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a b s t r a c t 

Flow boiling in mini/micro channels is a very effective technique for meeting the high dissipating re- 

quirements of thermal management systems. However, accurate prediction of heat transfer coefficients 

remains an elusive task because of the complex fluid and thermal behavior in these two-phase sys- 

tems. In this study, a machine learning based approach for predictingheat transfer for saturated flow 

boiling in mini/micro channels is proposed. A consolidated database of 16953 data points for flow boil- 

ing heat transfer in mini/micro-channels is amassed from 50 sources that includes 16 working fluids, 

reduced pressures of 0.0046 – 0.77, hydraulic diameters of 0.15mm – 6.5mm, mass velocities of 19 < G < 

1608kg/m 

2 s, liquid-only Reynolds numbers of 27 – 55270 and flow qualities of 0 – 1. An Artificial Neu- 

ral Network (ANN) model is developed based on the universal consolidated database that was split into 

training data and test data, and used to predict the saturated flow boiling heat transfer coefficients. An 

optimization is conducted and ANN model architecture is selected which consists of dimensionless input 

parameters: Bd, Bo, Co, Fr g , Fr go , Fr f , Fr fo , Pr g , Pr f , Re g , Re go , Re f , Re fo , Su g , Su f , We g , We go , We f , and We fo , and 

hidden layers (75,70,60,50,30,20,10) that predicts the test data with an MAE of 14.3%. The ANN model is 

superior to universal correlations for saturated flow boiling heat transfer at predicting the test data, even 

predicting individual databases with high accuracy. The robustness of the ANN model was tested by ex- 

cluding databases from the training datasets altogether and utilized to predict these excluded databases. 

The ANN model did extremely well when a working fluid data was included in the training dataset, and 

poorly when a working fluid data was excluded from training dataset. The use of a universal ANN model 

utilizing a consolidated database can become an extremely useful tool when it comes to predicting heat 

transfer coefficients for saturated flow boiling in mini/micro channels. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

.1. Flow boiling in mini/micro-channel 

The past few decades have seen a significant increase in the

mount of heat dissipation requirements in systems and devices

cross many applications, including high performance computers,

lectrical vehicle power electronics, avionics, directed energy laser,

nd microwave weapon systems [1] . This change has not only
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appened due to technological advances making systems and de-

ices smaller, but also due to a need to continuously improve

heir power densities, which can be achieved with smaller, higher-

apacity thermal management designs. Flow boiling in small chan-

els, designated as “mini/micro channels”, has been recognized as

 very effective technique in meeting the high dissipating require-

ents [2] . This is because they provide many advantages in com-

arison to traditional cooling schemes: (1) High surface to volume

atios lead to increased power densities in comparison to tradi-

ional systems. (2) Utilizing boiling leads to orders of magnitude

nhancement in heat transfer coefficient because the system relies

n latent heat in addition to sensible heating to achieve the heat

issipation. (3) The flow rates requirements are significantly lower
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Nomenclature 

Bd bond number, Bd = g( ρ f − ρg ) D 

2 
h 
/σ

Bo boiling number, Bo = q ′′ 
H 
/G h f g 

C confinement number 

Co convection number, Co = [ ( 1 − x ) /x ] 0 . 8 ( ρg / ρ f ) 
0 . 5 

c p specific heat at constant pressure 

c v specific heat at constant volume 

D h hydraulic diameter of flow channel 

E total error 

F enhancement factor 

E m 

loss function 

Fr f saturated liquid Froude number, F r f = 

[ G ( 1 − x ) ] 2 / ( ρ2 
f 
g D h ) 

Fr g saturated vapor Froude number, F r g = 

( Gx ) 2 / ( ρ2 
g g D h ) 

Fr fo liquid-only Froude number, F r f o = G 

2 / ( ρ2 
f 
g D h ) 

Fr go vapor-only Froude number, F r go = G 

2 / ( ρ2 
g g D h ) 

F f fluid-dependent parameter 

f activation function 

G mass velocity 

g gravity acceleration 

h heat transfer coefficient 

h tp,exp experiment measured two-phase heat transfer coef- 

ficient 

h tp,pred predicted two-phase heat transfer coefficient 

h fg latent heat of vaporization 

i connecting node i 

j connecting node j 

k liquid conductivity 

L total number of input and output layers 

l layer 

m training example 

M number of training examples; molecular mass 

MAE mean absolute error 

MSE mean square error 

n number of input parameters 

P pressure 

P c critical pressure 

Pe f saturated liquid Peclet number, Pe f = Re f Pr f 
Pe g saturated vapor Peclet number, Pe g = Re g Pr g 
P F wetted perimeter of channel 

P H heated perimeter of channel 

P R reduced pressure, P R = P c /P 

Pr f saturated liquid Prandtl number, P r f = μ f c p f / k f 
Pr g saturated vapor Prandtl number, P r g = μg c pg / k g 
q ′′ heat flux 

q 
′′ 
H 

heat flux based on heated perimeter of channel 

R relative roughness, R = e / D h ; Pearson‘s correlation 

coefficient 

R 2 coefficient of determination 

Re f saturated liquid Reynolds number, Re f = G(1-x)D h / μf 

Re g saturated vapor Reynolds number, Re g = GxD h /μg 

Re fo liquid-only Reynolds number, Re fo = GD h / μf 

Re go vapor-only Reynolds number, Re go = GD h /μg 

S output, suppression factor 

Su f saturated liquid Suratman number, 

Su g saturated vapor Suratman number, 

t target value of training example 

T temperature 

w weight of connecting node 

We f saturated liquid Weber number, W e f = 

[ G ( 1 − x ) ] 2 D h / ( ρ f σ ) 
f  
We g saturated vapor Weber number, W e g = 

( Gx ) 2 D h / ( ρg σ ) 

We fo liquid-only Weber number, W e f o = G 

2 D h / ( ρ f σ ) 

We go vapor-only Weber number, W e go = G 

2 D h / ( ρg σ ) 

Xtt Lockhart-Martinelli parameter, Xtt = 

( μ f / μg ) 0 . 1 [ ( 1 − x ) /x ] 0 . 9 ( ρg / ρ f ) 
0 . 5 

x quality, value of the node 

Greek Symbols 

α vapor void fraction 

αr regularization parameter 

β aspect ratio, exponential decay rate 

δ error at the node 

ε percentage data predicted within ±50%, 

θ percentage data predicted within ±30%, 

μ dynamic viscosity 

λ learning rate 

ρ density 

σ surface tension 

Subscripts 

c critical 

cb convective boiling 

exp experimental 

f saturated liquid, fluid 

fo liquid only 

g saturated vapor 

go vapor only 

l liquid 

nb nucleate boiling 

pred predicted 

tp two phase 

w heated wall; inner wall 

n comparison to single-phase liquid flows leading to smaller liq-

id inventories. (4) There is more axial temperature uniformity be-

ause during boiling as the coolant temperature stays close to its

aturation temperatures. (5) Advances in manufacturing has led to

elative ease of fabrication of microchannel geometries across dif-

erent materials. 

