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a b s t r a c t 

Miniature condensers utilizing mini/micro-channel has been recognized as one effective technique for 

designing a compact heat rejection device. However, because of the complex behaviors in phase-change 

systems like flow condensation, accurately predicting heat transfer coefficients can be a challenging task. 

In this study, a large database is utilized to develop machine-learning based models for predicting con- 

densation heat transfer coefficients in mini/micro-channels. A consolidated database of 4,882 data points 

for flow condensation heat transfer in mini/micro-channels is amassed from 37 sources that includes 17 

working fluid, reduced pressures of 0.039 – 0.916, hydraulic diameters of 0.424 mm – 6.52 mm, mass 

velocities of 50 < G < 1403 kg/m 

2 s, liquid-only Reynolds numbers of 285 – 89,797, superficial vapor 

Reynolds number of 44 – 389,298, and flow qualities of 0 – 1. This consolidated database is utilized to 

develop four machine learning based models viz., Artificial Neural Netoworks (ANN), Random Forest, Ad- 

aBoost and Extreme Gradient Boosting (XGBoost). A parametric optimization is conducted and ANN and 

XGBoost showed the best predicting accuracy. The models with dimensionless input parameters: Bd, Co, 

Fr f , Fr fo , Fr g , Fr go , Ga, Ka, Pr f , Pr g , Re f , Re fo , Re g , Re go , Su f , Su g , Su fo , Su go , We f , We fo , We g , and We go pre- 

dicted the test data for ANN and XGBoost models with MAEs of 6.8% and 9.1%, respectively. The optimal 

machine-learning models performed better than a highly reliable generalized flow condensation correla- 

tion. Models were also able to predict excluded datasheets with reasonable accuracy when data points 

including the specific working fluid were part of the training dataset of the remaining datasheets. The 

work shows that machine learning algorithms can become a robust new predicting tool for condensation 

heat transfer coefficients in mini/micro channels. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Flow condensation in mini/micro-channel 

New technologies in automotive, consumer electronics,

erospace, and defense industries are in need of lightweight,

ighly efficient, and compact thermal management solutions.

wo-phase flows including flow boiling in microchannel, spray

nd jet-impingement configurations has been shown to be a very

ffective cooling solution in such demanding environments [1–5] .

he last few decades have seen unprecedented work in develop-
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ng the heat acquisition components, while less importance has

een given to the heat rejection components that also contribute

ignificantly to the size and weight of the thermal management

ardware. While commercial condensers can meet the cooling

equirements, they are far too large and inefficient. Miniature

ondensers utilizing mini/micro-channel has been recognized as

ne effective technique for designing a compact heat rejection

evice. 

Typical configurations in mini/micro-channel flow condensers 

nclude single or multi-channel in circular, square, or rectangular

ross-sections and horizontal or vertical orientations with respect

o Earth gravity. Flow condensation heat transfer in mini/micro-

hannels depends strongly on the flow pattern and flow transi-

ions which impact the corresponding thermal behaviors observed

n the channel. Flow patterns and flow transitions depend on many

https://doi.org/10.1016/j.ijheatmasstransfer.2020.120351
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Nomenclature 

Bd Bond number, Bd = g( ρ f − ρg ) D 

2 
h 
/σ

C Confinement number 

Co Convection number, Co = [ ( 1 − x ) /x ] 0 . 8 ( ρg / ρ f ) 
0 . 5 

c p specific heat at constant pressure 

c v specific heat at constant volume 

D h hydraulic diameter of flow channel 

E total error 

F enhancement factor 

E m 

loss function 

Fr f saturated liquid Froude number, F r f = 

[ G ( 1 − x ) ] 2 / ( ρ2 
f 
g D h ) 

Fr g saturated vapor Froude number, F r g = 

( Gx ) 2 / ( ρ2 
g g D h ) 

Fr fo liquid-only Froude number, F r f o = G 

2 / ( ρ2 
f 
g D h ) 

Fr go vapor-only Froude number, F r go = G 

2 / ( ρ2 
g g D h ) 

F f fluid-dependent parameter 

f activation function 

G mass velocity 

Ga Galileo number, Ga = ρ f g( ρ f − ρg ) D 

3 
h 
/μ2 

f 

g gravity acceleration 

h heat transfer coefficient 

h tp,exp experiment measured condensation heat transfer 

coefficient 

h tp,pred predicted condensation heat transfer coefficient 

h fg latent heat of vaporization 

i connecting node i 

j connecting node j 

k liquid conductivity 

Ka Kapitza number, Ka = μ4 
f 
g/ ρ f σ

3 

L total number of input and output layers 

l layer 

m training example 

M number of training examples; molecular mass 

MAE mean absolute error 

MSE mean square error 

n number of input parameters 

P pressure 

P c critical pressure 

Pe f saturated liquid Peclet number, Pe f = Re f Pr f 
Pe g saturated vapor Peclet number, Pe g = Re g Pr g 
P F wetted perimeter of channel 

P H heated perimeter of channel 

P R reduced pressure, P R = P c /P 

Pr f saturated liquid Prandtl number, P r f = μ f c p f / k f 
Pr g saturated vapor Prandtl number, P r g = μg c pg / k g 
q ′′ heat flux 

q 
′′ 
H 

heat flux based on heated perimeter of channel 

R relative roughness, R = e/D h ; Pearson‘s correlation 

coefficient 

R 

2 coefficient of determination 

Re f saturated liquid Reynolds number, Re f = G(1-x)D h / μf 

Re g saturated vapor Reynolds number, Re g = GxD h / μg 

Re fo liquid-only Reynolds number, Re fo = GD h / μf 

Re go vapor-only Reynolds number, Re go = GD h / μg 

S output, suppression factor 

Su f saturated liquid Suratman number, S u f = σρ f D h /μ
2 
f 

Su g saturated vapor Suratman number, S u g = σρg D h /μ
2 
g 

t target value of training example 

T temperature 

w weight of connecting node 
p  
We f saturated liquid Weber number, W e f = 

[ G ( 1 − x ) ] 2 D h / ( ρ f σ ) 

Weg saturated vapor Weber number, W e g = 

( Gx ) 2 D h / ( ρg σ ) 

Wefo liquid-only Weber number, W e f o = G 

2 D h / ( ρ f σ ) 

Wego vapor-only Weber number, W e go = G 

2 D h / ( ρg σ ) 

We ∗ modified Weber number 

X Lockhart-Martinelli parameter 

x quality, value of the node 

Greek symbols 

α vapor void fraction 

αr regularization parameter 

β aspect ratio, exponential decay rate 

δ error at the node 

ε percentage data predicted within ±50% 

θ percentage data predicted within ±30% 

μ dynamic viscosity 

ν kinematic viscosity 

λ learning rate 

ρ density 

σ surface tension 

Subscripts 

c critical 

exp experimental 

f saturated liquid, fluid 

fo liquid only 

g saturated vapor 

go vapor only 

l liquid 

pred predicted 

tp two phase; condensation 

w heated wall; inner wall 

tt turbulent liquid-turbulent vapor 

tv turbulent liquid-laminar vapor 

vt laminar liquid-turbulent vapor 

vv laminar liquid-laminar vapor 

actors including orientation with respect to gravity, specific pres-

ure, heat flux, flow rate, and channel geometry [6] . A study by

oleman and Garimella [7] conducted flow condensation experi-

ents in multiple mini-channels with hydraulic diameters rang-

ng from 2.67 mm to 4.91 mm, and showed existence of four

ow regimes, namely annular, wavy, intermittent and dispersed.

ach regime was in turn subdivided into multiple flow patterns as

hown in Fig. 1 (a). In another study, Kim et al. [8] conducted flow

ondensation experiments in micro-channels with hydraulic diam-

ter of 1 mm, and showed existence of four flow regimes, namely

nnular, transition, slug and bubbly. Annular flow was further sub-

ivided into smooth and wavy. These regimes and flow patterns

re shown in Fig. 1 (b). Considering such varying flow behaviors,

ependent on both operating and geometric parameters, it is not

asy to accurately predict flow condensation heat transfer coeffi-

ients in mini/micro channels. 

.2. Predicting heat transfer coefficient 

Various approaches have been followed in literature to predict-

ng heat transfer coefficient in mini/micro channel flow condensa-

ion systems. The most common and widely used approach is the

evelopment of empirical and semi-empirical correlations [9–17] .

esearchers perform experiments over a range of geometric and

ow parameters with select working fluids to develop correlations

redicting heat transfer coefficients. While this approach gives ac-
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urate heat transfer predictions for the configurations and tests un-

er investigation, it should not be directly used to predict outside

he tested range. Another approach that has also shown some suc-

ess is the use of theoretical models based on the physical behav-

or of the flow. A good example is the annular flow condensation

odel by Kim and Mudawar [18] . This approach was developed

or the annular flow regime, and therefore, its utilization is limited

o this flow configuration. A more thorough control-volume-based

pproach involves computational fluid dynamics (CFD) simulations

19–22] . CFD approaches can predict transient flow and heat trans-

er behavior with detailed information on spatial and temporal dis-

ributions of void fraction, phase velocities and temperatures. How-

ver, due to limited model development efforts to date, their accu-

acy in predicting phase-change systems including flow condensa-

ion is limited [23] . Recent progress in high-performance comput-

ng has facilitated the employment of even more accurate Direct

umerical Simulation (DNS) that provide a direct solution of the

avier-Stokes equations [24] . These simulations are very compu-

ationally intensive and have not yet been successfully applied in

icrochannel condensation configurations. 

