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Research on liquid drop impact, especially during the past two decades, has been motivated by a need for
better predictive capability in many industries. This paper will review published works concerning mass
and momentum interactions during drop impact on a liquid film. First, both experimental and numerical
methods for capturing the evolution of the impact will be highlighted. This will be followed by a detailed
description of the impact, including formations of the ejecta sheet, crown sheet, and splashing of
secondary droplets during high-velocity impact. Other topics reviewed are impact on curved wetted
surfaces, multi-drop impact, and the phenomena of spreading, coalescence and rebound in low-
velocity impact. Each of these phenomena is discussed in terms of underlying physical mechanisms
and predictive correlations and/or models. Despite significant past efforts to understand and characterize
these phenomena, it is shown that much uncertainty remains, especially in regards to the interfacial
features around the drop-film neck region during the earliest stages of the impact. Recent state-of-art
advances in both experimental and numerical methods are shown to play a crucial enabling role in future
research. The review is concluded with recommendations concerning future work that is needed to
address poorly understood and/or contradictory issues.
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Nomenclature

A⁄ spreading factor for wetted sphere
C coefficient
D diameter; crown diameter
d diameter
D⁄ non-dimensional diameter
f impact frequency
Fr Froude number
g gravitational acceleration
H crown height
h film thickness
H⁄ non-dimensional crown height
h⁄ non-dimensional film thickness
K splashing threshold parameter
L⁄ spreading factor for wetted cylinder
La length scale of wall roughness
Lnd non-dimensional length scale of wall roughness
N number of secondary drops
n exponent
Oh Ohnesorge number
P pressure
r radius
Ra wall roughness
Re Reynolds number
Rnd non-dimensional wall roughness parameter
T temperature
t time
v velocity
v⁄ non-dimensional velocity

We Weber number

Greek symbols
a crown’s base angle
l viscosity
l⁄ liquid–gas viscosity ratio
t kinematic viscosity
q density
q⁄ liquid–gas density ratio
r surface tension
s non-dimensional time
/ impact angle
x curvature ratio

Subscripts
b base
c cavity
drop liquid drop
e ejecta sheet
f liquid
film liquid film
g gas
max maximum
r rim
res residual
1 residual (impact) region
2 initial (static) film region
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1. Introduction

1.1. Drop impact applications

The fall and impact of raindrops is a common occurrence in nat-
ure that attracts much curiosity by the observer. As shown in Fig. 1,
similar drop impact is witnessed in many applications found in
agriculture and daily life, such as pesticide spraying of crops [1],
soil and stone erosion [2], sprinkling irrigation, spilled coffee stain,
and ink blot on a desk. However, scientific research on drop impact
is mainly driven by its applications in industrial technology and
equipment because of its favorable heat and mass transfer poten-
tial. They include fuel drop impact in the chamber of internal-
combustion engines with direct fuel injection [3], saline drop
impingement on heat transfer tubes in falling-film evaporators in
desalination and refrigeration [4], water droplet impact on steam
turbine blades, spray cooling of electronic and power devices and
in fire extinguishing [5], plasma spraying, and inkjet printing [6,7].

1.2. Classification of impact targets

In general, impact targets can be classified into (1) dry solid sur-
face, (2) thin liquid film (also termed pre-wet surface) and (3) deep
liquid pool [8], and the collision dynamics of the drop can be vastly
different, depending on the impact target [9–11]. Even though the
splash morphology on a solid surface may seem similar to that on a
liquid film, the underlying mechanisms for the two surface targets
are fundamentally different [12]. For example, high viscosity acts
to promote splashing on a dry surface, but is relegated to a sec-
ondary role on a thin film [13]. Formation of a liquid crown or
splashing on a film requires lower impact energy [14,15], but the
duration of subsequent disintegration is much longer than that
on a dry surface [16]. And, while impact on a solid surface or liquid
pool involves only drop–solid or drop–liquid interactions, respec-
tively, drop impact on a thin film involves far more complex
drop–liquid–solid interactions. Therefore, developing a fundamen-
tal understanding of drop impact can benefit greatly from treating
impact targets separately, and paying special attention to the liq-
uid film target. Interestingly, there is experimental evidence that
a spray impacting even a dry surface would spread a wavy liquid
film upon the surface [17,18]. Therefore, findings related to drop
impact on a liquid film are expected to have broader implications
to dry surface situations as well.

The mechanisms of drop impact have been reviewed by Rein
[11], Yarin [19] and Moreira et al. [20] for all three types of impact
targets. Other reviews include an article by Prosperetti and Oguz
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Fig. 1. Examples of drop impact in agriculture, industry and daily life.

Table 1
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[21] addressing pre-1993 liquid pool impact, and solid surface
impact by Josserand and Thoroddsen [8]. Unlike these reviews,
the present study will focus mostly on the complexities of drop
impact on a thin film, and also include aspects of droplet impact
on a liquid pool bearing similarities with those on a thin film.
The present study will also address topics that have received little
attention in prior reviews, such as multi-drop impact, to identify
pressing needs for further research. Moreover, given the virtual
absence of literature on heat transfer during drop impact on a thin
film, this study will focus on the fluid mechanics of this type of
impact.
Regimes of drop impact on a liquid surface [22].

Regime Range Impact characteristics

Thin film Lnd < h�
< 3R0:16

nd
Impact depends on wall features

Liquid film 3R0:16
nd < h�

< 1:5 Impact is weakly dependent on wall
features

Shallow pool 1:5 < h�
< 4 Impact depends on film thickness but is

independent of wall features

Deep pool h� � 4 Impact is independent of film thickness
1.3. Definition of liquid film

Before addressing the mechanism of drop impact on a thin film,
it is important to determine how a thin liquid film is defined. Tro-
pea and Marengo [22] identified four different types of liquid sur-
faces: thin film, liquid film, shallow pool, and deep pool. As shown
in Table 1, their classification of liquid surfaces is based on the
magnitude of film thickness, h, relative to arithmetical mean value
of wall roughness, Ra, and length scale of the wall roughness, La,
where all three parameters are non-dimensionalized by the drop
diameter, ddrop, prior to impact,

h� ¼ h=ddrop; ð1aÞ

Rnd ¼ Ra=ddrop; ð1bÞ

Lnd ¼ La=ddrop: ð1cÞ
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Table 1 indicates that film regimes (thin film and liquid film)
are restricted to h⁄ < 1.5. Vander Wal et al. [23] recommended a
different classification, with thin films corresponding to h⁄ � 0.1,
and thick films 0.1 6 h⁄ 6 10. Wang and Chen [24] recommended
very thin film classification for h⁄ < 0.1. On the other hand, Cossali
et al. [25] and Motzkus et al. [26] reported that thin films are asso-
ciated with h⁄ < 1. Several investigators emphasized that wall
roughness underneath the film should not be neglected for thinner
films [25,27,28], typically when Rnd � 1 [29,30].
Fig. 2. Schematics of drop impact on a liqu
1.4. Dimensionless parameters governing impact dynamics on liquid
films