Typical circular and rectangular microchannel configurations for

ingle-channel and multi-channel designs are shown in Fig. 1 .

low boiling heat transfer in mini/micro channels depends strongly

n the flow pattern and the corresponding thermal behavior in

hese channels. Dominant flow patterns, which are observed in

ini/micro-channels, include bubbly, slug, annular and mist flow.

owever, the axial span of each of these patterns is dependent on

he dominant flow regime, and two common flow regimes have

een identified, nucleate boiling dominant and convective boiling

ominant as shown in Fig. 2 [3] . The specific regime observed

n mini/micro channels is dependent on the channel dimensions

nd operating conditions. In nucleate boiling dominant regime, the

ow is dominated by bubbly and slug flow with a small section

f annular flow before reaching dryout. In this regime, the heat

ransfer coefficient increases fast initially in the bubble region be-

ore gradually decreasing with increase in flow quality due to a

ontinuous suppression of nucleate boiling. Before dryout, there is

 sharp reduction in heat transfer coefficient, which is followed by

 slow increase in the mist flow regime. In convective boiling dom-

nant regime, the flow is dominated by annular flow with a small

ection of bubbly and slug flow. In this regime, the heat transfer

oefficient gradually increases with increase in flow quality due to

nitiation of bubble flow, followed by a gradual reduction in an-

ular film thickness along the channel. Even in this regime, be-

ore dryout, there is a sharp reduction in heat transfer coefficient,
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Fig. 1. Cross-sections of typical mini/micro-channel configurations: (a) circular single channel, (b) rectangular single channel 3-sided heating, (c) rectangular single channel 

uniform heating, (d) circular multiple channel, (e) rectangular multiple channel 3-sided heating, and (f) rectangular multiple channel uniform heating 
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hich is followed by a slow increase in mist flow regime. Consid-

ring the complex behavior, it is not easy to accurately predict flow

oiling heat transfer coefficients in mini/micro channels. 

.2. Predicting heat transfer coefficient 

The most common and widely used approach to predicting heat

ransfer coefficient in saturated flow boiling is the use of empir-

cal and semi-empirical correlations [ 4 , 5 ]. These correlations are

ased on experiments conducted by researchers on a few fluids

ested over a range of geometric and flow parameters. Due to the

omplex physics behind boiling flows, they should not be used to

redict outside the tested range because that can lead to wrong

esign decisions. Another predicting method to predict the heat

ransfer coefficients tries to capture the underlying fluid flow and

hermal transport physics utilizes a control volume-based model-

ng strategy. This includes both theoretical models [6] and com-

utational fluid dynamics (CFD) simulations [7] . Recent progress

n high-performance computing facilitates the employment of the

ighly accurate Direct Numerical Simulation, that enables direct

olution of the Navier–Stokes equations [8] . However, this tech-

ique requires extremely high computational resources. 

An effective predicting approach which is very useful involves

he use of “universal” correlations that are based on a large

atabase of experiments conducted by researchers worldwide in-

luding numerous fluids and an extensive range of geometric and

ow parameters [ 3 , 9–13 ]. A good universal correlation developed

or saturated flow boiling in small channels is the study by Bertsch

t al. [12] . They amassed data from 14 sources, and the correlation

rovided reasonably good predictions against the entire database,

videnced by an overall MAE of 28.0%. Another good example

or universal correlation is the study by Kim and Mudawar [3] ,

ho developed a generalized correlation for the pre-dryout two-

hase heat transfer coefficient associated with saturated flow boil-

ng in mini/micro-channels. They amassed data from 37 sources,

nd its accuracy was validated for various working fluids and over

ery broad ranges of operating conditions. This correlation pro-

ided good predictions against the entire pre-dryout database, evi-

enced by an overall MAE of 20.3%. Also, in a recent study, Fang
t al. [13] developed a universal correlation for the two-phase

eat transfer coefficient associated with saturated flow boiling in

ini/micro-channels. They amassed data from 101 sources, and its

ccuracy was validated for various working fluids and over very

road ranges of operating conditions. This correlation utilized a

uid-dependent parameter that requires an experimental fit based

n the specific working fluid. This correlation provided very good

redictions against the entire database, evidenced by an overall

AE of 4.5%. 

.3. Artificial neural network in thermal analysis 

Conducting two-phase experiments or full CFD simulations re-

uire a high cost and time commitment. Parameters like heat

ransfer coefficients in two-phase flows are usually a function of

any independent dimensionless groups, each of them valid over

 finite range of values. The relationship between these parame-

ers and their relevance to heat transfer coefficients can be de-

uced using new computing techniques. A promising technique

hich can be applied to correlating heat transfer coefficients is

he use of soft-computing. In the past three decades, we have

een unprecedented development of soft computing techniques,

uch as Artificial Neural Networks (ANNs), Genetic Algorithm (GA),

enetic Programming (GP), Fuzzy-logic Control, and Data Min-

ng, and its application to many scientific and engineering prac-

ices. Out of these, ANNs, which are inspired by biological ner-

ous systems of humans, learn to perform tasks by utilizing avail-

ble data, without the need for programmed task-specific rules.

NNs see a lot of applications in pattern recognition, system iden-

ification, and dynamic control, to name a few. In the last two

ecades, they have also been successfully implemented for analyz-

ng many thermal systems [14–21] . Some early work in modeling

nd correlating heat transfer data with ANNs was performed by

hibault et al. [22] . Jambunathan et al. [23] applied the ANNs to

odel one-dimensional transient heat conducting for liquid crys-

al thermography and predict the convective heat transfer coeffi-

ients inside a duct. Mazzola [24] used an integrated artificial neu-

al network and empirical correlations approach to predict criti-

al heat flux for subcooled water. Recently, Naphon and Arisariya-
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x

x

Fig. 2. Schematics of flow regimes, wall dryout and variation of heat transfer coefficient along uniformly heated channel for (a) nucleate boiling dominant heat transfer and 

(b) convective boiling dominant heat transfer. Adapted from [3] . 
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wong [25] applied ANNs to analyze the heat transfer and fric-

tion factor of horizontal tube heat exchanger with spring insert.

Their results showed that the ANN could predict the experimen-

tal data for heat transfer coefficient and friction factor with errors

less than 2.5% and 7.5%, respectively, performing better than avail-

able correlations in literature. In addition, Naphon et al. [26] in-

vestigated heat transfer and friction factor of spirally fluted tubes

showing that their predictions also outperformed available cor-

relations in literature. We are also seeing a lot of work being

done on developing ANNs for predicting heat transfer and pres-

sure drop behaviors in nanofluid based flow systems [27–30] . In a

study by Naphon et al. [29] , ANNs were tested on spirally coiled

tubes with four different backpropogation algorithms to develop
n optimized model for TiO 2 /water nanofluids heat transfer and

ressure drop. In another study, Naphon et al. [30] tested jet im-

ingement of nanofluids in microchannel heatsinks to obtain heat

ransfer and pressure drop data and utilized ANNs and compu-

ational fluid dynamics simulations to predict the data. Although

NNs have shown such promise in predicting thermal characteris-

ics across many thermal system applications, ANN methods have

ot yet been applied to predicting complex systems like satu-

ated flow boiling heat transfer in mini/micro-channels. With the

vailability of heat transfer coefficient databases as used in uni-

ersal correlation papers, we now have the capability to develop

odels based on large datasets, and correlate ANNs for these

ystems. 
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Table 1 

Saturated flow boiling heat transfer data for mini/micro-channels included in consolidated database [31–80] . 

Author(s) Channel geometry a Channel material D h (mm) Relative roughness R, e / D h Fluid(s) G (kg/m 

2 s) Data points 

Wambsganss et al. [31] C single, H Stainless steel 2.92 Smooth R113 50–300 92 

Tran (1998) C single, H Brass 2.46 Smooth R134a 33–502 302 

Wang et al. [43] C single, H Copper 6.5 Smooth R22 100–400 63 

Yan and Lin [54] C multi, H Copper 2.0 – R134a 50–200 137 

Bao et al. [65] C single, H Copper 1.95 Smooth R11, R123 167–560 164 

Qu and Mudawar [76] R multi, H Copper + Lexan cover 0.349 – Water 135–402 335 

Sumith et al. [77] C single, VU Stainless steel 1.45 -– Water 23–153 85 

Yun et al. [78] C single, H Stainless steel 6.0 Smooth R134a, CO 2 170–340 182 

Huo et al. [79] C single, VU Stainless steel 2.01, 4.26 0.0009, 0.0004 R134a 100–500 365 

Lee and Mudawar [80] R multi, H Copper + Lexan cover 0.349 – R134a 61–657 111 

Saitoh et al. [33] C single, H Stainless steel 0.51, 1.12, 3.1 Smooth R134a 150, 300 420 