An effective approach which relies on existing data from liter-

ture, is the use of generalized or universal correlations. With dif-

erent researchers performing experiments on flow condensation

eat transfer over the last few decades on numerous fluids and an

xtensive range of geometric and flow parameters, we now have

eliable number of databases to develop these generalized corre-

ations. A good generalized correlation developed for condensation

n plain tubes is the study by Shah [25] . He amassed data from

9 sources that included 22 fluids for diameters ranging from 2

o 49 mm, and the correlation provided reasonably good predic-

ions against the entire database, evidenced by an overall MAE of

4.4%. While the correlation by Shah [25] was for mini/macro-sized

hannels, Kim and Mudawar [26] developed a generalized correla-

ion for mini/micro-channels. They amassed data from 28 sources

hat included 17 fluids for hydraulic diameters ranging from 0.424

o 6.22 mm, and the correlation provided reasonably good predic-

ions against the entire database, evidenced by an overall MAE of

6.0%. 

.3. Machine learning models for thermal analysis 

Conducting full-scale experiments or full CFD simulations of

ow condensation requires enormous cost and time commitments.

eat transfer coefficient in flow condensation is usually a function

f many independent properties, operating conditions, and dimen-

ionless groups, each of them valid over a finite range of values.

he generalized correlation approaches have shown how existing

ata from worldwide researches can be consolidated to develop

igh accuracy predicting tools [ 25 , 26 ]. The relationship between

hese parameters and their relevance to the output parameters can

e deduced using novel machine learning based modeling tech-

iques. 

In the past few decades, unprecedented development of soft

omputing techniques, such as Artificial Neural Networks (ANNs),

ecision Tree, Random Forest, Gradient Boosting, Adaptive Neuro-

uzzy Inference Systems (ANFIS) and Support Vector Machines

SVM) have been performed, with their applications to a myr-

ad of engineering problems. ANN are non-linear statistical mod-

ls, like projection pursuit regression models, which extracts lin-

ar combination of derived features as inputs thereby modeling

he target as non-linear function of these features [27] . Machine

earning based modeling techniques for analyzing thermal systems

ave emerged as very promising in recent years with the high-

st interest seen in ANNs [28–36] . For heat transfer analysis, early

ork by Thibault et al. [37] showed that heat transfer data for

ractical problems can be correlated with ANNs. In another early
tudy, Jambunathan et al. [38] showed that ANNs could model one-

imensional transient heat conduction for liquid crystal thermog-

aphy and predict the convective heat transfer coefficients inside

 duct. In recent years, we are seeing widespread implementa-

ion of ANN to more complex heat transfer problems. Naphon and

risariyawong [39] and Naphon et al. [40] applied ANNs to analyze

he heat transfer in a horizontal tube heat exchanger with spring

nsert and heat transfer in spirally fluted tubes, respectively, with

redictions outperforming available correlations in literature. ANNs

ave also shown good performance in predicting heat transfer in

anofluid based flow systems [41–44] . In a recent study, Qiu et al.

45] consolidated saturated flow boiling heat transfer coefficient

ata from worldwide researchers and implemented ANNs with re-

ults showing the technique outperforming widely successful gen-

ralized correlation-based predicting tools. While ANNs are most

ommon, recent studies have shown interest also moving toward

ther machine learning techniques. Baghban et al. [46] performed

 comparison between artificial neural network, adaptive neuro-

uzzy inference system, and least squares support vector machine

LSSVM) models for predicting Nusselt numbers for helically coiled

eat exchangers with water based carbon nanofluid. Their results

howed LSSVM outperforming other techniques. 

Even though machine learning methods have shown good

redictions across many thermal system applications, they have

ot yet been applied to configurations like flow condensation.

ith available consolidated research on flow condensation in

ini/microchannels, machine-learning methods can now be used

o capture the relationship between relevant input parameters and

ondensation heat transfer coefficients. 

.4. Objective of study 

A consolidated database consisting of 4,882 data points for

ow condensation heat transfer in mini/micro-channels is amassed

rom 37 sources [47–83] . Table 1 provides key information on these

ndividual databases incorporated into the consolidated database.

he consolidated database includes a broad range of condensation

eat transfer coefficient data points with the following coverage: 

– Working fluids: R134a, R600a, R410a, R123, R245fa, R1234yf,

R22, R12, R1234ze, R32, CO 2 , FC72, Methane, R152a, Propane,

R236fa, R404a 

– Reduced pressures: 0.0396 < P R < 0.92 

– Hydraulic diameter: 0.424 mm < D h < 6.52 mm 

– Mass velocity: 50 kg/m 

2 s < G < 1403 kg/m 

2 s 

– Liquid-only Reynolds number: 285.28 ≤ Re fo = GD h / μf ≤ 89,797

– Superficial vapor Reynolds number: 44.43 ≤ Re g = GxD h / μg ≤
389,298 

– Flow quality: 0 < x < 1 

The objective of this study is to predict condensation heat

ransfer coefficient by using different machine learning models and

ompare their performance. In addition, the predicted results of

he best models will be compared with the generalized condensa-

ion correlations to see how the machine learning technique com-

ares with that predicting approach. Finally, the ability of models

o predict completely excluded databases from the training set will

lso be verified to check the predicting capability of these tools. 

. Modeling 

For this study, the codes are written in Python, and Pandas,

umpy and Scikit-learn [84] libraries are used to develop the

achine learning algorithms. Specifically, four different machine

earning based models for predicting condensation heat transfer

oefficients in mini/micro-channels are developed and compared

https://www.sciencedirect.com/science/article/abs/pii/S0017931017340346
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Table 1 

Condensation heat transfer database for mini/micro-channel flows included in the consolidated database. 

Author(s) Channel 

geometry ∗
Channel 

material 

D h [mm] Fluid(s) G[kg/m 

2 s] Test mode ̂ Data points 

Dobson et al . 

(1993a) 

C single, H copper 4.57 R134a, R12 75-653 quasi-local h 

�x = 0.1-0.2 

76 

Dobson et al . 

(1993b) 

C single, H copper 4.57 R22 75-509 quasi-local h 

�x = 0.24 

(avg) 

32 

Dobson (1994) C single, H copper 3.14 R134a, R22 53-807 quasi-local h 

�x = 0.23 

(avg) 

165 

Hirofumi & 

Webb (1995) 

C/R multi, H aluminum 0.96 - 2.13 R134a 200-1403 quasi-local h 

�x = 0.12 

(avg) 

62 

Zhang (1998) C single/multi, 

H 

copper, 

aluminum 

2.13, 3.25, 6.20 R134a, R22, 

R404A 

200-1000 quasi-local h 

�x < 0.25 

80 

Wang (1999) R multi, H aluminum 1.46 R134a 79-761 local h 748 

Yan & Lin 

(1999) 

C multi, H copper 2.0 R134a 100-200 quasi-local h 

small �x 

78 

Baird et al . 

(2003) 

C single, H copper 1.95 R123 170-570 local h 143 

Kim et al . 

(2003) 

R multi, H aluminum 1.41 R410A, R22 200-600 quasi-local h 

q ′′ = 0.5 - 1.5 

W/cm 

2 

19 

Jang & Hrnjak 

(2004) 

C single, H copper 6.10 CO 2 197-406 quasi-local h 

small �x 

85 

Cavallini et al . 

(2005) 

R multi, H aluminum 1.4 R410A, R134a 200-1400 quasi-local h 

�x = 0.2-0.3 

59 

Mitra (2005) C single, H copper 6.22 R410A 200-800 quasi-local h 

�x = 0.21 

(avg) 

144 

Shin & Kim 

(2005) 

C/R single, H copper 0.493-1.067 R134a 100-600 quasi-local h 

small �x 

237 

Andresen 

(2006) 

C single/multi, 

H 

aluminum, 

copper 

0.76, 1.52, 3.05 R410A 200-800 quasi-local h 

�x = 0.32 

(avg) 

315 

Bandhauer et 

al . (2006) 

C multi, H aluminum 0.506, 0.761, 

1.524 

R134a 150-750 quasi-local h 

small �x 

128 

Agra & Teke 

(2008) 

C single, H copper 4.0 R600a 57-118 quasi-local h 

small �x 

50 

Kim et al . 

(2009) 

C single, H copper 3.48 CO 2 200-800 quasi-local h 

small �x 

48 

Marak (2009) C single, VU stainless steel 1.0 methane 162-701 quasi-local h 

�x = 0.04 

(avg) 

129 

Matkovic et al . 

(2009) 

C single, H copper 0.96 R134a, R32 100-1200 local h 161 

Park & Hrnjak 

(2009) 

C multi, H aluminum 0.89 CO2 200-800 quasi-local h 

�x < 0.3 

113 

Agarwal et al . 

(2010) 

R multi, H aluminum 0.424, 0.762 R134a 150-750 quasi-local h 

small �x 

43 

Bortolin (2010) C/R single, H copper 0.96, 1.23 R245fa, R134a 67-789 local h 309 

Del Col et al . 

(2010) 

C single, H copper 0.96 R1234yf 200-1000 local h 66 

Huang et al . 

(2010) 

C single, H copper 1.6, 4.18 R410A 200-600 quasi-local h 

�x = 0.2 

35 

Ossama & 

Pradeep (2011) 

C single, H copper 6.52 CO2 50-200 local h 

small �x 

89 

Oh & Son 

(2011) 

C single, H copper 1.77 R22, R134a, 

R410A 

450-1050 local h 108 

Park et al . 

(2011) 

R multi, VD aluminum 1.45 R134a, R236fa, 

R1234ze(E) 

100-260 local h 204 

Derby et al . 

(2012) 

R multi, H copper 1.0 R134a 75-450 quasi-local h 

�x < 0.3 

140 

Hossain et al . 