Fig. 2 shows various stages and types of drop impact, along with
definitions and nomenclature adopted in the present study. Shown
are (i) the drop prior to impact, (ii) formation of the ejecta sheet,
(iii) transition from ejecta to liquid crown, (iv) formation of liquid
crown following impact without splashing, and (v) formation of
liquid crown following impact with splashing. The ejecta is a very
id film and associated nomenclature.



(a)

(b)

Fig. 3. Experimental imaging of drop splashing: (a) Edgerton’s image of crown
splashing of milk drop [36]. (b) Splashing captured by Deegan et al. [31] using a
high-speed camera with backlighting.
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thin liquid sheet that forms in the earliest stages (first millisec-
onds) of impact, and which culminates in the formation of the liq-
uid crown. Splashing refers to shattering of small secondary
droplets from the crown’s rim.

The main factors that influence the drop impact dynamics
include the liquid drop parameters (diameter, ddrop, impact veloc-
ity, vdrop, temperature, and liquid properties of viscosity, lf, den-
sity, qf, and surface tension, r), the liquid film parameters
(thickness, h, velocity, vfilm, composition, temperature, and features
of underlying surface), and the surrounding gas (velocity, pressure,
temperature, flow regime and gas properties of viscosity, lg, and
density, qg) [19,26]. Various combinations of these parameters
have been used to define non-dimensional parameters in pursuit
of universal results from experiments or simulations. The most
popular non-dimensional groups are:

We ¼ qf v2
drop ddrop

r
; ð2aÞ

Re ¼ qf vdrop ddrop

lf
; ð2bÞ

Oh ¼ lfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qf rddrop

q ; ð2cÞ

Fr ¼ v2
drop

g ddrop
; ð2dÞ

s ¼ vdrop t
ddrop

; ð2eÞ

where We, Re, Oh, Fr, and s denote Weber number, Reynolds num-
ber, Ohnesorge number, Froude number, and non-dimensional
time, respectively. In general, gravity effects can be neglected for
FrP 102 [19,31]. Two other pertinent parameters are the ratios of
liquid–gas density and viscosity [32], which are defined, respec-
tively, as

q� ¼ qf

qg
ð3aÞ

and

l� ¼ lf

lg
: ð3bÞ
1.5. Objectives of study

This paper will review published literature concerning mostly
the fluid mechanics of a drop impacting a liquid film. Included in
the review are depictions of the intermediate stages of evolution
of the impact, supported by detailed identification of dominant
mechanisms, and description of the experimental and/or numeri-
cal techniques used by different authors. Major topics discussed
are crown sheet, ejecta sheet, and splashing for high-velocity
impact. Also reviewed are impact on curved surfaces, the phenom-
ena of spreading, coalescence and rebound associated with low-
velocity impact, and multi-drop impact. The review is concluded
with recommendations concerning future work that is needed to
address poorly understood and/or contradictory issues.

2. Experimental methods

Since Worthington and Cole [33–35] performed their pioneer-
ing visualization experiments of drop impact over a hundred years
ago, by employing an ordinary quarter-plate camera and very short
duration electric flash to illuminate and freeze the image, the drop
impact phenomenon has attracted the artistic curiosity and scien-
tific attention of numerous researchers. In 1954, Edgerton [36] pro-
moted very high-speed (about 10 ls) flash photography and took
the well-known photograph of milk drop crown splashing depicted
in Fig. 3(a). Yet, further developments in high-speed photography
had to wait until the 1960s, with most noteworthy investigations
occurring during the last two decades, owing to great advances
in high-speed imaging technology and ancillary equipment. In
combination with high-intensity direct backlighting, high-speed
cameras have enabled time-resolved imaging of drop–film interac-
tions, including fast splashing resulting from high-velocity drop
impact, as shown in Fig. 3(b). These advances are largely responsi-
ble for the recent understanding of the evolution of drop impact on
a liquid film.

Thoroddsen et al. [37] reviewed the main types of high-speed
cameras used in experimental fluid mechanics, including strobo-
scopic imaging, rotating mirror and drum cameras, beam splitter
cameras, image converter cameras, and 100 billion frames per sec-
ond (fps) cameras. Recently, Versluis [38] also reviewed high-
speed imaging techniques in fluid mechanics, including ultra-
high-speed imaging at frame rates exceeding 1 million fps. He
summarized the criteria for temporal and spatial scales, which
are the basis for selecting an appropriate high-speed imaging sys-
tem for a given application. In general, cameras with shutter
speeds up to 1 million fps are deemed sufficient to observe drop
impact [39–42]. Nonetheless, the speeds cited in most publications
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are no greater than 104 fps. Higher speeds and more sophisticated
optics are required for more intricate and demanding situations,
such as the capture of vortexes [43], bubble entrainment [44,45]
and ejecta sheet [46]. Deeney and Choi [47] used X-ray illumina-
tion to produce extremely short time scales. Zhang et al. [48]
applied a phase-contrast X-ray technique to capture the ejecta,
using the Advanced Photon Source at Argonne National Laboratory.
Compared with the images captured by Thoroddsen [49] using an
ultra-high-speed camera with dual-frame imaging and pulsed
lasers, the images of Zhang et al. provide superior detail and reso-
lution. Using the X-ray technique of Zhang et al., Lee et al. [50,51]
investigated the complex details of bubble entrainment and phys-
ical origin of vortexes. Phase Doppler Anemometry (PDA)
[17,52,53] and the Image Analysis Technique (IAT) [54,55] have
been used recently to capture the size and number of secondary
droplets.