Yun et al. [34] R multi, H Stainless steel 1.14, 1.53, 1.54 – CO 2 200–400 57 

Muwanga and Hassan (2007) C single, H Stainless steel 1.067 – FC72 770–1040 454 

Zhao and Bansal [36] C single, H Stainless steel 4.57 Smooth CO 2 140–231 22 

Agostini et al. [37] R multi, H Silicon + Lexan cover 0.336 0.0005 R236fa 281-1370 593 

Consolini [38] C single, H Stainless steel 0.51, 0.79 0.0047, 0.0022 R134a, R236fa, R245fa 274–1435 650 

Bertsch et al. [12] R multi, H Copper + Lexan cover 0.544, 1.089 < 0.0009, < 0.0006 R134a, R245fa 19–336 332 

In and Jeong [40] C single, H Stainless steel 0.19 - R123, R134a 314–470 256 

Mastrullo et al. [41] C single, H Stainless steel 6.0 Smooth CO 2 200–349 143 

Ohta et al. [42] C single, H Stainless steel 0.51 – FC72 107, 215 24 

Wang et al. [44] C single, H Stainless steel 1.3 – R134a 321–836 365 

Ducoulombier [45] C single, H Stainless steel 0.529 0.0015-0.0030 CO 2 200–1400 1573 

Hamdar et al. [46] R single, H Aluminum 1.0 – R152a 210–580 50 

Martín-Callizo [47] C single, VU Stainless steel 0.64 0.0012 R134a, R22 185–535 381 

Ong [48] C single, H Stainless steel 1.03, 2.20, 3.04, 0.0006, 0.0004, 0.0003 R134a, R236fa, R245fa 199–1608 2504 

Tibiriçá and Ribatski [49] C single, H Stainless steel 2.32 0.0001 R134a, R245fa 50–700 130 

Ali et al. [50] C single, VU Stainless steel 1.7 0.0001 R134a 75–600 152 

Bang et al. [51] C single, H Stainless steel 1.73 – Water 100 65 

Copetti et al. [52] C single, H Stainless steel 2.62 0.0008 R134a 240–932 876 

Mahmoud et al. [53] C single, VU Stainless steel 1.1 0.0012 R134a 128–549 152 

Oh and Son [55] C single, H Stainless steel 4.57 Smooth CO 2 400–900 107 

Oh and Son [56] C single, H Copper 1.77, 3.36, 5.35 Smooth R134a, R22 200–500 153 

Wu et al. [57] C single, H Stainless steel 1.42 – CO 2 300–600 419 

Costa-Patry & John [58] R multi, H Copper 0.295 – R134a, R245fa, R1234ze 205–569 510 

Karayiannis et al. [59] C single, VU Stainless steel 1.1 0.0012 R134a 215–550 545 

Li et al. [60] C single, H Stainless steel 2.0 Smooth R1234yf, R32 100–400 169 

Tibiriçá et al. [61] C single, H Stainless steel 1.0, 2.2 0.0006, 0.0004 R1234ze 300–600 30 

Balasubramanian et al. [62] R multi, H Copper 0.489, 0.504 0.00409, 0.00397 water 88–751 332 

Davide Del Col et al. [63] C single, H Copper 0.96 0.001354 R134a, R1234yf 200–600 93 

Grauso et al. [64] C single, H Stainless steel 6 Smooth R1234ze(E), R134a 270.75–285.25 575 

Vakili-Farahani et al. [66] R multi, VU Aluminum 1.44 – R245fa, R1234ze 100–400 138 

Charnay et al. [67] C single, H Stainless steel 3.0 – R245fa 300–1500 285 

Wang et al. [68] C single, H Copper 6.0 Smooth Propane 63.9–102.8 127 

Anwar et al. [69] C single, VU Stainless steel 1.6 0.000594 R1234yf 300–500 256 

Charnay et al. [70] C single, H Stainless steel 3.0 – R245fa 300–1000 337 

Markal et al. [71] R multi, H Silicon 0.15 – Water 51–92.6 20 

Xu et al. [72] C single, H Copper 0.501, 1.084, 2.0235 – R134a 185–910 225 

Sempértegui-Tapia & Ribatski [73] C multi, H Stainless steel 0.868, 1.1 0.0026, 0.0097 R134a 200–800 685 

Sempértegui-Tapia & Ribatski [73] C single, H Stainless steel 1.1 0.0026 R134a, R600a, R1234yf, 

R1234ze 

200–500 862 

Fayyadh et al. [75] R multi, H Copper 0.42 0.000716 R134a 50–300 50 

Total 16953 

a C: circular, R: rectangular, H: horizontal, VU: vertical upward. 
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1.4. Objective of study 

A consolidated database consisting of 16953 data points for

flow boiling heat transfer in mini/micro-channels is amassed from

50 sources [31–80] . Table 1 provides key information on these

individual databases incorporated into the consolidated database.

This database includes 13653 single- channel data points from 38

sources, and 3300 multi-channel data points from 12 sources. The

consolidated database includes a broad range of two-phase heat

transfer coefficient data points with the following coverage: 

- Working fluid: CO 2 , FC72, Propane, R11, R113, R123, R1234yf,

R1234ze, R134a, R152a, R22, R236fa, R245fa, R32, R600a and

water 

- Reduced pressures: 0.0046 < P R < 0.77 

- Hydraulic diameter: 0.15 mm < D h < 6.5 mm 

- Mass velocity: 19 kg/m 

2 s < G < 1608 kg/m 

2 s 

- Liquid-only Reynolds number: 27 < Re fo = GD h / μf < 55270 

- Flow quality: 0 < x < 1 

The objective of this study is to build an ANN model for pre-

dicting heat transfer for flow boiling in mini/micro-channels by

utilizing the consolidated experimental data in the whole saturated

liquid-vapor domain, including pre and post-dryout heat transfer. A

large set of input parameters, including flow, geometric, operating

and relevant dimensionless parameters will be used to setup the

ANN analysis, and later down-selected to improve the predicting

capability. In addition, the predicted results will also be compared

with universal correlations to see how the ANN technique com-

pares with that predicting approach. Before concluding this study,

the ANN model will be modified to predict datasets that are not

included in the model development. 

2. ANN 

2.1. ANN background 

Neural networks were first proposed by McCullough and Pitts in

1943 [81] . An artificial neural network (ANN) is based on a collec-

tion of connected units or nodes called artificial neurons. A general

ANN architecture consists of an input layer, hidden layers and an

output layer through which a set of input parameter are supplied

to the input nodes for the feed forward process, and the informa-

tion is transferred through the network to the nodes in the output

layer. ANN is a powerful universal approximator with which it can

create mapping of one vector onto another vector space [82] . The

power of ANN lies in the fact that it can capture some a priori

hidden relation in the input data albeit without extracting it. Cap-

turing the information hidden in the data is called as “Training the

Neural Networks” [83] . 

The basic computation unit in ANN is a neuron as shown in

Fig. 3 (a), where a weighted sum of input signals to a neuron is

passed through an activation function, f , to produce an output sig-

nal. Since a neuron itself is a non-linear unit, neural networks are

also non-linear [83] . There are different choices of activation func-

tions, for e.g., Sigmoid function, hyperbolic tangent function, and

rectified linear unit (ReLu) function as shown in Fig. 3 (b). ReLu

function is the most popular out of these because the conven-

tional activation functions like sigmoid and hyperbolic tangent suf-

fer from the vanishing gradient problem [84] . ReLu activation func-

tions greatly accelerates the convergence of gradient descent due

to its linear, non-saturating form [84] . 

For the present work a multi-layer feed forward neural network

is developed in which all the nodes of a layer are connected to

all other nodes of the preceding and following layers. With such

dense connection between the nodes, the ANN learns to predict
he desired output supplied during the training process. The out-

ut from such a network is an explicit function of inputs and bi-

ses and does not require any feedback loops [85] . Since the output

rom such a network is a continuous real number, it is equivalent

o solving a regression problem in which the loss function is de-

ned as a sum of squared error. 