(2012) 

C single, H copper 4.35 R1234ze(E), 

R32 R410A 

200-400 quasi-local h 91 

Kim & 

Mudawar 

(2012) 

R multi, H copper 1.0 FC-72 118-367 local h 268 

Kittipong et al 

(2013) 

R multi, H aluminum 1.11,1.2 R134a 350-690 local h 

�x = 0.08 

61 

Na Liu et al 

(2013) 

C/R single, H stainless steel 1.152, 0.952 R152a 200-800 local h 78 

Heo et al . 

(2013) 

R multi, H aluminum 1.5 CO2 400-1000 local h 

�x = 0.06 

95 

( continued on next page ) 
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Table 1 ( continued ) 

Gomez et al . 

(2014) 

R multi, H aluminum 1.16 R1234yf, 350-945 local h 

�x = 0.022- 

0.125 

192 

Goohyun & 

Jaeseon (2016) 

C single, H copper 7.75 R245fa 150-700 quasi-local h 

small �x 

21 

Jatuporn 

Kaew-On et al 

(2016) 

C single, H copper 3.51 R134a 380-750 local h 60 

Liu et al . 

(2016) 

C/R single H stainless steel 1.085, 0.952 propane, 

R1234ze(E), 

R22 

200-800 local h 

�x = 0.032- 

0.074 

150 

Total 4882 

∗ C: circular, R: rectangular, H: horizontal, VU: vertical upward, VD: vertical downward; ̂quasi-local: heat transfer coefficient averaged over the flow channel 
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c  
n this study: Artificial Neural Network, Random Forest, Adaptive

oosting, and Extreme Gradient Boosted Trees. 

The usual way of splitting the data between training and test

atasets is 70%–30%, 75%–25%, or 80%–20%. A good rule of thumb

s to have the training dataset be 3–4 times more than the test

ataset as the bulk of the model performance depends on training

ataset volume. Data partitioning is investigated by utilizing dif-

erent combinations of test and train data and 75%–25% split ra-

io is seen to be acceptable. Therefore, the consolidated dataset

as split into training and test datasets with 75%–25% split ratio

ith 3662 training data points and 1220 test data points. The ac-

uracy of the models is ascertained mainly using mean absolute

rror ( MAE ), which is defined as 

AE = 

1 

N 

∑ 

∣∣h tp , pred − h t p,exp 

∣∣
h t p,exp 

× 100 % (1) 

Many studies with machine learning algorithms use R -squared

rror (coefficient of determination or R 2 ) which will also be used

or understanding model predictability. R 2 statistic that is close to

 indicates that a large proportion of the variability in the target

ariable has been explained by the model. R 2 is defined as 

 

2 = 1 −
∑ 

(
h tp , exp − h t p,pred 

)2 

∑ 

(
h tp , exp − h̄ t p, exp 

)2 
(2) 

In addition, the adjusted R 2 that is an attempt to account for

he phenomenon of spurious increase in R 2 value when additional

redictors are added to the model, will also be used for under-

tanding model predictability. It is defined as 

 adj 
2 = 1 −

(
1 − R 

2 
)[ n − 1 

n − p − 1 

] 
(3) 

.1. Artificial neural networks (ANN) 

The first model that is being developed is an artificial neural

etwork model. Neural networks are frameworks for represent-

ng non-linear functional mappings between a set of input vari-

bles and a set of output variables. The representation of non-

inear functions of several variables in terms of compositions of

on-linear functions of a single variable is achieved using activa-

ion functions [85] . Generally, these models are considered as black

oxes that are unable to provide any insight about the system fea-

ures and also have unknown parameters known as “weights” [86] .

hese weights are associated with the links between the nodes

neurons) of the adjacent layers. A set of input parameters are fed

nto the network and with the condition that there are no feed-

ack loops, the output parameters can be calculated explicitly us-

ng input parameters and weights. Fig. 2 (a) shows such a feed for-

ard neural network with input layer and output layer. The units

ot belonging to input and output are collectively called as hidden

ayers. 
To fit a neural network model, the values of the weights needs

o be estimated using the training data. Regression and classifi-

ation are two broad types of supervised learning techniques. In

 regression problem, the sum of squared errors is used as the

easure of fit, while in classification problems, cross-entropy (de-

iance) is used. Weights of the neural network are estimated by

ack-propagation algorithm, which is also called as the delta rule

r a two pass algorithm [87] . In the forward pass, the output is

alculated using the current value of the weights and the error

stimated in back-propagated backwards in the second pass. Due

o the compositional form of the model, gradient of the weight is

onveniently derived using the chain rule of differentiation. In or-

er to prevent overfitting, some regularization is needed through a

enalty term or doing that indirectly by early stopping [27] . 

.2. Tree-based models 

Three different tree-based models derived from decision trees

re investigated in this study: Random Forest, Adaptive Boosting,

nd Gradient Boosting. A simple decision tree suffers from the

roblem of high variance, i.e. if the training data is split into multi-

le parts then the results obtained from each one of the splits can

e quite different [88] . To sort this issue, Random Forest method

ggregates a number of decision trees and works on the principle

f “bootstrap aggregation” (bagging), to reduce the variance of the

achine learning model. In bagging, each training set is formed

y constructing a bootstrap replication of the original training set

89] . On the other hand, Boosting is a process in which the trees

re grown sequentially, using information from previously con-

tructed trees. AdaBoost and gradient boosting models are based

n this principle of fitting the trees iteratively on residuals rather

han the target variable. 

.2.1. Adaptive boosting (AdaBoost) 

The second model that is being developed is the adaptive

oosting model (AdaBoost). AdaBoost was the first boosting al-

orithm proposed by Freund and Schapire [90] and remains one

f the most widely used and studied algorithms with numerous

pplications. A simple illustration of the principle of AdaBoost is

hown in Fig. 2 (b). Here, we explain how the AdaBoost model per-

orms a simplified two-dimensional classification of squares and

ircles. In the first step, a decision stump (D1), a one level decision

ree, generates a vertical classification boundary that classifies cir-

les on the left side and squares on the right side. However, this el-

mentary model incorrectly classifies the three circles on the right

ide also as squares. Further, in the next iteration, the model will

lace higher weights on the errors made on the previous iteration

D1). Here, a horizontal classification boundary generated by the

econd decision stump (D2) classifies the remaining three circles.

owever, even this model incorrectly classifies one square as a cir-

le. To correct, this, in the next iteration, the weight of the mis-

lassified square is increased further and the third decision stump
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(a)

(b) Flow direction

Annular
Transition Slug Bubbly

Smooth Wavy

mw =
6 g/s

mw =
5 g/s

.

.

Fig. 1. (a) Representative photographs of R-134a condensation flow regimes in channels of hydraulic diameter between 2.67 – 4.19 mm (Adapted from Coleman and Garimella 

[7] ). (b) Representative photographs of FC-72 condensation flow regimes in a flow channel of hydraulic diameter of 1 mm (Adapted from Kim et al. [8] ). 
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D3 is successful in separating that square from the circle. Hence,

the final boosted model is the combination of all the three deci-

sion stumps (D1, D2 and D3) and is better than any of the three

individual models. 

The Adaboost algorithm is mathematically explained as follows

and shown in Table 2 [91] . Consider m label training examples

( x 1 ,y 1 ), ( x 2 ,y 2 ), ……., and ( x m 

,y m 

). The x i ’s are is some domain χ
hile y i ε {-1,1}. The classifier ̂  f (x ) can take one of the values from

-1,1}. The Adaboost algorithm generates a sequence of weak clas-

ifiers induced on a distribution of weights over the training set.

 single-split classification tree with only two terminal nodes is

ne such weak classifier. The algorithm is initialized with all the

eights initially set to zero, but during each iteration, the train-

ng example that was misclassified on the previous iteration gets
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(a)
(b)

(c)

D1

D1

D1

D2

D2

D3

Itera�on 1

Itera�on 3

Itera�on 2

Bootstrap 
Aggrega�on

Decision 
Trees

Averaging of 
the individual 
tree predic�on

Training 
Dataset

Fig. 2. (a) A feed forward neural network model. (b) AdaBoost model-based simplified 2-dimensional classification. (c) Random forest model architecture. 

Table 2 

Machine learning model algorithms (Adapted from [91] ). 

Procedures Output 

Adaptive Boosting 1. Initialize observation weights ω i = 

1 
M 

2. For t = 1 to T do 

3. Fit f t ( x )as the weak classifier on the training data using ω i 

4. Compute the weighted error rate as 

er r t = 

∑ m 
i =1 ω i ·l( y i � = f t ( x i )) ∑ m 

i =1 ω i 

5. Let αt = log ((1 − er r t ) /er r t ) 

6. Update ω i ← ω i · exp [ αt · l ( y i � = f t ( x i ))]scaled to sum to one ∀ i ∈ {1, ..., M } 

7. end for 

̂ f (x ) = 

sign [ 
∑ T 

t=1 αt · ̂ f t (x ) ] 

Gradient Boosting 1. Initialize f 0 ( x ) to be a constant, f 0 (x ) = arg min β
∑ M 

i =1 L ( y i , β) 

2. For t = 1 to T do 

3. Compute the negative gradient as the working response 

r i = −[ ∂L ( y i , f ( x i )) 
∂ f ( x i ) 

] f (x )= f t−1 (x ) , i = { 1 , ...M} 
4. Fit a regression model to r i by least-squares using the input x i and get the 

estimate a t of βh ( x ; a ) 

5. Get the estimate β t by minimizing L ( y i , f t−1 ( x i ) + βt h ( x i ; a t ) ) 

6. Update f t (x ) = f t−1 (x ) + βt h ( x ; a t ) 

end for 

̂ f (x ) = f T (x ) 
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more weight on the next one. Thus, with each successive iteration

the algorithm is forced to focus on examples which are difficult to

learn. The final classifier is the weighted majority vote of the indi-

vidual classifiers. It has to be noted that boosting risks overfitting

which can be remedied by regularization and stochastic gradient

boosting methods [92] . 