Ninomiya and Iwamoto [56] used Particle Image Velocimetry
(PIV) to investigate the mechanisms of formation of Edgerton’s
drop milk crown. Similar measurements related to drop impact
are available in [57–61]. Overall, PIV technology provides the
important benefit of measuring the liquid velocity field, which is
(a)

(c)

Fig. 4. 3D simulations of drop splashing on liquid films using (a) Smoothed Particle Hyd
et al. [84]), (c) Volume of Fluid (VOF) method (Nikolopoulos et al. [92]), and (d) Volume
crucial to understanding the impact process. Recently, 3D PIV tech-
nology was used in fluid mechanics measurements [62–64], and
may soon become a popular tool for investigation of drop impact.
An even more promising technique is high-speed holographic
imaging, which is described by Thoroddsen et al. [37].

3. Numerical methods

Two-phase flows in the natural and industrial worlds involve
highly complex phenomena stemming from existence and
deformations of liquid–gas interfaces, which are primary reasons
behind the difficulty simulating two-phase flows [65]. In fact,
one of the key challenges in simulating drop impact is achieving
a sharp interface.

Using the Marker and Cell (MAC) technique [66] to predict the
interface, Harlow and Shannon [9] were the first to numerically
simulate drop impact on a liquid film. Since then, several other
numerical methods were adopted. Among those, the Volume of
Fluid (VOF) method [67] has become quite popular in both 2D
[68–71] and 3D simulations [72]. With this method, which con-
serves mass quite well, the interface lies within a control volume
(b)

(d)

rodynamics (SPH) method (Xu et al. [90]), (b) Lattice Boltzmann Method (LBM) (Shi
of Fluid (VOF) method (Rieber and Frohn [72]).
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with a liquid volume fraction of 0–1. Its main disadvantage is that
the interface normal vector and curvature are difficult to calculate,
resulting in a low quality interface. Another popular method for
liquid drop impact simulation is the Level Set Method (LSM) [73],
applications of which are available in [74,75]. With this method,
the interface is represented implicitly as a zero level set of a con-
tinuous function, providing an accurate means for calculating the
interface normal vector and curvature, alas at the expense of
reduced accuracy in conserving mass. Sussman and Puckett [76],
and Son [77] proposed the Coupled Level Set and Volume of Fluid
(CLSVOF) method to combine the advantages of the VOF and LS
methods in computing incompressible two-phase flows. With the
CLSVOF method, the interface normal vector and curvature are
calculated using a ‘distance function’ instead of the volume frac-
tion in the VOF method. Recent applications of the CLSVOF method
in drop impact simulations can be found in [32,65,78–81].

Other methods used in drop impact simulations include the
Boundary Integral Method (BIM) for scalar velocity potential
[27,46], and, the Lattice Boltzmann Method (LBM) [82–86], which
does not need to track or construct the gas–liquid interface.
Recently, more attention has been given to Lagrangian particle
methods. They include the Smoothed Particle Hydrodynamics
(SPH) method [87,88] and the Moving Particle Semi-implicit
(MPS) method [89]. Generally, particle methods offer two key
advantages over grid-based ones. First, they can handle
convection-dominated flows without numerical diffusion. Second,
they are inherently well suited for simulating large deformation
flows and fragmentation problems due to their mesh-free formula-
tion, and particle method programs are relatively easy to
implement. The second advantage is the key reason behind the
popularity of particle methods in simulating single drop impact
on a liquid film [90,91]. Fig. 4 shows 3D simulations of the splash-
ing following drop impact on a liquid film using different numeri-
cal methods, including the Smoothed Particle Hydrodynamics
(SPH) method, Fig. 4(a), Lattice Boltzmann Method (LBM), Fig. 4
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Fig. 6. PIV measurements of radial velocity during crown sheet formation in milk
drop 0.0160–0.0167 s after impact for vdrop = 2.43 m/s and h⁄ = 0.3125. Adapted
from Ninomiya and Iwamoto [56].
(b), and Volume of Fluid (VOF) method, Fig. 4(c) and (d). The two
VOF examples shown are based on different assumptions govern-
ing the influence of disturbances on the splashing process. In
Fig. 4(c), disturbances are inherently induced from the drop’s
motion prior to or during impingement. On the other hand,
splashing in Fig. 4(d) is achieved by incorporating a random distur-
bance to initial velocities of the drop and film in each control
volume.
4. Crown sheet and splashing

4.1. Crown formation mechanism

Fig. 5 shows evolution of the crown-like liquid sheet without
splashing, which results from high energy impact. It is different
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Fig. 7. (a) Schematic of crown formation based on kinematic discontinuity. (b)
Predicted shape of crown evaluation for water withWe = 842 and h⁄ = 0.29. Adapted
from Roisman and Tropea [96].
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Fig. 9. Effects of wall curvature for drop-cylinder impact on crown shape for
butanol with We = 327–371 and h⁄ = 0.031–0.048. Adapted from Liang et al. [100].
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from the more common crown depictions with many secondary
features along the topmost rim of the crown sheet resulting from
instabilities as shown earlier in Fig. 3(a) and (b). The intact shape
of the crown in Fig. 5 is time dependent but not influenced by
We number [72]. The crown is no longer observed for very thin
films with h⁄ < 0.02 [93].

When a liquid drop collides vertically with a liquid film, the
fluid inside the drop experiences a violent redirection from vertical
to radial. As proposed by Yarin and Weiss [27], a kinematic discon-
tinuity is formed as the fast redirected liquid meets the static liq-
uid film, which contributes to the crown’s formation and
propagation. This theory has been widely accepted, and validated
by velocity fields in both simulations [68,94] and PIV measure-
ments [56]. Fig. 6 shows PIV measurements that clearly capture
the discontinuity in liquid velocity. It should be emphasized that
the theory of Yarin andWeiss does not account for viscosity effects.

Levin and Hobbs [16], Cossali et al. [25], and Liang et al. [65] all
reported that crown formation is greatly influenced by film thick-
ness, while this influence was ignored by Yarin and Weiss. Trujillo
and Lee [95] adopted the concept of kinematic discontinuity but
also addressed the influence of film thickness theoretically, and
addressed viscous force effects by comparing predictions of the
mass absorbed into the crown using viscous and inviscid assump-
tions. However, Roisman and Tropea [96], who ignored surface ten-
sion and viscous forces, pointed out that differences between the
viscous predictions of Trujillo and Lee and inviscid predictions of
Yarin and Weiss are not significant, suggesting that the main factor
influencing crown formation in the case of high impact velocity is
liquid inertia. Fig. 7(a) shows a Roisman and Tropea’s schematic of
crown formation resulting from kinematic discontinuity. In this
figure, h1 and v1 represent film thickness and liquid velocity in
the impact region, and h2 and v2 film thickness and liquid velocity
in the static film region, respectively. The crown thickness at the
base, hb, and crown angle, a, were expressed, respectively, as

hb ¼ h1 þ h2 ð4aÞ
and

a ¼ arccos
ðh1 � h2Þðv1 � v2Þ2
hbðv1 � v2Þ2 � 8r

qf

8<
:

9=
;: ð4bÞ
 (a)

 (b)

ρ = 815 ρ = 200

μ = 1 μ = 0.5

Fig. 8. Effects of gas density (a) and viscosity (b) on crown shape for
Fig. 7(b) shows analytical predictions of crown shape evolution by
Roisman and Tropea for water with We = 842 and h⁄ = 0.29.