ANN have many advantages that make it suitable for apply-

ng to complex systems like saturated flow boiling. Today, training

NN can be achieved easily for such systems because of the sig-

ificant computational power capability. ANN model can be easily

caled up if additional data points for new fluids/operating con-

itions become available. ANN have the property that output can

e expressed as a deterministic function of input, thereby repre-

enting a multivariate non-linear function mapping. Hence, ANN

o not explore the underlying physics of the problem but learn

he pattern from the data available making them different from

he traditional techniques. A neuron, part of the ANN network, is a

on-linear unit, and consequently, ANN is non-linear which learns

on-linearity in the data points without any assistance from the

ser. On the other hand, ANN also suffer from a few disadvan-

age specific to the current system. Usually, ANNs need many data

oints for training. The number of data points used in this study

re 16,953 while traditional ANNs are trained through millions of

ata points, which is not viable in this situation. In addition, on ap-

lying ANN outside the convex hull of the training data, the per-

ormance of the ANN is generally poor, consequently giving large

rror values. This is because the absence of the data in the train-

ng set provides no basis of providing any prediction value. Predic-

ions are also inaccurate if there is a large void inside the training

et due to the absence of data. Traditional techniques many times

ave the ability to capture the information outside the range be-

ause they are based on the underlying physics. 

.2. Backpropagation algorithm 

ANNs utilize learning algorithms, and the most widely used al-

orithm for ANN with differential activation functions is the back-

ropagation algorithm during which the input signal is transmitted

orward through a transfer function and the errors are propagated

ackwards. The technique of backpropagation was popularized by

umelhart et al. [86] , which is depicted in Fig. 3 (c). The objective

unction or the loss function to be used for the backpropagation

lgorithm is chosen to be Mean Square Error ( MSE ). MSE is a dif-

erentiable function and is a commonly used metric in regression

roblems, with the difference being that in regression problems, it

s explicit, while in backpropagation algorithm, it is implicit [87] .

he backpropagation algorithm is used to find the local minimum

f the loss function, where the gradient of the loss function for the

utput layer and the hidden layer is calculated recursively. 

Consider a network with M training examples, n input parame-

ers, and a total of L layers (including input and output layer). w 

l 
i j 

is

he weight connecting node i in layer (l − 1) to node j in layer

 l),d l is the number of nodes at layer ( l ), and S L 
m j 

is the output. The

alue of parameter x mj for node j in layer ( l ) is computed as 

 m j = f (S l m j ) , (1)

here S l m j = 

d l−1 ∑ 

i =1 

w 

l 
i j x 

l−1 
mi 

, (2)

nd 

∂S l 
m j 

∂w 

l 
i j 

= x l−1 
mi 

. (3)

For the m th training example, the loss function, E m 

, is defined by

he square of the Euclidean distance between the network output



Y. Qiu, D. Garg and L. Zhou et al. / International Journal of Heat and Mass Transfer 149 (2020) 119211 7 

Fig. 3. (a) A single neuron. (b) Common activation functions. (c) Backpropagation algorithm. 

v

E

w  

j  

t

 

e

w

δ

S

t

ector and target vector given by 

 m 

= 

1 

2 

∥∥ f 
(
S L m j 

)
− t m 

∥∥2 
, (4) 

here t m 

is the target value of the m th example. Each of the nodes

 in the last hidden layer is connected to the output node and con-

ributes to Eq. (4) . 

If we differentiate Eq. (4) with respect to the error at the out-

rmost node, δmj 
L , we get 

∂ E m 

∂δL 
m j 

= 

(
f 
(
S L 

m j 

)
− t m 

)
f ′ 
(
S L 

m j 

)
∂δL 

m j 

, (5) 
here 

L 
m j = 

∂ E m 

∂S L 
m j 

= 

∂ E m 

∂ f 
(
S L 

m j 

) ∂ f 
(
S L 

m j 

)
∂S L 

m j 

= f 
(
S L m j 

)
− t m 

. (6) 

ince the activation function f is ReLu given as 

f (x ) = 

{
x, x ≥ 0 

0 , x < 0 

}
, (7) 

he differential f’ is given as 

f ′ = 

{
1 i f S L m 

≥ 0 

0 otherwise 
. (8) 
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Fig. 4. MSE total error function variation with number of iterations for ANN model 

with hidden layers (75,70,60,50,30,20,10) and input parameters of Bd, Bo, Co, Fr f , 

Fr fo , Fr g , Fr go , Pr f , Pr g , Re g , Re f , Re go , Re fo , Su g , Su f , We f , We fo , We g , and We go . 
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Gradient of the loss function with respect to weight is com-

puted as 

∂ E m 

∂w 

L 
i j 

= 

∂ E m 

∂S L 
m j 

×
∂S L 

m j 

∂w 

L 
i j 

= δL 
m j ×

∂S L 
m j 

∂w 

L 
i j 

= δL 
m j x 

(L −1) 
mi 

. (9)

The total error of the training set, E , is the summation of all the

quadratic errors and is given as 

E = 

M ∑ 

m =1 

E m 

= 

1 

2 

M ∑ 

m =1 

∥∥ f 
(
S L m j 

)
− t m 

∥∥2 
. (10)

By computing δL 
m j 

, we can compute the gradient of the error

with respect to the weight at every node, 

∂E 

∂w 

L 
i j 

= 

M ∑ 

m =1 

∂ E m 

∂w 

L 
i j 

= 

M ∑ 

m =1 

δL 
m j x 

(L −1) 
mi 

, (11)

Each weight in the network, w 

l 
i j 
, is further updated using the

following operation: 

w 

l 
i j = w 

l 
i j − λ

∂E 

∂w 

l 
i j 

, (12)

where i = 1,2,3,… L -1, and λ is the learning rate. To get a final so-

lution, E can be minimized by solving for weights using an iterative

process of gradient descent algorithm [86] . 

2.3. Neural network model selection 

It’s well known that a neural network is considered a black-box

which does ’not provide any insight about the features of the sys-

tem [88] . In this study, different neural network architectures were

tested. The most optimal network architecture depends on several

factors like the number of training cases, number of input parame-

ters, amount of noise in the data, activation function, regularization

parameter and the loss function [83] . A neural network with few

hidden layer is not capable of learning training data; therefore, the

accuracy of the system is limited. On the contrary, an over-fitting

problem may be obtained if the network has a greater depth (large

number of hidden layers), and again, the performance of the sys-

tem is limited. 

The code is written in Python, and Pandas, Numpy and Scikit-

learn libraries were used to develop the model. The input param-

eters were standardized to a Gaussian like distribution with zero

mean value and unit variance. Although there are sophisticated

methods of weight initialization like orthogonal least square algo-

rithm [89] , for the present work, network is initialized with ran-

domly assigned weights. The resulting data set was split into train-

ing and test datasets with 75% – 25% split ratio with 12624 train-

ing data points and 4239 test data points. Data partitioning was

investigated before selecting this data split ratio. 

Table 2 shows the different ANN model parameters optimized

and selected in this study. As seen in the table, the learning rate,

λ, is set to 0.001 . A larger value of learning rate may accelerate
Table 2 

ANN model parameters selected in this study. 

Parameter Value 

Activation function ReLu 

L2 Regularization Parameter, α 0.001 

Solver Adam 

Batch size 200 

Learning rate, λ 0.001 

Exponential decay rate for estimates of first moment vector, β1 0.9 

Exponential decay rate for estimates of second moment vector, β2 0.999 

Tolerance 0.001 

w  

i  

A  

o  

m  

c  

c  

o  

o

R  
onvergence but have the chances of oscillation near the optimum

oint. To prevent overfitting, the L2 regularization parameter ( αr )

s set to 0.001. The optimization algorithm used is Adam [90] in-

tead of standard gradient descent algorithm as the former has

etter performance over latter due to adaptive learning rate. The

xponential decay rate of the first and second moments is speci-

ed to be 0.9 and 0.999, respectively. 