2.2.2. Random forest 

The third model that is being developed is the random for-

est model which works on the law of large numbers, and hence,

does not have an overfitting issue. Random forest is an ensem-

ble learning methodology first proposed by Breiman [93] , in which

the performance of a number of weak learners is boosted via a

voting scheme as shown in Fig. 2 (c). Random forest adds an addi-

tional layer of randomness to bagging. In addition to constructing

each tree using bootstrap sampling (i.e. randomly sampling with

replacement) of the data, random forest change how the classifica-

tion or regression trees are constructed. Each node in random for-

est is split using a subset of predictors randomly chosen at that

node. The samples not selected are known as out-of-bag (OOB)

samples [36] . The bootstrapping procedure leads to better model

prediction as it decreases the variance of the model without in-

creasing its bias. Each tree is trained on a slightly different dataset,

and therefore, are de-correlated from each other. 

2.2.3. Extreme gradient boosting (XGBoost) 

The final model that is being developed is the gradient boost-

ing model. This model was first introduced by Friedman [94] and

is a manifestation of the gradient descent algorithm in function

space (prediction space). Gradient boosting algorithms optimize

cost function over the function space by iteratively choosing a

weak hypothesis pointing in the negative gradient direction. The

gradient boosting algorithm uses a two-step procedure as shown in

Table 2 [91] . The first step estimates αt , which represents the split

variable, their split values and the fitted values at each terminal

node of the tree. By fitting a weak learner to the negative gradient

of the loss function using least squares. A variant of the gradient

boosting model, is the extreme gradient boosting [95] , which will

be utilized in this study. XGBoost can be interpreted as a Newton

method in function space and offers the possibility of penalizing

the complexity of the trees [96] . 

2.3. Parametric optimization 

For the ANN model, parametric optimization was done using

the manual search technique. Optimization of neural network is

not straightforward as it depends on several aspects like number

of independent variables available, amount of noise in the data,

activation function used, loss function and the total data avail-

able. Table 3 shows the different ANN model parameters that are

optimized heuristically (manual search) and proposed to be used

through this study. The important parameters include the learn-

ing rate, λ, and L2 regularization parameter ( αr ) which are set to

0.001. In addition, the exponential decay rate of the first and sec-

ond moments is specified to be 0.9 and 0.999, respectively. The

loss function to minimize is the mean squared error ( MSE) loss, as

it is the preferred loss function under the inference framework of

maximum likelihood [97] . The Adam optimization algorithm [99] is

run until the MSE loss is minimized with maximum number of it-

erations without satisfying the tolerance criterion of 0.001 is set

to 100. In addition, it is necessary to evaluate the number of hid-

den layers and number of units in each layer. The number of nodes

in each layer is selected heuristically as there is no rule of thumb

that dictates the network width and depth. Usually, the number

of layers in the first input layer is more, and then we select the
etwork architecture that tapers down as we have only one out-

ut parameter. For a fixed number of input parameters as shown

n Table 4 , different combinations of hidden layers are investi-

ated. For models with few hidden layers like (10) and (20,10),

he MAE s are 19.9% and 17.9%, respectively. The corresponding R 2 s

re 0.82 and 0.85, respectively. With more hidden layers, mod-

ls with (50,40,30,20,10) and (70,60,50,40,30,20,10) show MAE s of

.7% and 8.9%, respectively. The model with a large hidden layers

etwork with (150,140,130,120,110,100,90,80,70,60,50,40,30,20,10)

eached the best performance with an MAE of 6.8%, R 2 of 0.98,

nd adjusted R 2 of 0.98. Further increase in hidden layer does not

mprove the performance and can lead to overfitting with higher

AE in the test dataset. Finally, the hidden layers network of

150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) was selected as

he final model for the ANN network analysis performed in this

nvestigation. 

Hyperparameter tuning was utilized to perform parametric op-

imization for the three tree based models. Hyperparameters are

odel specific properties that are fixed even before the model is

rained and tested on the data. Hyperparameter tuning is search-

ng for the most optimal sets of parameters for the model. This

as achieved using the grid search technique where all possible

ombination of predefined hyperparameter value range are tested

o select the parameters resulting in the best model performance.

able 3 shows the hyperparameter for the Adaboost model. The

oss function used for optimization is the exponential loss func-

ion. The base estimator is a decision tree with depth of three

hile the limit for the maximum number of base estimators at

hich the boosting is terminated is 100. While there is a trade-

ff between learning rate and estimators, the learning is set to 0.1.

able 3 also shows the optimal hyperparameters for the Random

orest. The numbers of trees in the forest is capped at 50 with

he maximum depth of the trees being 6. The function to mea-

ure the criterion of the split while creating decision tree is mean

quare error, which is similar to the variance reduction method.

astly, Table 3 also shows the optimal parameters used for XGBoost

odel. Since, XGBoost is prone to overfit [95] , only the parameter

o control it are discussed in the text and all others are shown in

able 3 . The step size value during update, η, is proposed to be

.3, which is used to prevent overfitting. The maximum depth of

he tree is set as 3 because increasing this value also makes the

odel more likely to overfit. The regularization parameters α (L1)

nd λ (L2) are taken to be 0 and 1, respectively. A detailed discus-

ion on different search techniques as utilized by us for optimizing

achine learning models is provided in Bergstra et al. [ 98 , 99 ] and

ill not be discussed further in this study. 

. Results and discussion 

.1. Model performance comparison 

The consolidated data for condensation in mini/micro-channels

hat is amassed in this study is utilized to test, develop, and com-

are the predicting performances for the four machine learning

odels under investigation. A combination of input parameters,

ncluding flow parameters, geometric parameters, fluid properties

nd relevant dimensionless numbers, is utilized to setup the model

ith the heat transfer coefficient being the only output parameter.

hese parameter selections are made such that we can maintain

odel scalability in the future without any redundancies. 

First, we understand the impact of selecting specific combina-

ions of input parameters on ANN model’s heat transfer coeffi-

ient predicting capability. Table 5 compares the predicting per-

ormance for the ANN model based on different combinations of

nput parameters. Selecting models with low input parameters like

hose shown with inputs Bd, Pr f , Re f , and Fr f (Case 1) and D h , G, x
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Table 3 

Optimized model parameters. 

Model Parameter Value 

ANN Activation function ReLu 

L2 Regularization Parameter, α 0.001 

Solver Adam 

Batch Size 200 

Learning rate, λ 0.001 

Exponential decay rate for estimates of first moment vector, β1 0.9 

Exponential decay rate for estimates of second moment vector, β2 0.999 

Tolerance 0.001 

Hidden Layers (150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) ∗

AdaBoost Base estimator Decision Tree (Depth = 3) 

Number of estimators 100 

Learning rate 0.1 

Loss Exponential 

Random 

Forest 

Number of estimators 50 

Max depth 6 

Max features Number of features 

Bootstrap Yes 

Max samples Training data size 

Loss Mean square error 

XGBoost η 0.3 

ϒ 0.0 

Max depth 3 

Minimum child weight 1 

Maximum delta step 0 

Subsample 1 

Sampling Method Uniform 

λ 1 

α 0 

Scale Pos Weight 1 

Refresh Leaf 1 

Grow Policy Depthwise 

Max Leaves 0 

Max Bin 256 

∗ Based on optimization conducted in Table 4 

Table 4 

ANN model predictions for fixed input parameters and different combinations of hidden layers. 

Test Case ANN Model Hidden Layers Input Parameters MAE R 2 Adjusted R 2 

0 (180,170,160,150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) Bd, Co, Fr f , Fr fo , Fr g , 

Fr go , Ga, Ka, Pr f , 

Pr g , Re f , Re fo , Re g , 

Re go , Su f , Su g , Su fo , 

Su go , We f , We fo , 

We g , We go 

7.38 0.98 0.98 

1 (170,160,150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) 7.13 0.97 0.97 

2 (160,150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) 7.14 0.98 0.98 

3 (150,140,130,120,110,100,90,80,70,60,50,40,30,20,10) ∗ 6.80 0.98 0.98 

4 (140,130,120,110,100,90,80,70,60,50,40,30,20,10) 7.34 0.98 0.98 

5 (130,120,110,100,90,80,70,60,50,40,30,20,10) 7.56 0.97 0.97 

6 (120,110,100,90,80,70,60,50,40,30,20,10) 8.29 0.97 0.97 

7 (110,100,90,80,70,60,50,40,30,20,10) 9.47 0.97 0.97 

8 (90,80,70,60,50,40,30,20,10) 8.64 0.97 0.97 

9 (70,60,50,40,30,20,10) 8.86 0.97 0.97 

10 (50,40,30,20,10) 9.70 0.96 0.96 

11 (20,10) 13.12 0.93 0.93 

12 (20) 17.88 0.85 0.84 

13 (10) 19.88 0.82 0.82 

∗Final selected ANN model configuration 
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Table 5 

Model predictions for different combinations of input parameters. 