Several external factors have been identified that can affect
crown evolution, such as surrounding gas viscosity and density
[32,86,97,98], impact target geometrical shape [99,100], velocity
of flowing film [39,85,101], and pre-impact shape of liquid drop
[97]. Liang et al. [32] predicted an incurve of the crown with
decreasing density ratio, especially for density ratios of l⁄ < 100,
Fig. 8(a), which they attributed to large gas velocity differences
between crown’s upper and lower levels. They also showed that
decreasing the liquid–gas viscosity ratio below l⁄ = 0.5 suppresses
crown expansion, Fig. 8(b), because of the combined effects of
pressure difference and gas velocity in the drop-film neck region.
Later, Liang et al. [100] investigated drop impact on a wetted
cylinder and showed that the liquid sheet almost bestrides on
the cylinder surface for a curvature ratio of x = 0.462, Fig. 9, but
 

 

ρ = 100 ρ = 50

μ = 0.1 μ = 0.05

water with We = 693 and h⁄ = 0.3. Adapted from Liang et al. [32].
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eventually slides downward due to gravity. But by reducing x (i.e.,
increasing the cylinder’s diameter), the behavior of the liquid sheet
gradually approaches that for drop impact on a flat film.

4.2. Crown evolution

4.2.1. Crown diameter
The main geometrical parameters of crown formation are

crown diameter, D, height, H, angle, a, and thickness. Shown in
the 2.0-ms image in Fig. 5 are the crown height and two different
outer crown diameters, Db and Dr, corresponding to the crown’s
base and top rim, respectively. Another diameter cited by some
authors is the crown’s inner diameter [54,91,102]. The height, H,
is measured from the base to the rim, and angle, a, refers to the
angle at the base; this angle changes away from the base because
of the crown wall’s curvature. Yarin and Weiss [27] recommended
a theoretical square-root dependence of non-dimensional crown
diameter, D⁄, on non-dimensional time, s,

D� ¼ Cðs� s0Þn n ¼ 1=2; ð5Þ
where s0 corresponds to initial value corresponding to moment of
impact. However, attempts to fit experimental data using Eq. (5)
proved unsuccessful [102], which implies this relation is not appli-
cable to all types of crown evolution. In fact, correlations by other
researchers, which are listed in Table 2, prove that the value of
exponent n in several situations is slightly less than the 1/2 value
recommended by Yarin and Weiss. Additionally, Cossali et al. [54]
reported that, while the coefficient C in Eq. (5) is independent of
the film thickness, it is not constant but weakly dependent on
impact velocity.

Liang et al. [65] investigated the dependence of crown size on
drop Weber number, We, and Reynolds number, Re, by varying
impact velocity and physical properties separately. They showed
that the crown diameter is independent of We and Re, a conclusion
shared by Rieber and Frohn [72], Josserand and Zaleski [104], and
Table 2
Correlations of crown diameter.

Author(s) Fluid(s) Test

Yarin and Weiss [27] Ethanol or mixtures of ethanol,
glycerol, and water

ddrop
vdrop

Cossali et al. [54] Distilled water ddrop
vdrop
h = 1
h⁄ =

Rieber and Frohn [72] Water–air system, q⁄ = 1000, l⁄ = 40 We =
Oh =
h⁄ =
We =
Oh =
h⁄ =

Trujillo and Lee [95] Ethanol ddrop
vdrop
h⁄ =

Davidson [103] Water We =
h⁄ =

Xie et al. [91] Glycerol–water solution We =
Oh =
h⁄ =

Guo et al. [80] Water ddrop
vdrop
h⁄ =
Agbaglah and Deegan [105]. However, Fujimoto et al. [106] used
numerical simulations to determine that surface tension plays a
measurable role in reducing the development of the crown’s liquid
sheet.

Another parameter that influences crown diameter is non-
dimensional film thickness, h⁄. Some investigators suggest that
crown diameter can be increased by reducing h⁄ because of the
decreased energy dissipation and liquid mass [65,95]. However,
theoretical studies [27,72] have shown that increasing h⁄ has an
adverse effect on crown diameter. Cossali et al. [54] and Lee
et al. [74] suggested that crown diameter is only weakly dependent
on h⁄. Ninomiya and Iwamoto [56] found that, for a milk drop, the
crown’s base diameter, Db, increases while the rim diameter, Dr,
gradually decreases as h⁄ is increased from 0.11 to 1.1, and the
influence of h⁄ can be neglected for h⁄ > 1.5. On the other hand,
Mukherjee and Abraham [86] concluded that crown diameter
grows with increasing film thickness for thin films (h⁄ < 0.25),
but decreases for thick films (0.25 < h⁄ < 2); the latter trend is
caused by more of the impact drop’s energy being absorbed by
the thick film [86].
4.2.2. Crown height
The model by Roisman and Tropea [96] shows that non-

dimensional crown height, H⁄ = H/ddrop, increases appreciably with
increasing h⁄. However, experiments by Cossali et al. [54] showed
a strong dependence of crown height evolution on We but a very
weakdependence onh⁄, as shown in Fig. 10. They attributed the con-
flicting conclusions regarding the influence of h⁄ to the fact that the
analytical model of Roisman and Tropea does not account for veloc-
ity component normal to the wall when varying the film thickness
[54]. In studies by Davidson [103] and Šikalo and Ganić [15], the
crown height achieved at a given instant increases with increasing
h⁄. Later, Mukherjee and Abraham [86] identified different crown
height trends for very thin films, h⁄ < 0.25, versus those for thicker
films, h⁄ > 0.25. Using an energy balance, Macklin and Metaxas
conditions Correlation(s)