.4. Neural network error estimation 

The loss function to minimize is MSE loss, as it is the preferred

oss function under the inference framework of maximum likeli-

ood [91] . As stated in [92] , backpropagation algorithm cannot be

hown to converge and there are no clear criterion to stop its op-

ration. For the present study, the Adam optimizer is run until the

SE loss is minimized with maximum number of iterations to not

eet tolerance (0.001) is 100. As shown in Fig. 4 , the plot shows

he change in MSE loss with iterations for the ANN network de-

icted in Fig. 5 . When deemed to be converged, the iterations are

topped if the change in MSE loss is within the specified tolerance.

he spikes seen during iterations are due to the fact that training

xamples are converged with batch size of 200. Stochastic gradi-

nt descent, on the other hand, converges each training example

ndividually and hence has a nosier convergence history. 

The accuracy of models is ascertained mainly using mean abso-

ute error ( MAE ), which is defined as 

AE = 

1 

N 

∑ 

∣∣h tp , pred − h t p,exp 

∣∣
h t p,exp 

× 100 % (13)

Also used to understand model predictions are parameters θ ,

hich is the percentage data predicted within ±30%, and ε, which

s the percentage data predicted within ±50%. Many studies with

NN for analyzing thermal systems use R-squared error (coefficient

f determination or R 2 ) which will also be used for understanding

odel predictability. R 2 is preferred over R (Pearson‘s correlation

oefficient) as the former usually measures the linear correlation

oefficient while the latter provides the measure for the proportion

f variance explained by the model and is independent of the scale

f dependent variable [93] . R 2 is defined as 

 

2 = 1 −
∑ 

(
h tp , exp − h t p,pred 

)2 

∑ 

(
¯

)2 
. (14)
h tp , exp − h t p, exp 
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Fig. 5. ANN architecture with input, hidden and output layers selected as the final model for this study 

Table 3 

ANN model predictions for fixed hidden layers and different combinations of input parameters. 

Test Case ANN Model Hidden Layers Input Parameters MAE (%) R 2 � (%) E (%) 

1 (75,70,60,50,30,20,10) Bo, Bd, Re f , Re g 33.11% 0.47 59.09% 82.12% 

2 Fr f , Pr f , Re f , Su f , We f 39.42% 0.55 59.66% 80.56% 

3 Fr g , Pr g , Re g , Su g , We g 36.45% 0.15 68.60% 85.70% 

4 Fr f , Fr fo , Pr f , Re f , Re fo , Su f , We f , We fo 28.25% 0.52 73.77% 88.44% 

5 Fr g , Fr go , Pr g , Re g , Re go , Su g , We g , We go 27.00% 0.86 76.32% 90.26% 

6 q”, T, x 38.59% 0.41 62.61% 79.88% 

7 D, G, P, P c , q”, x 20.02% 0.88 82.59% 93.25% 

8 P, P c , D, G, x, q”, R, ρg , ρ f , h fg , c vg , c vf , c pg , c pf , μg , μf , σ 13.69% 0.82 92.64% 97.45% 

9 Bd, Bo, Co, c pg , c pf , c vg , c vf , D, Fr f , Fr fo , Fr g , Fr go , G, h fg , k f , k g , P c , 

P F , P H , Pe f , Pe g , P, Pr f , Pr g , q”, R, Re f , Re fo , Re g , Re go , Su f , Su g , T, 

We f , We fo , We g , We go , Xtt, x β , μf , μg , ρ f , ρg , σ

15.29% 0.77 91.53% 97.26% 

10 Co, Bd, Bo, Fr f , Fr fo , Fr g , Fr go , Pr f , Pr g , Re f , Re fo , Re g , Re go , 

Su f , Su g , We f , We fo , We g , We go 
∗

14.30% 0.83 92.00% 97.38% 

∗ Final selected model configuration. 
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o  

f  

u  
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i  
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. Results and discussion 

.1. ANN model selection 

The consolidated data is utilized to test, develop, and compare

NN models based on different combinations of input parameters

nd hidden layers to evaluate the impact of selecting specific input

arameters on model’s heat transfer coefficient predicting capabil-

ty. 

In Table 3 , for a fixed ANN model with hidden layers set to

75,70,60,50,30,20,10), we compare the predicting capability with

ifferent combinations of operating, geometric, and dimensionless

nput parameters. As we can see in Fig. 6 (a), a model utilizing

ery few input parameters namely, Bd, Bo, Re g , and Re f , is not

ble to predict the test data very well and shows an MAE of 33%

nd R 2 of 0.47 on the test dataset. This shows that we have se-
ected fewer parameters that those necessary to capture the trends

f heat transfer coefficient in saturated flow boiling and therefore,

urther improvement is necessary. The effect of selecting only liq-

id or gas parameters on heat transfer coefficient predicting ability

f the model was also examined. The reason to do this is to ver-

fy that two-phase behavior cannot be predicted with knowledge

f only the single-phase parameters. As can be seen in Table 3 ,

or liquid parameters: Fr f , Pr f , Re f , Su f , and We f , and for gas pa-

ameters: Fr g , Pr g , Re g , Su g , and We g , the predicting capability is

ot improved and shows a deteriorated MAE of 39.4% and 36.5%,

espectively. On the other hand, if we include the effect of chan-

el dimensions by adding the gas only dimensionless numbers in

he gas based model, the predicting capability improves slightly as

e can see with input parameters of Fr g , Fr go , Pr g , Re g , Re go , Su g ,

e g , and We go , where the MAE is now 27.0%. Similarly, for the fluid

ased model input parameters, Fr f , Fr fo , Pr f , Re f , Re fo , Su f , We f , and
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Fig. 6. ANN model predictions of 4239 test data points for (a) hidden layers (75,70,60,50,30,20,10) and input parameters Re g , Re f , Bo, and Bd, (b) hidden layers 

(75,70,60,50,30,20,10) and input parameters Fr f , Fr fo , Pr f , Re f , Re fo , Su f , We f , and We fo , (c) hidden layers (75,70,60,50,30,20,10) and input parameters C vg , C vf , C pg , C pf , D h, 

G, P, P c , q’’, R, T, x, ρg , ρ f , h fg , μg, μf , and σ , and (d) hidden layers (40,30) and input parameters Bd, Bo, Co, Fr g , Fr go , Fr f , Fr fo , Pr g , Pr f , Re g , Re go , Re f , Re fo , Su g , Su f , We g , We go , 

We f , and We fo . 

Fig. 7. Comparison of predicted 4239 test data points and the corresponding ex- 

perimentally measured heat transfer coefficients data for final selected ANN model 

with hidden layers (75,70,60,50,30,20,10) and input parameters Bd, Bo, Co, Fr f , Fr fo , 

Fr g , Fr go , Pr f , Pr g , Re g , Re f , Re go , Re fo , Su g , Su f , We f , We fo , We g , and We go . 
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n  
e fo , the prediction is also improved with MAE of 25.3%. The com-

arison between predicted and experimental heat transfer coeffi-

ients for the fluid based model is shown in Fig. 6 (b). We can also

ee in Table 3 , how geometric and operating parameters can di-

ectly be utilized to develop models with varying capability similar

o what is observed with dimensionless numbers. A model which

tilizes as input parameters, c vg , c vf , c pg , c pf , D h , G, P, P c , q", R, T, x,

g , ρ f , h fg , μg, μf , and σ , performs the best with the lowest MAE

f 13.7% amongst all models, and the comparison between exper-

mental and predicted data for this model is shown in Fig. 6 (c).

or this model the R 2 is also high at 0.82. Let us now consider

 model which uses input parameters based on all dimensionless

arameters relevant to two-phase saturated boiling, namely , Bd, Bo,

o, Fr g , Fr go , Fr f , Fr fo , Pr g , Pr f , Re g , Re go , Re f , Re fo , Su g , Su f , We g , We go ,

e f , and We fo . This model as we can see in Fig. 7 does a reason-

bly good job at predicting the test data with MAE of 14.3% and

 

2 of 0.83. Even though it was observed that a model utilizing

nly geometric and operating parameters performed slightly better

s shown in Fig. 6 (c), we will select the completely dimensionless

odel as our final model in this study. Staying with dimensionless

arameters is important in developing generalized predicting tools

n two-phase flow situations. 