Case Parameters Models MAE R 2 Adjusted R 2 

1 Bd, Pr f’ , Re f , Fr f ANN 40.69 0.36 0.35 

Random Forest 42.09 0.48 0.47 

AdaBoost 56.25 0.34 0.33 

XGBoost 38.23 0.50 0.50 

2 D h , G, x ANN 14.89 0.85 0.85 

Random Forest 23.85 0.73 0.73 

AdaBoost 40.14 0.59 0.59 

XGBoost 13.48 0.89 0.89 

3 c pf , c pg , P c , c vf , c vg , ρ f , ρg , P F, P H , P R ,P, β , D h ,h fg ,k f , 

k g , G, x, T, μf , μg , σ

ANN 6.17 0.99 0.99 

Random Forest 21.52 0.86 0.86 

AdaBoost 41.49 0.68 0.68 

XGBoost 7.34 0.98 0.98 

4 Bd, Co, c pf , c pg , P c , c vf , c vg , ρ f , ρg , Fr f , Fr fo , Fr g , 

Fr go ,Ga, Ka, P F , P H , P R , P, Pr f , Pr g , Re f , Re fo , Re g , 

Re go , Su f , Su g , Su fo , Su go , We f , We fo , We g , We go , 

X tt , X tv , X vv , β , D h , h fg ,k f , k g , G, x, T, μf , μg , σ

ANN 6.12 0.98 0.98 

Random Forest 16.54 0.90 0.90 

AdaBoost 33.49 0.77 0.76 

XGBoost 8.36 0.97 0.97 

5 Bd, Co, Fr f , Fr fo , Fr g , Fr go , Ga, Ka, Pr f , Pr g , Re f , Re fo , 

Re g , Re go , Su f , Su g , Su fo , Su go , We f , We fo , We g , 

We go 

ANN 6.80 0.98 0.98 

Random Forest 18.56 0.87 0.87 

AdaBoost 34.60 0.75 0.74 

XGBoost 9.06 0.97 0.97 
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(Case 2) give MAEs of 40.7% and 14.9%, respectively. As expected,

this shows that the limited parameter selection is not sufficient

enough to capture the condensation heat transfer coefficient in-

formation. Now, considering a set of input parameters that in-

clude all the flow parameters, the geometric parameters, and the

fluid properties (Case 3) gives an MAE of 6.2%. Similarly, if we

consider all the input parameters taken together including non-

dimensional numbers (Case 4) we get an MAE of 6.1%. Both the

cases show the model being able to capture the heat transfer be-

havior very accurately. Finally, with a model just based on all

the dimensionless parameters relevant to condensation (Case 5),

we get a slightly higher but still low MAE of 6.8%. The corre-

sponding R 2 and adjusted R 2 are 0.98 and 0.98, respectively. While

Cases 3 and 4 show a slightly lower MAE, we will utilize the all-

dimensionless input parameter model as the final model for fur-

ther analysis. There are two reasons for this. Firstly, to develop

general two-phase flow predicting tools, the dimensionless param-

eters are the only set of parameters that provide a consistent com-

parison across working fluids, with geometric and fluid parame-

ter variation. In addition, selecting a model with more input pa-

rameters like that done in Case 3 increases redundancies as the

dimensionless parameters are calculated based on the other in-

put parameters making those models less useful. Therefore, ANN

model with input parameters: Bd, Co, Fr f , Fr fo , Fr g , Fr go , Ga, Ka,

Pr f , Pr g , Re f , Re fo , Re g , Re go , Su f , Su g , Su fo , Su go , We f , We fo , We g , and

We go , is selected. The corresponding Pearson‘s correlation coeffi-

cient map for the input parameters and the output parameter, h ,

is shown in Fig. 3 . Fig. 4 (a) shows the ANN model selected with

input parameters: Bd, Co, Fr f , Fr fo , Fr g , Fr go , Ga, Ka, Pr f , Pr g , Re f , Re fo ,

Re g , Re go , Su f , Su g , Su fo , Su go , We f , We fo , We g , and We go , and hidden

layers (150,140,130,120,110,100,90,80,70,60,50,40,30,20,10), and the

corresponding comparison between the predicted and experimen-

tal heat transfer coefficient data is shown in Fig. 4 (b). While the

MAE is 6.8%, the percentage data predicted within ±30% is 97.8%

and percentage data predicted within ±50% is 99.8%. The results

show how well the model can capture the heat transfer behav-

ior across the whole range of condensation heat transfer coeffi-

cient consolidated data. This result is not unexpected as ANNs have

shown a lot of success with prior research in heat transfer analy-

sis [ 38 , 40 , 41 , 44 , 46 ], including in a recent study on saturated flow

boiling heat transfer coefficient prediction [45] . 

Table 5 also compares the predicting performance for the tree-

based models based on different combinations of input parame-
ers. When we look at the predictions of the other three machine-

earning models, they follow the same trend in terms of predict-

ng performance variation with input parameter selection as that

f the ANN model. Therefore, the same set of dimensionless pa-

ameters as that selected for ANN are selected for further investi-

ation for the tree based models. 

Fig. 5 (a) shows the comparison between the predicted and ex-

erimental heat transfer coefficient data based on the AdaBoost

odel. This model gives an MAE of 34.5% and percentage data pre-

icted within ±30% is 63.6% and percentage data predicted within

50% is 78.0%. This performance of the optimized AdaBoost model

s inferior to the ANN model results shown in Fig. 4 (b). This can

e attributed to tree-based models doing better with categorical

redictors [95] , none of which were included in this model. All

nput parameters selected in this study were numeric, and for

he current model, specifically, they are non-dimensional numbers.

ig. 5 (b) shows the plots for feature importance, obtained for the

daBoost model, showing ten parameters having the highest im-

act on the condensation heat transfer coefficient, h . The two pa-

ameters, vapor Froude number, Fr g , and fluid only Froude number,

r fo , show the highest impact of 40% and 33%, respectively. This

esult is in line with the Pearson‘s correlation coefficient map in

ig. 3 that shows a high correlation of heat transfer coefficient with

roude numbers. Other important parameters in the order of im-

act include the Vapor Weber number, We g , vapor Prandtl number,

r g , fluid only Reynolds number, Re fo , and liquid Prandtl number,

r f , with impact between 4% and 6%. 

Fig. 6 (a) shows the comparison between the predicted and ex-

erimental heat transfer coefficient data based on the Random For-

st model. This model gives MAE of 18.8% and percentage data pre-

icted within ±30% is 84.4% and percentage data predicted within

50% is 93.9%. The predictions of this optimized Random Forest

odel are better than what was obtained with AdaBoost but falls

hort of the ANN model. Fig. 6 (b) shows the plots for feature

mportance, obtained for the Random Forest model, showing ten

arameters having the highest impact on the condensation heat

ransfer coefficient, h . The two parameters, vapor Froude number,

r g , and fluid only Froude number, Fr fo , show the highest impact

f 58% and 19%, respectively. These two parameters of highest im-

ortance are same as those in the AdaBoost model. However, the

eature importance is captured differently. Other important param-

ters in the order of impact include the vapor Prandtl number, Pr g 
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Fig. 3. Pearson’s correlation coefficient map for input paramaters, Bd, Co, Fr f , Fr fo , Fr g , Fr go , Ga, Ka, Pr f , Pr g , Re f , Re fo , Re g , Re go , Su f , Su g , Su fo , Su go , We f , We fo , We g , and We go and 

output parameter, h. 

Fig. 4. (a) ANN architecture with input, hidden and output layers selected as the final model for this study. (b) ANN model predictions based on the input parameters Bd, 

Co, Fr f , Fr fo , Fr g , Fr go , Ga, Ka, Pr f , Pr g , Re f , Re fo , Re g , Re go , Su f , Su fo , Su g , Su go , We f , We fo , We g , and We go . 
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Fig. 5. (a) AdaBoost model predictions with input parameters Bd, Co, Fr f , Fr fo , Fr g , Fr go , Ga, Ka, Pr f , Pr g , Re f , Re fo , Re g , Re go , Su f , Su fo , Su g , Su go , We f , We fo , We g , and We go . (b) 

Feature importance plot based on the AdaBoost model. 

Fig. 6. (a) Random Forest model predictions with input parameters Bd, Co, Fr f , Fr fo , Fr g , Fr go , Ga, Ka, Pr f , Pr g , Re f , Re fo , Re g , Re go , Su f , Su fo , Su g , Su go , We f , We fo , We g , and 

We go . (b) Feature importance plot based on Random Forest model. 
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and liquid Prandtl number, Pr f with both having impacts of around

4–5%. 

Fig. 7 (a) shows the comparison between the predicted and ex-

perimental heat transfer coefficient data based on the XGBoost

model. This model gives MAE of 9.1% and percentage data pre-

dicted within ±30% is 96.0% and percentage data predicted within

±50% is 98.9%. The predictions of this model is comparable to the

ANN model as shown in Fig. 4 (b). Prior work in literature reports

that both ANN and XGBoost models perform better than other

machine learning models with XGBoost outperforming ANN when

there are categorical predictors and response variables [ 100 , 101 ] in

the data set. Fig. 7 (b) shows the plots for feature importance, ob-

tained for the XGBoost model, showing ten parameters having the

highest impact on the condensation heat transfer coefficient, h . The

two parameters, vapor Froude number, Fr g , and fluid only Froude

number, Fr fo , show the highest impact of 37% and 17%, respec-

tively. Other important parameters in the order of impact include

the fluid only Reynolds number, Re fo , vapor Prandtl number, Pr g ,

vapor only Weber number, We go , liquid Prandtl number, Pr f with

impact between 5% and 8%. While the same parameters show the
ighest importance as those seen with results from the AdaBoost

nd the Random Forest models, the XGBoost model’s ability to cap-

ure the trends can be better trusted due to the lower MAE in heat

ransfer coefficient predictions. 