= 70–340 lm,
up to 30 m/s

D�
r ¼

2v1=2
drop

61=4p1=2m1=8
f

d1=4
drop

f 3=8
ðs� s0Þ1=2

simplified to D�
r ¼ 2 2

3h�

� �1=4
ðs� s0Þ1=2

= 3.82 mm ± 4%,
= 2.3–4.4 m/s,
.1–4.3 mm,
0.29–1.13

D� ¼ Cðs� s0Þ0:43�0:03 ; s0 ¼ 0—1:5

250,
0.0014,
0.116

D�
r ¼ 2:44s0:406; D�

b ¼ 2:116s0:459

598,
0.0014,
0.116

D�
r ¼ 2:30s0:441; D�

b ¼ 2:130s0:444

= 3.4 mm,
= 1.3 m/s,
0.25

D�
r ¼ Cs1=2

20–400,
0.1–0.5

D�
b ¼ Cs1=2

2010,
0.0384,
0.5

D� ¼ 0:01826ðsþ 0:4Þ1=2 for crown’s inner diameter

= 2 mm,
= 2.75–4.32 m/s,
0.3–0.7

D�
r ¼ Csn; n ¼ 0:469; 0:447and 0:435 for h⁄ = 0.3,

0.5 and 0.7, respectively
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[107] derived a relation betweenmaximumcrown height,H⁄
max, and

maximum diameter of the cavity, D⁄
c-max, beneath the crown,
H�
max ¼

1þ 6We�1 þ 2Fr�1 � 3We�1 h�D�
c-max

6We�1D�
c-max

: ð6Þ
It should be emphasized that all parameters in the above equation
were scaled by drop radius, ddrop/2, rather than drop diameter.
Regarding the influence of liquid properties, high viscosity and high
surface tension have been reported to inhibit crown height growth,
with the crown dying out faster at higher viscosities [74,106].
H
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Fig. 11. Crown evolution of ethanol drop with narrow ri
Cossali et al. [54] concluded that non-dimensional maximum
height, H⁄

max, and corresponding non-dimensional time, smax,
depend on impact velocity but are weakly dependent on film thick-
ness. They recommended correlations for both H⁄

max and smax of the
form CWen, where 0.65 < n < 0.75 [54]. On the other hand, Asadi and
Passandideh-Fard [71] recommended the following correlations for
the same parameters for We = 296–1020,

H�
max ¼ 0:0025 We ð7aÞ

and

smax ¼ 0:0037 We1:2: ð7bÞ
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m for h⁄ = 0.3 and vdrop = 3.65 m/s (Guo et al. [109]).
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4.2.3. Crown angle
The theoretical model by Roisman and Tropea [96] resulted in

the crown angle relation given by Eq. (4b). Unfortunately, this
relation includes liquid velocity in the liquid film, which is difficult
to determine. Wang and Chen [24] determined that the crown wall
is almost perpendicular to the horizontal liquid film (i.e., a = 90�)
for h⁄ = 0.5. Later, Fedorchenko and Wang [108] noted that the
crown angle is determined entirely by film thickness, independent
of impact velocity or liquid properties. They concluded that, in the
initial stages of crown emergence, a = 90� for h⁄ P 0.25, but for
very thin films with h⁄ < 0.25, the crown angle can be determined
from

cos a ¼ 1� 4h�
: ð8Þ
4.2.4. Crown thickness
Several researchers reported the formation of crowns with nar-

row or closed rims [26,56,109] as shown in Fig. 11. It is believed
that the formation of a closed rim crown, which tends to capture
a large bubble, is strongly influenced by non-dimensional film
thickness and impact velocity [110]. However, to the authors’
knowledge, there is no published research addressing or predicting
the angle of the top inclined rim for closed rim crowns as shown in
the 10-ms image in Fig. 11.

The crown generated by drop impact on a film does not acquire
uniform thickness, and determination of the detailed thickness is
quite illusive. Using a light intensity technique, Cossali et al. [54]
were able to obtain approximate measurements of this so-called
normal thickness, defined as half the difference between the outer
and inner crown diameters. Therefore, detailed temporal and spa-
tial distributions of crown thickness can only be determined from
numerical simulations [106], which reveal this thickness decreases
with decreasing surface tension.
4.2.5. Cavity beneath the crown
Studies have shown that concentric capillary ripples travel

along the cavity sidewall and change the shape of the cavity from
hemispherical for deep pools and oblate for films to conical
[91,111]. In the initial stages of cavity expansion, the cavity diam-
eter follows closely the square-root time dependence predicted by
Yarin and Weiss [27]. But, at later stages, the cavity evolution
Methanol Propan

Fig. 12. Prompt splashing in methanol drop impact, and delayed splashing in propanol a
Vander Wal et al. [23].
deviates from this dependence because of capillary and gravita-
tional effects [112].

Macklin and Metaxas [107] theoretically derived the following
relation for maximum cavity radius by assuming a hemispherical
cavity shape and neglecting kinetic energy of the target liquid,

D�
c-max

2
¼ Fr 3:3We�1 þ ð10:7We�2 þ 2:4Fr�1ð1þ 2Fr�1 þ 6We�1ÞÞ1=2

n oh i1=2
:

ð9Þ
Roisman and van Hinsberg [112] modeled the cavity growth

theoretically using the kinematic discontinuity approach. Their
model yielded the following relations for cavity radius and time
required to reach maximum radius,

D�
c

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bs0 � 2h�

WeD�
c-max=2

þ 4
We

þ h�2

Fr

 !
s02
h�

vuut ð10aÞ

and

sc-max ¼ bh�

2
2h�

WeD�
c-max=2

þ 4
We

þ h�2

Fr

 !�1

; ð10bÞ

where b and s0 are functions of only the initial film thickness for
0.5 < h⁄ < 2, and given, respectively, by

b ¼ 0:62h��0:33 ð11aÞ
and

s0 ¼ s� 0:8h�1:7
: ð11bÞ

Assuming a hemispherical cavity shape, Berberović et al. [111]
showed analytically that initial growth of the cavity for s > 2 fol-
lows the relation

D�
c

2
¼ 2�4=5ð5s� 6Þ2=5; ð12Þ

which showed good agreement with experimental data. They also
derived the following relation for residual film thickness,

h�
res ¼ CRe�2=5; ð13Þ

where the coefficient C is a function of h⁄, We and Fr. Later, van
Hinsberg et al. [113] recommended the following approximate scal-
ing relation for C,
ol Butanol

nd butanol drop impact for ddrop = 2 mm, h⁄ = 0.1 and vdrop = 3.15 m/s. Adapted from