Also optimizable for improving the predicting capability is the

umber of hidden layers in the ANN model. Hidden layers are
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Table 4 

ANN model predictions for fixed input parameters and different combinations of hidden layers. 

Test Case ANN model hidden layers Input parameters MAE (%) R 2 θ (%) ε (%) 

1 (95,85,75,70,60,50,30,20,10) Co, Bd, Bo, Fr f , Fr fo , Fr g , 

Fr go , Pr f , Pr g , Re f , Re fo , 

Re g , Re go , Su f , Su g , We f , 

We fo , We g , We go 

14.44% 0.87 91.48% 96.56% 

2 (80,75,70,60,50,30,20,10) 17.15% 0.87 89.55% 96.25% 

3 (75,70,60,50,30,20,10) ∗ 14.30% 0.83 92.00% 97.38% 

4 (70,60,50,30,20,10) 15.95% 0.89 90.94% 96.04% 

5 (60,50,30,20,10) 17.25% 0.91 88.37% 95.90% 

6 (50,30,20,10) 19.78% 0.95 84.64% 94.17% 

7 (50,30,20) 18.41% 0.92 87.87% 95.23% 

8 (40,30,20) 23.67% 0.75 81.91% 99.69% 

9 (40,30) 20.56% 0.86 84.45% 94.00% 

10 (30,20) 23.81% 0.72 79.71% 91.86% 

11 (40) 28.45% 0.44 74.14% 87.97% 

12 (20) 31.03% 0.41 71.86% 86.91% 

∗ Final selected model configuration. 

Table 5 

Previous universal/generalized saturated flow boiling heat transfer correlations [1,12,13] . 

Author(s) Equation Remarks 

Bertsch et al. h t p = h nb · S + h cb · F, D h = 0.16 – 2.92 mm, G = 20 – 3000 kg/m 

2 s 

S = 1 − x, F = 1 + 80( x 2 − x 6 ) e −0 . 6 C , C = 

√ 

σ
g( ρ f −ρg ) D 2 h 

Working fluid: water, nitrogen, methanol, pentane, 

heptane, benzene, FC-77, R11, R113, R12, R123, R134a, 

R141b, R236fa, R245fa, R410A 

h nb = 55 P 0 . 12 
R ( −lo g 10 P R ) 

−0 . 55 M 

−0 . 5 q ′′ 0 . 67 
H , h cb = h cb, f o ( 1 − x ) + h cb,go x 3899 data points 

h cb, f o = ( 3 . 66 + 

0 . 0668 
D h 
L R e f o P r f 

1+0 . 04 ( 
D h 
L R e f o P r f ) 

2 / 3 ) 
k f 
D h 

, h cb,go = ( 3 . 66 + 

0 . 0668 
D h 
L R e go P r g 

1+0 . 04 ( 
D h 
L R e go P r g ) 

2 / 3 ) 
k g 
D h 

, 

Kim & Mudawar h t p = ( h 2 
nb 

+ h 2 
cb 

) 0 . 5 , D h = 0.19 – 6.5 mm, G = 19 – 1608 kg/m 

2 s, 

h nb = [ 2345 ( Bo P H 
P F 

) 
0 . 7 

P 0 . 38 
R ( 1 − x ) 

−0 . 51 
]( 0 . 023 Re 0 . 8 f Pr 0 . 4 f ) 

k f 
D h 

, Re fo = 57 – 49820 P R = 0.005 – 0.69 

h cb = 

[ 5 . 2 ( Bo P H 
P F 

) 
0 . 08 

We −0 . 52 
f o 

( 1 − x ) 
−0 . 51 + 3 . 5 ( 1 

Xtt 
) 

0 . 94 
( 

ρg 

ρ f 
) 

0 . 25 
]( 0 . 023 Re 0 . 8 f Pr 0 . 4 f ) 

k f 
D h 

, 

Working fluid: water, CO 2 , FC-72, R11, R113, R123, 

R1234yf, R1234ze, R134a, R152a, R22, R236fa, R245fa, 

R32, R404A, R407C, R410A, R417A 

10805 data points 

Fang et al. h t p = 

k l 
D 

F f M 

−0 . 18 B o 0 . 98 F r 0 . 48 
lo 

B d 0 . 72 ( ρl 

ρg 
) 0 . 29 [ ln ( 

μl f 

μlw 
) ] −1 Y, D h = 0.207 – 32 mm, G = 100 – 1782 kg/m 

2 s 

Y = { 1 f or P R ≤ 0 . 43 

1 . 38 − P R f or P R > 0 . 43 
, 

P R = 0.0045 – 0.9300 

Working fluid: water, CO 2 , nitrogen, ammonia, R123, 

R1234yf, R1234ze, R134a, R152a, R22, R236fa, R245fa, 

R290, R32, R404A, R410A, R407C, R417A, R507, R600a, 

R717, R718, R728, R744 

17778 data points 
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c  
rucial in ANN as during back propagation, learning hidden neu-

ons can discover the salient features characterizing the training

ata [89] . The procedure to select the network architecture mainly

epends on the data volume, input variables available and target

ariable distribution with predictors. The number of nodes in each

ayer is selected heuristically as there is no rule of thumb that dic-

ates the network width and depth. Usually, the number of layers

n the first input layer is more, and then we select the network

rchitecture that tapers down as we have only one output param-

ter. 

As shown in Table 4 , for fixed input parameters finalized above,

ifferent combinations of hidden layers provide different MAE s. For

imple models with only one hidden layer, (20) and (40), the MAE s

re 31.0% and 28.5%, respectively. For these models, the R 2 s are

.41 and 0.44, respectively. As we increase the number of hid-

en layers, even models with (40,30) and (50,30,20,10) do a good

ob with the MAE s shown as 20.6% and 19.8%, respectively. For

50,30,20,10), the R 2 s is as high as 0.95. The comparison between

redicted and experimental heat transfer coefficients for the ANN

odel with hidden layers (40,30) is shown in Fig. 6 (d). With signif-

cant increase in the number of hidden layers, the model reaches

n optimal value for hidden layers of (75,70,60,50,30,20,10), which

s selected as the final model in this study. Increasing the num-

er of hidden layers further leads to overfitting in which the MAE

n the test set increases, thus not providing any further benefit in

redicting capability. 
Based on this optimization, the ANN model with the dimen-

ionless input parameters: Bd, Bo, Co, Fr g , Fr go , Fr f , Fr fo , Pr g , Pr f ,

e g , Re go , Re f , Re fo , Su g , Su f , We g , We go , We f , and We fo , and hidden

ayers (75,70,60,50,30,20,10) will be utilized in this study for pre-

icting the consolidated data as depicted in Fig. 5 . With the final

odel predictions shown in Fig. 7 , we can see that the ANN model

ives an MAE of 14.3% and percentage data predicted within ±30%

s 92.0% and percentage data predicted within ±50% is 97.4%. 

.2. ANN comparison with universal correlations 

The ANN model results based on the test dataset were com-

ared with predictions of the universal corrections by Bertsch et al.