In general, the results from the three tree-based models all

how that Fr g and Fr fo have the highest impact on the heat transfer

redictions. This result is significant because several prior correla-

ions developed for condensation do not have these two parame-

ers in their formulations [9–17] . The machine learning models do

ot explore or assume any underlying physics of the problem as

redicated in correlations, but they learn the predicting behavior

rom the training data instead. Fig. 3 shows the Pearson‘s corre-

ation coefficient between all the dimensionless predictors along

ith the heat transfer coefficient. Including highly correlated vari-

bles doesn‘t provide any benefit to model performance and are

ften handled naturally by getting dropped in several tree based

lgorithms [96] . Furthermore to support this, we see that the Pear-

on‘s correlation coefficient between the heat transfer coefficient

nd Fr g, Fr fo and Fr go are 0.479, 0.561 and 0.484 respectively, show-

ng strongest correlation with the target variable (‘ h ’) than any



L. Zhou, D. Garg and Y. Qiu et al. / International Journal of Heat and Mass Transfer 162 (2020) 120351 13 

Fig. 7. (a) XGBoost model predictions with input parameters Bd, Co, Fr f , Fr fo , Fr g , Fr go , Ga, Ka, Pr f , Pr g , Re f , Re fo , Re g , Re go , Su f , Su fo , Su g , Su go , We f , We fo , We g , and We go . (b) 

Feature importance plot based on the XGBoost model. 
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ther variable. This has led to these features being prime candi-

ates to build the trees. However, correlation between Fr g and Fr go 

s high (0.767) and hence one of the two ( Fr go in this case) has

een dropped from feature importance list. The feature importance

esult is not saying that physically, Froude numbers need to have

 higher impact, and that the empirical correlation based predict-

ng two-phase heat transfer tools are not accurate. Such high cor-

elations between any two variables can occur and have been re-

orted as ‘Spurious Correlation’ in the literature [ 102 , 103 ]. It does

owever tell us the bias of the available consolidated data, show-

ng that it may have some higher significance to the heat transfer

ehavior than what is currently understood. 

Going forward, we select the two best models, the ANN model

nd the XGBoost model for further discussion because these two

odels performed significantly better than the other two models

hat are investigated, the Random Forest model and the AdaBoost

odel. 

.2. Comparison with generalized condensation heat transfer 

orrelations 

The ANN and XGBoost model results based on the test dataset

ere compared with predictions of the generalized corrections by

hah [25] and Kim and Mudawar [26] . Table 6 provides the formu-

ations of these generalized flow condensation heat transfer corre-

ations. As illustrated in Fig. 8 (a), the MAE for Shah [25] is 40.0%

nd percentage data predicted within ±30% is 48.0% and percent-

ge data predicted within ±50% is 71.7%. Because this generalized

orrelation was developed for primarily larger sized flow channels

ith only 23% of the data falling in the hydraulic diameter range

nder investigation in this study, the inferior performance is ex-

ected and is not an assessment of the correlation itself. As shown

n Fig. 8 (b), the MAE for Kim and Mudawar [26] is 26.6% and per-

entage data predicted within ±30% is 65.4% and percentage data

redicted within ±50% is 91.4%. The correlation by Kim and Mu-

awar [26] was also developed for a limited range of parameters

han those used in this study, which is the reason for the slightly

igher MAE that that reported in their study. Overall, the ANN and

GBoost models’ predicting capability is superior to both the gen-

ralized correlations. 

Another measure to understand the model performance is its

bility to capture individual datasets with comparable accuracy.

ig. 9 (a–d) shows the ANN model predictions vs. experimental data
or the four largest databases used in the consolidated data. Wang

79] , which was the largest database with R134a as the working

uid, has MAE of 7.0%, and the percentage data predicted within

30% is 99.5% and percentage data predicted within ±50% is 100%.

imilarly, Kim and Mudawar [77] based on FC-72 as the working

uid has MAE of 5.3%, and the percentage data predicted within

30% is 98.4% and percentage data predicted within ±50% is

00.0%. In general, the ANN model did well for all four databases.

hese databases include a good variation of geometric and op-

rating parameters with 7 working fluids: R134a, R245fa, R410a,

nd FC-72, mass velocity: 67 – 800 kg/m ²s, hydraulic diameter:

.76 – 3.05 mm, reduced pressure: 0.057 – 0.92, quality: 0 – 1.0,

nd fluid only Reynolds number: 303 – 44033. Fig. 9 (e–h) shows

he XGBoost model predictions vs. experimental data for the four

argest databases used in the consolidated data. Results show sim-

lar trends as that observed with ANN model results. These plots

learly show that both the ANN model and XGBoost model pre-

ictions are superior to the consolidated correlation by Kim and

udawar [26] . 

Flow condensation in mini/micro-channel sees multiple flow

egimes but most of the data can be majorly subdivided into either

1) slug and bubble flow- or (2) annular flow regimes as stated in

26] . While the machine learning models are oblivious to the tran-

ition point, the correlation by Kim and Mudawar [26] defines a

pecific criterion as shown in Table 6 . Using this criterion, when

e compare the performance with respect to the specific flow

egimes as shown in Fig. 10 (a–d), the ANN and XGBoost models

how that their performances are better than the consolidated cor-

elation by Kim and Mudawar [26] in both the flow regimes. 

.3. Predicting excluded databases 

All the previous results discussed in this study were based on

he machine-learning algorithms trained by using randomly se-

ected training data from 37 data sources [47–83] . However, a ro-

ust predicting tool for two-phase flows is only useful to design

ngineers if it has the ability to predict data points outside its

raining space. Here, we compare model performance for the op-

imized ANN and XGBoost models by excluding databases and pre-

icting the corresponding condensation heat transfer coefficients.

hree databases were excluded one by one, such that we have

ne case with a fluid that is commonly repeating in the training

atabases, one case with a fluid repeating just once in the training
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Table 6 

Generalized condensation heat transfer correlations. 

Author(s) Correlation Formulations 

Shah [25] For vertical and inclined tubes 

Regime I J g ≥ 1 
2 . 4 Z+0 . 73 

Regime II J g ≥ 0 . 89 − 0 . 93 exp (−0 . 087 Z −1 . 17 ) 

Regime III J g ≤ 0 . 89 − 0 . 93 exp (−0 . 087 Z −1 . 17 ) \ 
Where J g = 

xG 

(gD ρg ( ρl −ρg )) 
0 . 5 

For horizontal tubes 

Regime I J g ≥ 0 . 98 (Z + 0 . 263) −0 . 62 

Regime II J g ≤ 0 . 98 (Z + 0 . 263) −0 . 62 

For all tube orientations (except upward flow) 

In Regime I h TP = h I 
In Regime II h TP = h I + h Nu 

For horizontal tubes, Regime II occurs when Re GT ≥ 350 0 0 . 

For vertical tubes in Regime III h TP = h Nu 

Where h I = h LT ( 
μ f 

14 μg 
) n [ ( 1 − x ) 

0 . 8 + 

3 . 8 x 0 . 76 ( 1 −x ) 
0 . 04 

Pr 0 . 38 ] 

n = 0 . 0058 + 0 . 557 Pr 

h Nu = 1 . 32 Re −1 / 3 
LS 

[ 
ρl ( ρl −ρg ) gk 3 

f 

μ2 
f 

] 1 / 3 

Kim and Mudawar [26] For annular flow (smooth-annular, wavy-annular, transition) where We ∗ > 7 X tt 
0.2 : 

h ann D h 
k f 

= 0 . 048 Re 0 . 69 
f 

Pr 0 . 34 
f 

φg 

X tt 
. 

For slug and bubbly flows where We ∗ < 7 X tt 
0.2 : 

h non −ann D h 
k f 

= [ ( 0 . 048 Re 0 . 69 
f Pr 0 . 34 

f 
φg 

X tt 
) 

2 + ( 3 . 2 × 10 −7 Re −0 . 38 
f Su 1 . 39 

go ) 
2 
] 6 . 

where X tt = ( 
μ f 

μg 
) 0 . 1 ( 1 −x 

x 
) 0 . 9 ( 

ρg 

ρ f 
) 0 . 5 , 

φ2 
g = 1 + CX + X 2 , X 2 = 

( dP/dz ) f 
( dP/dz ) g 

, 

−( dP 
dz 

) f = 

2 f f υ f G 
2 ( 1 −x ) 

2 

D h 
, −( dP 

dz 
) g = 

2 f g υg G 
2 x 2 

D h 
, 

f k = 16 Re −1 
k 

for Re k < 2, 000, 

f k = 0 . 079 Re −0 . 25 
k 

for2, 000 ≤ Re k < 20, 000, 

f k = 0 . 046 Re −0 . 2 
k 

for Re k ≥ 20, 000, 

For laminar flow in rectangular channel ( β < 1), 

f k R e k = 24( 1 − 1 . 3553 β + 1 . 9467 β2 − 1 . 7012 β3 + 0 . 9564 β4 − 0 . 2537 β5 ) , 

where subscript k denotes f or g for liquid and vapor phases, respectively, 

Re f = 

G ( 1 −x ) D h 
μ f 

, R e g = 

Gx D h 
μg 

, R e f o = 

G D h 
μ f 

, S u go = 

ρg σD h 
μ2 

g 
. 

Liquid Vapor (gas) C 

Turbulent Turbulent 0 . 39 Re 0 . 03 
f o 

Su 0 . 10 
go ( 

ρ f 

ρg 
) 0 . 35 for 

R e f ≥ 20 0 0 , Re g ≥ 20 0 0 (tt) 

Turbulent Laminar 8 . 7 × 10 −4 Re 0 . 17 
f o 

Su 0 . 50 
go ( 

ρ f 

ρg 
) 0 . 14 for 

R e f ≥ 20 0 0 , Re g < 20 0 0 (tv) 

Laminar Turbulent 0 . 0015 Re 0 . 59 
f o 

Su 0 . 19 
go ( 

ρ f 

ρg 
) 0 . 36 for 

R e f < 20 0 0 , Re g ≥ 20 0 0 (vt) 

Laminar Laminar 3 . 5 × 10 −5 Re 0 . 44 
f o 

Su 0 . 50 
go ( 

ρ f 

ρg 
) 0 . 48 for 

R e f < 20 0 0 , Re g < 20 0 0 (vv) 

Fig. 8. Comparison between predictions of the generalized corrections by Shah [25] and Kim & Mudawar [26] with test data predictions based on the (a) ANN model and 

(b) XGBoost model. 



