow test data. (d) LightGBM model predictions for multi-channels test data. 

Table 8 

Model predictions for different channel configura- 

tions. 

Model Single-channel Multi-channel 

ANN 9.18% 10.19% 

XGBoost 9.48% 11.69% 

KNN 16.10% 12.11% 

LightGBM 15.67% 10.36% 

X

a

d

m

c

e

d

p

3

d

G

a

v

e

s

s

o  

e

L

i

F

[

K

a

e

m

a

t

m

t
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o

GBoost have slightly smaller MAEs for single channel, while KNN 

nd LightGBM predict multi-channels better than single channel 

ata points. Fig. 11 (a) and (b) shows that the ANN and XGBoost 

odels have MAEs of 9.18% and 9.48%, respectively for single- 

hannel. Fig. 11 (c) and (d) show that the KNN and LightGBM mod- 

ls have MAEs of 12.11% and 10.36%, respectively for multi-channel 

ata points. In general, we can see that the ML models are able to 

erform effectively for the complete database. 

.5. Predicting excluded (hold out) datasets 

As discussed in earlier sections, when we use the consolidated 

atabase to train the ML models, ANN, XGBoost, KNN, and Light- 
15 
BM perform reasonably well with MAEs of 9.58%, 10.38%, 13.53% 

nd 14.49%, respectively. However, the ability to predict dependent 

ariables outside the range of the training data is also critical in 

valuating the scalability and robustness of ML model for new, un- 

een data points. We select three datasets to exclude and under- 

tand the model performance. The three datasets excluded (hold 

ut data) are Yan and Lin [38] , Wu et al. [49 −50] and Kharangate

t al. [51] . 

Fig. 12 (a–d) shows the predictions of ANN, XGBoost, KNN and 

ightGBM model when Yan and Lin [38] is excluded from the train- 

ng dataset that included data only from the 20 remaining sources. 

or ANN model and XGBoost model, when dataset of Yan and Lin 

38] was excluded, MAEs are 30.5%, and 34.27%, respectively. For 

NN model and LightGBM model, the MAEs are higher at 42.14%, 

nd 43.02%, respectively. The predictions when Wu et al. [49] is 

xcluded are shown in Fig. 12 (e–h). For ANN model and XGBoost 

odel, MAEs are 40.23%, and 34.23%, respectively. For KNN model 

nd LightGBM model, the MAEs are 52.92%, and 38.25%, respec- 

ively. As shown in Table 1 , R134a and CO 2 are the most com- 

on working fluids in our consolidated databases and we expected 

hem to perform well. Better predicting capability in predicting 

old out datasets was obtained in our past ML modeling efforts 

n heat transfer coefficient in min/micro-channel [ 34 , 35 ]. One rea- 
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Fig. 12. Predictions of pressure drop of excluded data for Yan & Lin [38] based on the (a) ANN model, (b) XGBoost model, (c) KNN model, and (d) LightGBM model. 

Predictions of pressure drop of excluded for Wu et al. [49] based on the (e) ANN model, (f) XGBoost model, (g) KNN model, and (h) LightGBM model. 
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M

on is that the size of this dataset is much smaller than the earlier

tudies (2787 in the current study compared to 16,953 and 4882 in 

34] and [35] , respectively). Specifically, from Table 1 , we can also 

ee less overlap between other datasets and the two we are dis- 

ussion here. For Yan and Lin [38] , it is the only dataset in multi-

ircular channels configuration among all 10 datasets which utilize 

134a as the working fluid. In addition, the mass velocity range of 

38] is 50 ~ 200 kg/m 

2 s, smaller than most other R134a data points 

n the database. Similarly, Wu et al. [49] has the largest hydraulic 

iameter among all CO 2 datasets as seen in Table 1 . This highlights 

he need for some overlapping data to build and deploy such ML 

odels. 
16 
Fig. 13 (a–d) shows the predictions of ANN, XGBoost, KNN and 

ightGBM model when data from Kharangate et al. [51] is excluded 

rom the training database that included data only from the 20 re- 

aining sources. The ANN, XGBoost, KNN, and LightGBM models 

redict with MAEs of 117.40%, 65.74%, 93.43%, and 31.59%, respec- 

ively. The working fluid in Kharangate et al. [51] is FC72, and the 

ower performance can easily be attributed to no information on 

he working fluid being available in the training database. 

A strong dependence of model performance on the size of con- 

olidated database and the availability of fluid data in the training 

atasets can be observed from the results. The high reliability of 

L models on availability of existing data is a major disadvantage 
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Fig. 13. Predictions of pressure drop for excluded data for Kharangate et al. [40–51] based on the (a) ANN model, (b) XGBoost model, (c) KNN model, and (d) LightGBM 

model. 
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f such tools. Despite that, the ML models can still predict pres- 

ure drop with a reasonable accuracy, when a reasonable amount 

f data points and fluid information are made available. Lack of 

ata is also seen to impact performance of other traditional meth- 

ds utilized for predicting pressure drop in flow boiling, including 

niversal/generalized correlations (Kim and Mudawar [1] and Tibir- 

ca et al. [26] ). As we amass more data and include more working 

uids that cover a larger range of operating and geometric condi- 

ions than the current consolidated database, the shortcoming is 

ossible to be addressed. 

. Conclusions 

In this study, a new method for predicting pressure drop for 

aturated flow boiling in mini/micro channels is proposed. A con- 

olidated database is amassed and used to develop ML models for 

redicting pressure drop. Key findings from this study are as fol- 

ows: 

1) A consolidated database of 2787 data points for saturated flow 

boiling pressure drop in mini/micro-channels is amassed from 

21 sources that includes 10 working fluid, reduced pressures of 

0.0 0 0 6–0.776 6, hydraulic diameters of 0.15–5.35 mm, mass ve- 
17 
locities of 33.1 < G < 2738 kg/m 

2 s, liquid-only Reynolds num- 

bers of 14–27,658, superficial vapor Reynolds number of 76–

199,453 and flow qualities of 0 and 1. 

2) Four ML based models, namely, Artificial Neural Networks, Ex- 

treme Gradient Boosting, K-Nearest Neighbors and Light Gradi- 

ent Boosting Machine were developed and parametrically opti- 

mized in this study. Based on dimensionless input parameters, 

Bd, Bo, Fr f , Fr fo , Fr g , Fr go , Fr tp , Pr f , Pr g , Pe g , Pe f , Re f , Re fo , Re g , Re go ,

Re eq , Su f , Su g , We f , We fo , We g , We go and We tp , ANN model, XG-

Boost model, KNN model and LightGBM model predicted the 

test data with MAE s of 9.58%, 10.38%, 13.52% and 14.49%, re- 

spectively. 

3) The ANN and XGBoost models’ predictions are compared with 

generalized correlations for saturated flow boiling pressure 

drop developed by Kim and Mudawar [1] and Tibirica et al. 

[26] . Both ANN and XGBoost models performed better than the 

highly reliable universal generalized flow boiling pressure drop 

correlations in mini/micro-channels, even predicting individual 

databases with high accuracy. The models showed comparable 

good performance across individual datasets, flow regimes, and 

channel configurations. 

4) In order to test the predicting capability of four ML models for 

datasets outside its training database, three datasets were indi- 
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vidually excluded from the training data, and the models devel- 

oped based on the remaining data was used to train and predict 

the complete excluded dataset. None of the ML models were 

able to perform with the same accuracy as the original mod- 

els. This is because of the smaller size of this database and less 

overlap between the datasets from the different sources. 
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