12] , Kim and Mudawar [3] , and Fang et al. [13] . Table 5 provides

 summary of these universal/generalized saturated flow boiling

eat transfer correlations. As we can see in Fig. 8 (a), the MAE for

ertsch et al. [12] is 46.3% and percentage data predicted within

30% is 23.6% and percentage data predicted within ±50% is 55.8%.

ecause the generalized correlation was developed for a smaller

ange of parameters than those predicted in this study, it is not

nreasonable for the overall performance to be low. In Fig. 8 (b),

e can see that the MAE for Kim and Mudawar [3] is 27.4% and

he percentage data predicted within ±30% is 75.3% and percent-

ge data predicted within ±50% is 92.4%. It should be noted that

im and Mudawar [3] only predicts the pre-dryout heat transfer

oefficient data because we discard the post-dryout data based on
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Fig. 8. Comparison of test data points with predictions of previous universal correlations for saturated flow boiling heat transfer by (a) Bertsch et al. [12] , (b) Kim and 

Mudawar [3] , and (c) Fang et al. [13] . 
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the dryout incipience quality predicted by Kim and Mudawar [94] .

The ANN model predicting capability as shown in Fig. 7 is superior

to the correlations by Bertsch et al. [12] and Kim and Mudawar [3] .

In Fig. 8 (c), we can see that correlation by Fang et al. [13] performs

significantly better than both the ANN model and the correlations

by Bertsch et al. [12] and Kim and Mudawar [3] . While this shows

that the correlation predicting capability is very good, the correla-

tion is not as reliable because it uses information of the inner wall

surface temperature to calculate the fluid viscosity in the relation-

ship 

h t p,F ang = 

k l 
D 

F f M 

−0 . 18 B o 0 . 98 F r 0 . 48 
lo B d 0 . 72 

(
ρl 

ρg 

)0 . 29 [ 
ln 

( μl f 

μlw 

)] −1 

Y,

(15)

and Y = 

{
1 f or P R ≤ 0 . 43 

1 . 38 − P R f or P R > 0 . 43 

, (16)

where k l is the liquid conductivity, F f a fluid-dependent parame-

ter, M is the molecular mass, and μlf and μlw 

are the liquid dy-

namic viscosities based on the fluid temperature and the inner

wall surface temperature, respectively. As we can see, the corre-

lation uses a viscosity ratio based on the inner wall surface tem-

perature and saturation temperature, which indirectly gives away

information about the surface temperature, and therefore the heat
ransfer coefficient. Going forward, we will only use the correla-

ion by Kim and Mudawar [3] because of both its reliability and

igh predictability in comparison to other available correlations in

redicting saturated flow boiling heat transfer coefficients. 

Another important measure of the predicting model capability

s its ability to capture individual databases with high accuracies.

ig. 9 (a)–(h) shows the model predictions vs. experimental data

or the eight largest databases used in the consolidated data. Ong

48] which was the largest database including three working flu-

ds, R134a, R236fa, and R245fa, has MAE of 12.5%, and the per-

entage data predicted within ±30% is 95.2% and percentage data

redicted within ±50% is 99%. Similarly, Ducoulombier [45] based

n CO2 has MAE of 12.7% with, and the percentage data predicted

ithin ±30% is 91.1% and percentage data predicted within ±50%

s 96.9%. In general, all eight databases did well and this can be

ttributed to the ability of ANN model being able to learn and

redict the test data better when more training data is provided.

hese databases include a wide variation of geometric and oper-

ting parameters with 7 working fluids: R134a, R1234ze, R236fa,

245fa, R600a, R1234yf, CO 2 , mass velocity: 146 – 1608 kg/m ²s, hy-

raulic diameter: 0.34 – 6mm, reduced pressure: 0.05 – 0.47 bar,

uality: 0 – 0.99, and fluid only Reynolds number: 419 – 20272.

he ANN model predictions were observed to be superior to the

niversal correlation by Kim and Mudawar [3] . While both tech-

iques have their own significance, the new developed ANN model

hows very promising results. 
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Fig. 9. ANN model with hidden layers (75,70,60,50,30,20,10) and input parameters Bd, Bo, Co, Fr f , Fr fo , Fr g , Fr go , Pr f , Pr g , Re g , Re f , Re go , Re fo , Su g , Su f , We f , We fo , We g , 

and We go predicting test data points from individual databases of (a) Ong [48] , (b) Ducoulombier [45] , (c) Copetti et al. [52] , (d) Sempértegui-Tapia & Ribatski [74] , (e) 

Sempértegui-Tapia & Ribatski [73] , (f) Consolini [38] , (g) Agostini et al. [37] , and (h) Grauso at el. [64] . 
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.3. Predicting unseen data with ANN 

ANN models have poor performance for predicting dependent

ariables which are outside the convex hull of the training data as

t is not generalized for the unseen data. [ 95 , 96 ]. Till now, we have

sed the complete consolidated database which includes the 50

ources to generate a training dataset, develop the ANN model, and

redict the corresponding test dataset. It was seen that the ANN

odel developed was observed to do a reasonably good job with

AE of 14.3%. As we are working with a new predicting technique,

or the soft computing algorithm to be acceptable for predictions,

t should be able to learn from known information and use that

nowledge to predict unknown information including completely

nknown datasets. Therefore, it is also important to understand

ow the model will perform if we used it to predict databases out-

ide its training set. In this section, we test various ANN models by

xcluding one or two databases and predicting the corresponding

aturated flow boiling heat transfer coefficients. 

Fig. 10 (a) shows the ANN model predictions when Sempértegui-

apia & Ribatski [73] and Xu et al. [72] were excluded from the

raining database which consisted of the 48 remaining sources [ 28-

8 , 71-77 ]. We can see that when predicting the whole databases

f Sempértegui-Tapia & Ribatski [73] and Xu et al. [72] , the ANN

odel gives a low MAE of 18.7%, and the percentage data predicted

ithin ±30% is 86.5% and percentage data predicted within ±50%

s 94.8%. Specifically, it can be seen from Table 1 that R134a is

he most common working fluid being investigated by various re-

earchers and has been tested over a variety of operating and geo-

etric conditions. Therefore, the remaining database should haves

nough information for the parametric range under investigation

y Sempértegui-Tapia & Ribatski [73] and Xu et al. [72] , thus giv-

ng a low MAE . These two databases combined, included 910 dat-

points, and Table 6 shows parametric variation of this database.

ig.11(a) and 11(b) shows the experimental data and correspond-

ng predictions of local heat transfer coefficient vs. vapor quality

or some selected data from Sempértegui-Tapia & Ribatski [73] and

u et al. [72] , respectively. For Sempértegui-Tapia & Ribatski [73]

ith heat fluxes ranging from 1.5 W/cm 

2 to 4.5 W/cm 

2 as shown

n Fig.11(a), not only are the local values of heat transfer coef-

cients predicted with good accuracy but also the trend in heat

ransfer variation with vapor quality are captured by the model. It

learly captures the initial almost negligible change in heat trans-

er for the lower ranges of vapor quality before a steeper increase,

omething expected in a convective dominant boiling heat transfer

egime. For Xu et al. [72] with heat fluxes ranging from 2.7 W/cm 

2 

o 3.5 W/cm 

2 as shown in Fig. 11 (b), we can see the model cap-

uring the trends to a certain extent, but overpredicting the heat

ransfer coefficient in the high quality region. 