L. Zhou, D. Garg and Y. Qiu et al. / International Journal of Heat and Mass Transfer 162 (2020) 120351 15 

Fig. 9. ANN model predicting test data points from individual databases of (a) Wang [79] , (b) Kim and Mudawar [77] , (c) Andresen [52] , and (d) Bortolin [61] . XGBoost 

model predicting test data points from individual databases of (e) Wang [79] , (f) Kim and Mudawar [77] , (g) Andresen [52] , and (h) Bortolin [61] . 
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Fig. 10. (a) ANN model predictions for slug and bubbly flow test data. (b) ANN model predictions for annular flow test data. (c) XGBoost model predictions for slug and 

bubbly flow test data. (d) XGBoost model predictions for annular flow test data. 
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databases, and one case with no fluid information in the training

databases. 

Fig. 11 (a–b) shows the ANN model and XGBoost model pre-

dictions when Wang [79] , the largest database from the consoli-

dated data, is excluded from the training database that consisted

of the 36 remaining sources [ 47–78 , 80–83 ]. For ANN model and

XGBoost model, the results show that even though this was a large

database that was excluded, MAEs were as low as 13.5%, and 16.8%,

respectively. We can see that in Table 1 , R134a is investigated by

many researchers over a large range of geometric and operating

parameters, thus the reason for a low MAE . Fig. 12 (a) and (b) shows

the experimental data and corresponding predictions of local heat

transfer coefficient vs. vapor quality for some selected data from

Wang [79] for ANN model and XGBoost model, respectively. For a

range of mass velocities, saturation temperatures and vapor quali-

ties, the models can predict not only the local values but also cap-

ture the trends in condensation heat transfer coefficients with va-

por quality. 

Fig. 11 (c–d) shows the ANN model and XGBoost model pre-

dictions when Gomez et al. [73] is excluded from the training

database that consisted of the 36 remaining sources [ 47–72 , 74–83 ].

For ANN model and XGBoost model, the results show that MAEs

were 17.8%, and 14.8%, respectively. The data for the fluid, R1234yf,

is only available in one other training database, however, this fluid
as many similar properties to R134a [104] , thus the models is

ble to capture the behavior to a certain degree. Fig. 12 (c) and (d)

hows the experimental data and corresponding predictions of lo-

al heat transfer coefficient vs. vapor quality for some selected data

rom Gomez et al. [73] for ANN model and XGBoost model, respec-

ively. Here, the models show them capturing the trends but not

he local values as well as the last case with Wang [79] . 

Fig. 11 (e–f) shows the ANN model and XGBoost model predic-

ions when Kim and Mudawar [77] is excluded from the training

atabase that consisted of the 36 remaining sources [ 47–76 , 78–

3 ]. The working fluid in Kim and Mudawar [77] was FC-72. The

esults show that both the ANN model and XGBoost model did an

xtremely poor job with MAE of 77.1% and 37.6%, respectively. This

an be attributed to the fluid information not being available for

raining, and the models not capturing the heat transfer variation

ccurately in cases where working fluid information is not in the

raining database. 

The results show a strong dependence of model performance

n availability of fluid data in the training datasets. This is a short-

oming expected of machine learning methods having high reli-

bility on availability of prior data. In spite of that, the machine

earning models show a reasonably good predicting capability. The

urrent shortcoming can be addressed over time by amassing more

ata for more working fluids that include more geometric and
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Fig. 11. Predictions of heat transfer coefficients of excluded data for (a) Wang [79] based on the ANN model, (b) Wang [79] based on the XGBoost model, (c) Gomez et al. 

[73] based on the ANN model. (d) Gomez et al. [73] based on the XGBoost model, (e) and Kim and Mudawar [77] based on the ANN model, and (f) Kim and Mudawar 

[77] based on the XGBoost model. 
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Fig. 12. Local heat transfer coefficients vs. vapor quality of excluded data for (a) Wang [79] based on the ANN model, (b) and Wang [79] based on the XGBoost model, (c) 

Gomez et al. [73] based on the ANN model, (d) and Gomez et al. [73] based on the XGBoost model. 
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parametric variations than that included in the current consoli-

dated database. 

4. Conclusions 

In this study, a new method for predicting heat transfer co-

efficient for flow condensation in mini/micro channels is pro-

posed. A consolidated database of flow condensation heat trans-

fer is amassed and utilized to develop machine learning based ap-

proaches for predicting the data. Key findings from this study are

as follows: 

1) A consolidated database of 4,882 data points for flow conden-

sation heat transfer in mini/micro-channels is amassed from 37

sources that includes 17 working fluid, reduced pressures of

0.039 – 0.916, hydraulic diameters of 0.424 mm – 6.52 mm,

mass velocities of 50 < G < 1403 kg/m 

2 s, liquid-only Reynolds

numbers of 285 – 89,797, superficial vapor Reynolds number of

44 – 389,298, and flow qualities of 0 – 1. 

2) Four machine learning based models, namely, Artificial Neural

Networks, Random Forest, Adaptive Boost and Extreme Gradi-

ent Boosting were developed and compared for predicting ac-

curacy. A parametric optimization is conducted which showed
that the ANN and XGBoost models showed the best predicting

accuracy. Based on dimensionless input parameters, Bd, Co, Fr f ,

Fr fo , Fr g , Fr go , Ga, Ka, Pr f , Pr g , Re f , Re fo , Re g , Re go , Su f , Su g , Su fo ,

Su go , We f , We fo , We g , and We go the ANN model and the XGBoost

model predicted the test data with MAEs of 6.8% and 9.1%, re-

spectively. 

3) The optimal ANN and XGBoost models performed better than

the highly reliable universal generalized flow condensation cor-

relation in mini/micro-channels by Kim and Mudawar [26] . The

models not only captured heat transfer coefficients well for in-

dividual datasheets, but also for different condensation flow

regimes. 

4) To check the predicting performance of the ANN and XG-

Boost models for datasets outside its training database, certain

datasets were completely excluded, and the models were used

to predict the excluded data. Reasonable accuracy in predicting

the heat transfer coefficients and the trends of heat transfer co-

efficient with vapor quality was seen when data points includ-

ing the specific working fluid were part of the training dataset

of the remaining datasheets. The accuracy of the models was

compromised when no fluid specific information was available

in the training dataset. 
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5) The results of this study show that machine learning algorithms

can help develop a robust new predicting tool for condensation

heat transfer coefficients in mini/micro channels. 
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[54] Ö. A ̆gra , İ. Teke , Experimental investigation of condensation of hydrocarbon
refrigerants (R600a) in a horizontal smooth tube, Int. Commun. Heat Mass

Transf. 35 (2008) 1165–1171 . 
[55] Y.J. Kim , J. Jang , P.S. Hrnjak , M.S. Kim , Condensation heat transfer of carbon

dioxide inside horizontal smooth and microfin tubes at low temperatures, J.

Heat Transf. (2009) 131 . 
[56] K.A. Maråk, Condensation heat transfer and pressure drop for methane and

binary methane fluids in small channels, (2009). 
[57] M. Matkovic , A. Cavallini , D. Del Col , L. Rossetto , Experimental study on con-

densation heat transfer inside a single circular minichannel, Int. J. Heat Mass
Transf. 52 (2009) 2311–2323 . 

[58] C.Y. Park , P. Hrnjak , CO2 flow condensation heat transfer and pressure drop

in multi-port microchannels at low temperatures, Int. J. Refrig. 32 (2009)
1129–1139 . 

[59] M.K. Dobson , Heat transfer and flow regimes during condensation in horizon-
tal tubes, Air Conditioning and Refrigeration Center. College of Engineering…,

1994 . 
[60] A. Agarwal , T.M. Bandhauer , S. Garimella , Measurement and modeling of con-

densation heat transfer in non-circular microchannels, Int. J. Refrig. 33 (2010)

1169–1179 . 
[61] S. Bortolin, Two-phase heat transfer inside minichannels, (2010). 

[62] D. Del Col , D. Torresin , A. Cavallini , Heat transfer and pressure drop during
condensation of the low GWP refrigerant R1234yf, Int. J. Refrig. 33 (2010)

1307–1318 . 
[63] X. Huang , G. Ding , H. Hu , Y. Zhu , H. Peng , Y. Gao , B. Deng , Influence of oil on

flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner

diameter horizontal smooth tubes, Int. J. Refrig. 33 (2010) 158–169 . 
[64] O. Iqbal , P. Bansal , In-tube condensation heat transfer of CO2 at low temper-

atures in a horizontal smooth tube, Int. J. Refrig. 35 (2012) 270–277 . 
[65] H.-K. Oh , C.-H. Son , Condensation heat transfer characteristics of R-22, R-134a

and R-410A in a single circular microtube, Exp. Therm. Fluid Sci. 35 (2011)
706–716 . 

[66] J.E. Park , F. Vakili-Farahani , L. Consolini , J.R. Thome , Experimental study

on condensation heat transfer in vertical minichannels for new refriger-
ant R1234ze (E) versus R134a and R236fa, Exp. Therm. Fluid Sci. 35 (2011)

442–454 . 
[67] M. Derby , H.J. Lee , Y. Peles , M.K. Jensen , Condensation heat transfer in square,

triangular, and semi-circular mini-channels, Int. J. Heat Mass Transf. 55 (2012)
187–197 . 

[68] M.A. Hossain , Y. Onaka , A. Miyara , Experimental study on condensation heat
transfer and pressure drop in horizontal smooth tube for R1234ze (E), R32

and R410A, Int. J. Refrig. 35 (2012) 927–938 . 