Fig. 13. (a) Schematic of drop impact on inclined wetted wall, and (b) variation of
modified Weber number for splashing threshold with impact angle for different
values of Oh. Adapted from Liang et al. [117].
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C ¼ 0:098h�4:0413 þ 0:79: ð14Þ
This equation agrees well with experimental measurements for

h⁄ 6 1.5, but shows some deviation around h⁄ = 2.0, where the
effect of film thickness becomes much weaker and the initial
impact resembles that with a deep liquid pool. Hillen et al. [114]
reported that static film thickness has stronger influence on
minimum liquid volume under the cavity than the initial drop
parameters, but that the latter parameters do influence cavity life-
time. Kuhlman et al. [115] measured the time dependence of liquid
volume beneath the cavity, and determined that this volume is
maintained at 30–35% of the drop volume over much of the cavity
lifetime. They also measured the thickness of the residual film
using a non-contact optical thickness sensor, and determined that
this thickness decreases away from the cavity centerline to the
immediate vicinity of the inner crown wall.

4.3. Splashing phenomena

4.3.1. Splashing types
Splashing takes place at relatively high drop impact velocities,

and is accompanied by the production of tiny drops, named
secondary droplets [19,23,25]. This phenomenon is crucial to
atomization, but is often detrimental in coating processes, such
as ink jet printing and pesticide delivery [12]. Cossali et al. [25] dis-
tinguished two types of splashing: prompt splashing and delayed
splashing. Prompt splashing is associated with droplet ejection
from the crown’s rim while the crown is still growing, as shown
for methanol drop impact in Fig. 12. On the other hand, delayed
splashing occurs near or after the crown reaches maximum height
as shown for propanol and butanol in Fig. 12, and is associated
with breakup of the crown’s rim. Additionally, delayed splashing
can often be observed in the latter stages of prompt splashing as
shown for methanol in Fig. 12.

Overall, the splashing type can be influenced by viscosity and
surface tension. Experiments by Cossali et al. [25], Motzkus et al.
[116], and Liang et al. [117] reveal that prompt splashing takes
place in low Oh (i.e., low viscosity) situations, while high Oh (high
viscosity) systems result in delayed splashing, and secondary dro-
plets in prompt splashing are much smaller than those in delayed
splashing [25,118]. Vander Wal et al. [23] conducted extensive
experiments with different liquids to assess the influence of liquid
properties on splashing. They reported that high surface tension
inhibits splashing regardless whether the target surface is dry or
covered with a thin liquid film. The same conclusion was drawn
later by Liang et al. [117]. However, viscosity has different influ-
ences for a dry versus wet surface, promoting splashing on the
dry surface but resisting splashing for droplet impact on a thin film
[23].

Another factor that may influence the splashing is properties of
the surrounding gas. Liang et al. [32] concluded that increasing gas
viscosity serves to suppress splashing, but gas density has no
influence on splashing. The latter conclusion was also confirmed
in experiments by Zhang et al. [119]. Xu et al. [120,121] and
Driscoll and Nagel [122] demonstrated that splashing on a solid
surface can be completely suppressed by decreasing pressure of
the surrounding gas; similar gas pressure effects may be expected
for impact on a thin film.

4.3.2. Splashing mechanisms
A key method to investigating the splashing mechanism is to

determine the splashing threshold, above which secondary
droplets begin to form. This threshold is highly dependent on
surface tension and is, therefore, expressed in terms of either We
alone, or We in combination with other parameters. For impact
on an inclined wetted surface or moving liquid film, splashing is
asymmetric and impact angle, /, must be incorporated in the
thresholds [39,123]. Liang et al. [117] and Šikalo et al. [124] sug-
gested that using normal Weber number, Wesin2/, to account for
impact angle yields good agreement with normal splashing on a
horizontal film. Studies reveal that the threshold We is influenced
by both viscosity and film thickness. Fig. 13 shows that the influ-
ence of viscosity is reflected in the threshold We increasing with
increasing Oh [24,25,71,125]. However, there is disagreement con-
cerning the influence of film thickness. Cossali et al. [25] pointed
out that the threshold We generally increases with increasing h⁄,
and Rioboo et al. [93] drew the same conclusion even for very thin
films with h⁄ = 0.02–0.04. However, other investigators suggested
the threshold We is independent of h⁄ for thin films with h⁄ < 0.1
[24,71,126].

Given that both surface tension and viscosity have a strong
influence on splashing thresholds, even for low viscosity liquids
[93], use of We alone is insufficient to describe the threshold. A
preferable method is to use K-type correlations combining drop
inertia with surface tension force (We), viscous force (Oh or Re),
and film thickness (h⁄). Table 3 shows several correlations that
are based on this method. Notice that, while the majority of corre-
lations are based solely on We and Oh, a few [54,116,127,128] also
account for h⁄.

Motzkus et al. [116] used their experimental data to assess the
predictive accuracy of some of the correlations in Table 3. Their
comparisons of data to correlations are shown in Fig. 14(a)–(d) in
the form of threshold We versus h⁄ for Oh = 2.4 � 10�3,
6.8 � 10�3, 9.5 � 10�3 and 1.5 � 10�2, respectively. The data are
segregated according to delayed slashing (D), prompt splashing
(P), and coalescence (C). For Oh = 2.4 � 10�3, Fig. 14(a), the



Table 3
Correlations for critical K required to initiate splashing into small droplets.

Author(s) Fluids Test conditions Correlation(s)

Walzel [129] Glycerol–water mixtures h⁄ = 0.1 K ¼ We Oh�0:4 ¼ 2500

Yarin and Weiss [27] Ethanol, ethanol–glycerol–water mixtures ddrop = 70–340 lm,
vdrop up to 30 m/s

vdrop ¼ r
qf

� �1=4
m1=8f f 3=8 simplified to

K ¼ We Oh�0:4 ¼ 2400

Cossali et al. [54] Water, glycerol–water mixtures ddrop = 3.07 ± 0.07–
3.51 ± 0.06 mm,
We = 2 � 102–1.6 � 103,
h⁄ = 0.1–1,
Oh > 7 � 10�3

K ¼ We Oh�0:4 ¼ 2100þ 5880h�1:44

Marengo and Tropea
[127]