Next, we test ANN models by excluding one of the databases

nd predicting the corresponding saturated flow boiling heat trans-

er coefficients for that excluded dataset. After excluding data from

harnay et al. [67] in ANN model development, the correspond-

ng ANN model could predict this database with MAE of 15.2%

s shown in Fig. 10(b). Similarly, after excluding data from An-

ar et al. [69] in ANN model development, the corresponding ANN

odel could predict this database with MAE of 20.3% as shown in

ig. 10(c). For Charnay et al. [67] and Anwar et al. [69] , the over-

ll MAE is low, but there are some outliers. One main reason for

easonably good model predictions is that similar to R134a data

y Sempértegui-Tapia & Ribatski [73] and Xu et al. [72] , the re-

aining test database has enough information for the parametric

ange under investigating including a number of datapoints for the

orking fluids, R245fa and R1234yf. Table 6 shows parametric vari-

tion of these two databases. Fig.11 (c) and 11(d) shows the exper-

mental data and corresponding predictions of local heat transfer

oefficient vs. vapor quality for some selected data from Charnay
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(a) (b)

(c)
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ANN Model based on [31-71,74-80]
MAE = 16.76%
θ = 86.48%
ε = 94.84%  

Data: Sempértegui-Tapia & Ribatski [73]
and Xu et al. [72]
Working Fluid: R134a
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Fig. 10. ANN model with hidden layers (75,70,60,50,30,20,10) and input parameters Bd, Bo, Co, Fr f , Fr fo , Fr g , Fr go , Pr f , Pr g , Re g , Re f , Re go , Re fo , Su g , Su f , We f , We fo , We g , and 

We go predicting data points from excluded datasets of (a) Sempértegui-Tapia & Ribatski [73] and Xu et al. [72] , (b) Charnay et al. [67] , and (c) Anwar et al. [69] . 
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t al. [67] and Anwar et al. [69] , respectively. For both cases, the

ocal values and variations in heat transfer coefficient are captured

easonably well. Some variations in numbers and trends are seen

n the low quality as well as in some cases the high quality re-

ions of the plot. As these are the regions where heat transfer

hanges show larger changes over small vapor quality variations

s depicted in Fig. 2 , higher chances of underpredicting or over-

redicting exist here. 

Next, we test ANN models by excluding one of the databases

hat is based on a fluid not used in the training dataset. This

atabase is by Wang et al. [68] and here the working fluid is

ropane. The results as seen in Fig. 12 (a) show that the ANN model

id an extremely poor job with MAE of 197.3%. This clearly shows

hat for situations such as this where the working fluid has no

ast data for training, the model might not be able to capture

he heat transfer variation accurately. When we look at the overall

arametric variation of the dimensionless input parameters used

o train the ANN model as shown in Table 6 , we can see that like

ther datasets tested in Fig. 10 , the parametric variation in Wang

t al. [68] is within the maximum and minimum ranges for the

onsolidated databases, showing that the consolidated database in-

ludes to some extent the information needed for predicting data

y Wang et al. [68] . Data from Wang et al. [68] does not change

he minimum and maximum values for consolidated database pa-
ameters in Table 6 . However, if we look closely, some specific

arametric differences can be observed between the database by

ang et al. [68] and the consolidated database. Specific to the

ata for Wang et al. [68] , the dimensionless numbers, Fr f , Fr fo , We f 
nd We fo vary significantly from the mean data of the consoli-

ated database. These variations do not directly show the reason

or poor model predictions, but point out to the fact that the cur-

ent database might include less information about the range of

arameters needed to accurately predict Wang et al. [68] . On the

ther hand the databases by Sempértegui-Tapia & Ribatski [73] , Xu

t al. [72] , Charnay et al. [67] and Anwar et al. [69] , show values

hat are closer to the mean in comparison to Wang et al. [68] . To

heck the contribution of these parameters, we modified the ANN

odel by excluding these 4 parameters. ANN model with input pa-

ameters, Bd, Bo, Co, Fr g , Fr go , Pr g , Pr f , Re g , Re go , Re f , Re fo , Su g , Su f ,

e g and We go , and hidden layers (75,70,60,50,30,20,10) when used

o predict excluded data from Wang et al. [68] gave MAE of 39.6%

o predict this dataset, an improvement but now the data is un-

erpredicted as seen in Fig. 12 (b). Hence, even with the improve-

ent, the remaining parameters cannot capture the trends accu-

ately and might not be directly excluded from the model. In addi-

ion, it should be noted that in the original predicted data plotted

n Fig. 7 , when Wang et al. [68] was part of the training dataset,

t gave an MAE of 22.5% for the test data from its database. This
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Fig. 11. ANN model with hidden layers (75,70,60,50,30,20,10) and input parameters Bd, Bo, Co, Fr f , Fr fo , Fr g , Fr go , Pr f , Pr g , Re g , Re f , Re go , Re fo , Su g , Su f , We f , We fo , We g , and 

We go predicting local heat transfer coefficients vs. vapor quality of excluded data for (a) Sempértegui-Tapia & Ribatski [73] , (b) and Xu et al. [72] , (c) Charnay et al. [67] , and 

(d) Anwar et al. [69] . 

Fig. 12. ANN model with hidden layers (75,70,60,50,30,20,10) predicting excluded data of Wang et al. [68] with (a) input parameters Bd, Bo, Co, Fr f , Fr fo , Fr g , Fr go , Pr f , Pr g , 

Re g , Re f , Re go , Re fo , Su g , Su f , We f , We fo , We g , and We go and (b) input parameters Bd, Bo, Co, Fr g , Fr go , Pr f , Pr g , Re g , Re f , Re go , Re fo , Su g , Su f , We g , and We go . 
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s higher than the MAE of the consolidated data that was 14.3%;

owever, the result is not as bad as when we excluded the dataset

rom the model development as seen in Fig. 12(a). 

The use of a universal ANN model utilizing a consolidated

atabase as that developed in the current study becomes a useful

ool when it can predict test cases for geometric and operating pa-

ameters which might not be within its parametric range. However,

NN models rely strongly on available data and its correlations to

he output parameter, in this case the heat transfer coefficient, and

ore datapoints will certainly improve the predicting capability.

his is seen in the results in Fig. 10 (a)–(c) where without pro-

iding any data from those databases, the model was able to pre-

ict the heat transfer coefficients reasonably well. When less data

s available for the model development, like that observed in Fig.

2(a), we should be careful in directly utilizing the ANN model as

 predicting tool. Over time, however, it is possible that we amass

ore data for such working fluids and include more parametric

ariations that the ANN model will learn to predict data for such

atabases. 

. Conclusions 

In this study, a new method for prediction heat transfer coef-

cient for saturated flow boiling in mini/micro channels is pro-

osed. A universal consolidated database is used to develop a ma-

hine learning based predictive modeling approach for predicting

he data. Key findings from this study are as follows: 

A consolidated database of 16953 data points for flow boiling

eat transfer in mini/micro-channels is amassed from 50 sources.

his included 16 working fluid, reduced pressures of 0.0046–0.77,

ydraulic diameters of 0.15 mm–6.5 mm, mass velocities of 19 <

 < 1608 kg/m 

2 s, liquid-only Reynolds numbers of 27 – 55270 and

ow qualities of 0–1. The database included circular and rectangu-

ar channels, single-channel and multi-channels, and uniform and

on-uniform heating in vertical and horizontal orientations with

espect to gravity 

The consolidated database is split into train and test data. An

ptimization is conducted and the final model architecture consists

f dimensionless input parameters: Bd, Bo, Co, Fr g , Fr go , Fr f , Fr fo , Pr g ,

r f , Re g , Re go , Re f , Re fo , Su g , Su f , We g , We go , We f , and We fo and hid-

en layers (75,70,60,50,30,20,10). This ANN model shows very good

ccuracy in predicting the test data with an MAE of 14.3%, and the

ercentage data predicted within ±30% and ±50% is 92.0% and is

7.4%, respectively. 

The ANN model predicting capability is compared with univer-

al correlations for saturated flow boiling heat transfer. The ANN

odel is superior to the highly reliable universal correlation by

im and Mudawar [3] at predicting the test data, even predicting

ndividual databases with high accuracy. 

The ANN model is modified by excluding certain databases

rom the training datasets and utilized to predict the excluded

atabases. The ANN model did an extremely good job in predict-

ng some databases which included working fluids and parameters

hat are in the training dataset, and poorly when a working fluid

ata was excluded from training dataset. By showing that the ANN

odel could predict test cases from databases unseen by the train-

ng model, the use of a universal ANN model can become an ex-

remely useful tool when it comes to predicting heat transfer coef-

cients for saturated flow boiling in mini/micro channels. 
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