[69] K. Sakamatapan , J. Kaew-On , A.S. Dalkilic , O. Mahian , S. Wongwises , Con-
densation heat transfer characteristics of R-134a flowing inside the multiport

minichannels, Int. J. Heat Mass Transf. 64 (2013) 976–985 . 
[70] H. Hirofumi , R.L. Webb , Condensation in extruded aluminum tubes, Penn

State (1995) . 
[71] N. Liu , J.M. Li , J. Sun , H.S. Wang , Heat transfer and pressure drop during con-

densation of R152a in circular and square microchannels, Exp. Therm. Fluid

Sci. 47 (2013) 60–67 . 
[72] J. Heo , H. Park , R. Yun , Condensation heat transfer and pressure drop charac-

teristics of CO2 in a microchannel, Int. J. Refrig. 36 (2013) 1657–1668 . 
[73] F. Illan-Gomez , A. Lopez-Belchi , J.R. Garcia-Cascales , F. Vera-Garcia , Experi-

mental two-phase heat transfer coefficient and frictional pressure drop inside
mini-channels during condensation with R1234yf and R134a, Int. J. Refrig. 51

(2015) 12–23 . 

[74] G. Ghim , J. Lee , Condensation heat transfer of low GWP ORC working fluids
in a horizontal smooth tube, Int. J. Heat Mass Transf. 104 (2017) 718–728 . 

[75] J. Kaew-On , N. Naphattharanun , R. Binmud , S. Wongwises , Condensation heat
transfer characteristics of R134a flowing inside mini circular and flattened

tubes, Int. J. Heat Mass Transf. 102 (2016) 86–97 . 
[76] N. Liu , H. Xiao , J. Li , Experimental investigation of condensation heat transfer
and pressure drop of propane, R1234ze (E) and R22 in minichannels, Appl.

Therm. Eng. 102 (2016) 63–72 . 
[77] S.-M. Kim , I. Mudawar , Flow condensation in parallel micro-channels–part 2:

heat transfer results and correlation technique, Int. J. Heat Mass Transf. 55
(2012) 984–994 . 

[78] M. Zhang, A new equivalent Reynolds number model for vapor shear-
controlled condensation inside smooth and micro-fin tubes, ProQuest Infor-

mation and Learning, 1998. 

[79] W.-W.W. Wang, Condensation and single-phase heat transfer coefficient and
flow regime visualization in microchannel tubes for HFC-134a, (1999). 

[80] Y.-Y. Yan , H.-C. Lio , T.-F. Lin , Condensation heat transfer and pressure drop
of refrigerant R-134a in a plate heat exchanger, Int. J. Heat Mass Transf. 42

(1999) 993–1006 . 
[81] J.R. Baird , D.F. Fletcher , B.S. Haynes , Local condensation heat transfer rates in

fine passages, Int. J. Heat Mass Transf. 46 (2003) 4 453–4 466 . 

[82] N.-H. Kim , J.-P. Cho , J.-O. Kim , B. Youn , Condensation heat transfer of R-22 and
R-410A in flat aluminum multi-channel tubes with or without micro-fins, Int.

J. Refrig. 26 (2003) 830–839 . 
[83] J. Jang , P.S. Hrnjak , Condensation of CO2 at low temperatures, Air Condition-

ing and Refrigeration Center. College of Engineering …, 2004 . 
[84] F. Pedregosa , G. Varoquaux , A. Gramfort , V. Michel , B. Thirion , O. Grisel ,

M. Blondel , P. Prettenhofer , R. Weiss , V. Dubourg , Scikit-learn: machine learn-

ing in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830 . 
[85] C.M. Bishop , Neural Networks for Pattern Recognition, Oxford university

press, 1995 . 
[86] A. Prieto, B. Prieto, E.M. Ortigosa, E. Ros, F. Pelayo, J. Ortega, I. Rojas, Neural

networks: An overview of early research, current frameworks and new chal-
lenges, Neurocomputing 214 (2016) 242–268, doi: 10.1016/J.NEUCOM.2016.06.

014 . 

[87] B. Widrow , M.E. Hoff, Adaptive Switching Circuits, Stanford Univ Ca Stanford
Electronics Labs, 1960 . 

[88] T.G. Dietterich , E.B. Kong , Machine learning bias, statistical bias, and statistical
variance of decision tree algorithms, Technical report, Department of Com-

puter Science, Oregon State University, 1995 . 
[89] T.G. Dietterich , An experimental comparison of three methods for construct-

ing ensembles of decision trees: Bagging, boosting, and randomization, Mach.

Learn. 40 (20 0 0) 139–157 . 
[90] Y. Freund , R.E. Schapire , Experiments with a new boosting algorithm, in: Icml,

Citeseer (1996) 148–156 . 
[91] L. Guelman , Gradient boosting trees for auto insurance loss cost modeling and

prediction, Expert Syst. Appl. 39 (2012) 3659–3667 . 
[92] Z. Zhang , G. Mayer , Y. Dauvilliers , G. Plazzi , F. Pizza , R. Fronczek , J. Santamaria ,

M. Partinen , S. Overeem , R. Peraita-Adrados , Exploring the clinical features of

narcolepsy type 1 versus narcolepsy type 2 from European Narcolepsy Net-
work database with machine learning, Sci. Rep. 8 (2018) 1–11 . 

[93] L. Breiman , Random forests, Mach. Learn. 45 (2001) 5–32 . 
[94] J.H. Friedman , Greedy function approximation: a gradient boosting machine,

Ann. Stat. (2001) 1189–1232 . 
[95] T. Chen , C. Guestrin , Xgboost: a scalable tree boosting system, in: Proc. 22nd

Acm Sigkdd Int. Conf. Knowl. Discov. Data Min., 2016, pp. 785–794 . 
[96] D. Nielsen, Tree boosting with xgboost-why does xgboost win" every" ma-

chine learning competition?, (2016). 

[97] J. Brownlee , in: Machine Learning Mastery with Python, Mach. Learn. Mastery
Pty Ltd., 2016, pp. 100–120 . 

[98] J.S. Bergstra , R. Bardenet , Y. Bengio , B. Kégl , Algorithms for hyper-parameter
optimization, in: Adv. Neural Inf. Process. Syst., 2011, pp. 2546–2554 . 

[99] J. Bergstra , Y. Bengio , Random search for hyper-parameter optimization, J.
Mach. Learn. Res. 13 (2012) 281–305 . 

100] S. Yang , H. Zhang , Comparison of several data mining methods in credit card

default prediction, Intell. Inf. Manag. 10 (2018) 115 . 
[101] M.A. Fauzan , H. Murfi, The accuracy of XGBoost for insurance claim predic-

tion, Int. J. Adv. Soft Comput. Appl. (2018) 10 . 
[102] H.A. Simon , Spurious correlation: a causal interpretation, J. Am. Stat. Assoc.

49 (1954) 467–479 . 
[103] H.A. Simon , Spurious correlation: a causal interpretation, in: Model. Discov.,

Springer, 1977, pp. 93–106 . 

[104] P. Reasor, V. Aute, R. Radermacher, Refrigerant R1234yf performance compar-
ison investigation, (2010). 

http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0049
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0051
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0051
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0051
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0054
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0054
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0054
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0055
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0055
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0055
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0055
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0055
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0057
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0057
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0057
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0057
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0057
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0058
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0058
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0058
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0059
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0059
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0060
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0060
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0060
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0060
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0062
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0062
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0062
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0062
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0063
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0063
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0063
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0063
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0063
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0063
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0063
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0063
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0064
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0064
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0064
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0065
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0065
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0065
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0066
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0066
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0066
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0066
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0066
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0067
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0067
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0067
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0067
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0067
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0068
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0068
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0068
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0068
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0069
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0069
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0069
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0069
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0069
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0069
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0070
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0070
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0070
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0071
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0071
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0071
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0071
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0071
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0072
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0072
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0072
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0072
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0073
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0073
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0073
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0073
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0073
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0074
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0074
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0074
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0075
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0075
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0075
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0075
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0075
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0076
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0076
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0076
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0076
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0077
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0077
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0077
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0080
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0080
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0080
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0080
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0081
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0081
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0081
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0081
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0082
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0082
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0082
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0082
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0082
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0083
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0083
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0083
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0084
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0085
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0085
https://doi.org/10.1016/J.NEUCOM.2016.06.014
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0087
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0087
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0087
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0088
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0088
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0088
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0089
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0089
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0090
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0090
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0090
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0091
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0091
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0092
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0093
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0093
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0094
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0094
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0095
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0095
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0095
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0097
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0097
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0098
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0098
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0098
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0098
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0098
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0099
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0099
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0099
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0100
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0100
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0100
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0101
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0101
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0101
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0102
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0102
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0103
http://refhub.elsevier.com/S0017-9310(20)33287-7/sbref0103

	Machine learning algorithms to predict flow condensation heat transfer coefficient in mini/micro-channel utilizing universal data
	1 Introduction
	1.1 Flow condensation in mini/micro-channel
	1.2 Predicting heat transfer coefficient
	1.3 Machine learning models for thermal analysis
	1.4 Objective of study

	2 Modeling
	2.1 Artificial neural networks (ANN)
	2.2 Tree-based models
	2.2.1 Adaptive boosting (AdaBoost)
	2.2.2 Random forest
	2.2.3 Extreme gradient boosting (XGBoost)

	2.3 Parametric optimization

	3 Results and discussion
	3.1 Model performance comparison
	3.2 Comparison with generalized condensation heat transfer correlations
	3.3 Predicting excluded databases

	4 Conclusions
	Declaration of Competing Interest
	CRediT authorship contribution statement
	References