Water – K ¼ We Oh�0:4 ¼ 2074þ 870h�0:23

lf = 50 mPa s Oh > 0.01 K ¼ We Oh�0:4 ¼ 2164þ 7560h�1:78

Rioboo et al. [93] Glycerol–water mixtures, hexadecane, PDMS5,
PDMS10

We = 28–890,
h⁄ > 0.06,
Oh = 1.14 � 10�2–5.48 � 10�2

K ¼ We Oh�0:4 ¼ 2100

Okawa et al. [55] Water We = 2.5–980,
h⁄ = 0.4–68,
Oh = 1.5 � 10�3–7 � 10�3

K ¼ We Oh�0:4 ¼ 2100

Vander Wal et al. [13] Heptane, nonane, decane, dodecane,
tetradecane, hexadecane, deionized water, 30%
glycerol/water, methanol, ethanol, n-propanol
and butanol

Re = 5 � 102–5 � 103,
Oh = 10�3–2.2 � 10�3

K ¼ Oh Re1:17 ¼ 63

Huang and Zhang [128] Water, oil h⁄ = 0.1–1,
qf = 854–998 kg/m3,
lf = 1–22.5 mPa s,
r = 0.029–0.072 N/m

K ¼ ðWe ReÞ0:25 ¼ 25þ 7h�1:44

Motzkus et al. [116] Water, glycerol–water mixtures We = 62–1754,
h⁄ = 0.3–1,
Oh = 2 � 10�3–1.5 � 10�2

K ¼ We Oh�0:4 ¼ 2100þ 2000h�1:44

Gao and Li [101] Water, glycerin–water mixtures h⁄v⁄film = 0.05–0.18,
lf = 1–46.47 mPa s,
r = 0.0657–0.0714 N/m

K ¼ We Re0:5 ¼ 3378ð1þ h�v�2
filmÞ

�1ð1þ h�v�
filmÞ

�0:5
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coalescence/prompt splashing (C–P) limit is independent of h⁄, and
well predicted for 0.5 < h⁄ < 1 by Vander Wal et al. [13] and Okawa
et al. [54], however, h⁄ does appear to influence the prompt/
delayed splashing (P–D) limit. As Oh is increased to 6.8 � 10�3,
Fig. 14(b), the C–P limit begins to show a dependence on h⁄ for
0.3 < h⁄ < 6, and the P–D and C–P limits are predicted well by Cos-
sali et al. [54] and Motzkus et al. [116], respectively. Increasing Oh
further to 9.5 � 10�3, Fig. 14(c), and 1.5 � 10�2, Fig. 14(d), which
are associated with high viscosity liquids, increases the depen-
dence on h⁄, with the C–P limit predicted by the correlation of
Motzkus et al., albeit with less accuracy, while the P–D limit is
incorrectly predicted by the Cossali et al. correlation. These devia-
tions between data and correlations might be related to the fact
that these correlations are tested beyond their validation ranges.

Many authors determined that splashing is greatly influenced
by gas pressure and gas properties [32,40,119–122,130–133]. This
implies that conventional scaling approaches based solely on We,
Re and Oh are insufficient to predict the splashing thresholds. Thus,
more accurate scaling models are required to account for the gas
effects.

4.3.3. Jets and secondary droplets
According to Deegan et al. [31], there are at least three sources

of secondary droplets based each on a different source of instabil-
ity: (i) prompt instability of the ejecta sheet that occurs immedi-
ately upon impact and produces very small droplets, (ii) rim
instability of the ejecta sheet that produces medium sized droplets,
and (iii) rim instability of the crown sheet that produces jets fol-
lowed by large droplets. Fig. 15 shows the third type of instability.
The number of jets along the rim decreases with time for 0 < s < 8,
before stabilizing to about 10, independent of film thickness or
impact velocity [27,54]. The length of jets, which is influenced by
the crown thickness, increases with time [54].

Using theoretical premises, Engel [135] proposed that only
about 5% of the impinging drop’s kinetic energy is carried away
by the secondary droplets. They also found that the total volume
of secondary droplets may reach 2–4 times the volume of the
impinging drop. Okawa et al. [123] reported that when impinge-
ment angle is higher than 40�, an increase in the impingement
angle leads to a substantial increase in the total mass of sec-
ondary drops. Cossali et al. [25] concluded from their experi-
ments that, for high viscosity liquids, secondary droplets
detach only after full development of the crown, whereas the
secondary droplets in low viscosity liquids may begin to detach
from the initial jets. Later, Vander Wal et al. [23] and Davidson
[103] reported that increasing surface tension decreases the
number of secondary droplets while increasing their size during
the splashing. Vander Wal et al. and Motzkus et al. [26] found
that increasing liquid viscosity has the same effect on the num-
ber and size of secondary droplets as surface tension. Motzkus
et al. also reported that increases in impact velocity and diame-
ter of the drop increase the number of secondary droplets in the
2–50 lm size range, and the smallest droplets are created during
the early stages of the crown development. Quantitative works
by Gregory et al. [136] and Hobbs and Osheroff [137] showed
that the number of secondary droplets increases with decreasing
film thickness. Hobbs and Osheroff also concluded the number of
secondary droplets increases with increasing maximum height of
the jet [137]. Allen [138] found that the angle at which the sec-
ondary droplets are ejected depends on h⁄. According to Cossali
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et al. [54], the maximum number of droplets is achieved when
the crown evolution begins (s = 1–3), independent of experimen-
tal conditions. Table 4 provided correlations for the number of
secondary droplets.
To date, the dominant view for the mechanism of production of
secondary droplets is Rayleigh-Plateau [139] capillary instability,
which causes cylindrical jets to break into droplets, driven by
surface tension [34]. Rieber and Frohn [72] found support of the
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Rayleigh-Plateau mechanism by employing large initial perturba-
tions in their 3D simulations. Fullana and Zaleski [140] argued that
the growing cylindrical rim does not break into droplets for mod-
Table 4
Correlations for number of secondary droplets.

Authors Fluids

Yarin and Weiss [27] Ethanol, mixtures of ethanol, glycerol and water

Cossali et al. [54] Water

Okawa et al. [55] Water

(a)

Fig. 16. Splashing mechanism of nonlinear amplification according to Yarin [19]: (a) s

t = 0 ms t = 4 ms t = 8 ms t = 12 ms t 

Rayleigh-Taylor
dominant

Ra

Fig. 17. Mechanism of liquid jet formation and rim breakup from a 3D sheet
erate wavelengths. Additional support of the Rayleigh-Plateau
instability as the leading mechanism for production of secondary
droplets comes from recent studies by Bremond and Villermaux
[141] and Lagubeau et al. [142]. Deegan et al. [143] and Zhang
et al. [134] verified the Rayleigh-Plateau mechanism by measuring
the spectrum of small-amplitude perturbations growing on
the rim.

Yarin [19] and Yarin and Weiss [27], however, concluded that
the number of jets observed in experiments is inconsistent with
the Rayleigh-Plateau mechanism. They suggested the main cause
is a nonlinear amplification mechanism, which they based on the
observation that the free rim always propagates normal to the
crown sheet. According to Taylor [144], a two-dimensional liquid
sheet is rearranged by surface tension into a free rim along the
sheet’s edge. Yarin [145] suggested that a rim on any liquid film
inevitably forms cusps, and these cusps become sites where nearly
one-dimensional jets are squeezed out, thereafter undergoing cap-
illary breakup. This mechanism is shown schematically in Fig. 16
(a) and (b). Roisman et al. [52] proposed that transverse instability
of the rim leads to cusp formation and jetting, and rim deceleration
can accentuate the rim’s instability.
Test conditions Correlation

ddrop = 70–340 lm,
vdrop up to 30 m/s

N ¼ 15pD�
4:5

ddrop = 3.82 ± 4% mm,
vdrop = 2.3–4.4 m/s,
h = 1.1–4.3 mm,
h⁄ = 0.29–1.13

N ¼ Csn; n increases with increasing We

We = 2.5–980,
Oh = 1.5 � 10�3–8.4 � 10�3,
h⁄ = 0.43–68

N ¼ 7:84� 10�6K1:8h��0:3
;

where K ¼ We Oh�0:4

(b)

chematic of splashing mechanism, (b) free rim and secondary droplets formation.

= 14 ms t = 15 ms t = 15.5 ms t = 15.9 ms 

yleigh-Plateau
dominant

of water with Oh = 0.5 and Re = 10. Adapted from Agbaglah et al. [151].
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Mechanisms other than Rayleigh-Plateau and nonlinear ampli-
fication have also been proposed, including combinations of differ-
ent types of instabilities. Roisman et al. [52,146,147] investigated
the linear stability of a receding liquid sheet and concluded that
the liquid rim is subject to both Rayleigh-Plateau and Rayleigh–
Taylor instabilities. And, while Gueyffier and Zaleski [148] evoked
the Richtmyer–Meshkov instability, Krechetnikov and Homsy
[149] suggested a combination of the Richtmyer–Meshkov and
Rayleigh–Taylor instabilities. The Richtmyer–Meshkov instability
arises when a shock wave interacts with an interface separating
two different fluids [150], and combines compressibility effects
with hydrodynamic instability. According to the Krechetnikov
and Homsy hypothesis, liquid along the crown’s rim is initially
impulsively accelerated into the air and is therefore Richtmyer–
Meshkov unstable, and associated with a particular range of wave-
lengths that dictates the number of jets emanating from the rim.
Shortly afterwards, when the interface begins to decelerate, the
Rayleigh–Taylor instability is induced in the individual jets, and
amplified to produce breakup of the secondary droplets. As illus-
trated in Fig. 17, Agbaglah et al. [151] and Krechetnikov [152]
observed that rim instability is driven both by the Rayleigh–Taylor
mechanism, because of initial rim acceleration, and the Rayleigh-
Plateau mechanism, where the Rayleigh–Taylor instability is dom-
inant at short times and the Rayleigh-Plateau becomes relevant at
larger times when the rim begins to generate jets [105,151]. Thor-
oddsen et al. [153] proposed yet another mechanism, suggesting
that when a viscous drop impacts a thin low-viscosity liquid film
with significantly lower surface tension than the drop liquid,
splashing from the crown breakup is promoted mainly by
Marangoni-driven flow [153].
(a)

(c)

Fig. 18. (a) Initial formation of ejecta sheet in mixture of water and glycerin with We =
glycerin with We = 3340, Re = 770 and h⁄ = 0.48. (c) Formation of bubble rings beneath e
and Re = 13,300. (d) Breaking of ejecta sheet in water with We = 1800 and Re = 29,000. (a
Overall, the mechanism governing the production of secondary
droplets remains an open question. The disagreements among
investigators point to a need for more comprehensive experiments
involving broad ranges of operating parameters and fluid proper-
ties to identify truly dominant mechanisms.
5. Ejecta sheet, low-velocity impact and multi-drop impact

5.1. Ejecta sheet

When the liquid drop impacts a liquid film, it ejects a thin liquid
sheet – ejecta sheet – from the drop–film neck region. This sheet,
which is formed during the earliest stages (first milliseconds) of
the impact, is ejected horizontally at high speed, evolving into a
variety of intriguing shapes [49]. The ejecta sheet was first
reported by Weiss and Yarin [46], in their inviscid flow simulations
using the BIM method. Subsequently, Davidson [103] confirmed
the existence of the ejecta sheet by employing a more accurate
BIM discretization technique. Thoroddsen [49] provided the first
photographic records of this phenomenon as shown in Fig. 18(a).
Howison et al. [154] analyzed the ejecta sheet formation using
the theoretical asymptotic method. Josserand and Zaleski [104]
reported that viscosity plays a major role in influencing liquid
motion in the neck region, and dictates the width of the ejecta
sheet that ultimately develops into a crown. Thereafter, surface
tension serves to either allow or prevent the formation of the
ejecta sheet; the latter occurs when high surface tension causes
the leading edge of the ejecta sheet to be pulled back and forms
the crown’s rim as it folds backwards [105].
(b)

(d)

4170 and Re = 1080. (b) Ejecta sheet coming into a crown in mixture of water and
jecta sheet during a water drop impact on a shallow pool of ethanol with We = 532
), (b) and (d) are adapted from Thoroddsen [49], and (c) from Thoraval et al. [155].
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Table 5
Correlations for contact length.

Authors Test conditions Correlation

Josserand and Zaleski [104] h⁄ = 0.15,
We = 8000,
Re = 40–1000

re ¼ 1:1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ddrop vdrop t

q

Coppola et al. [68] h⁄ = 0.1,
We = 8000,
Re = 387–5000

re ¼ 1:476
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ddrop vdrop t

q

Zhang et al. [48] h⁄ > 5,
We = 117–798,
Re = 710–8019

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ddrop vdrop t

q

Agbaglah and Deegan [105] h⁄ = 0.2–5,
We = 200–1000,
Re = 500–4000

re
ddrop

¼ 13
We sþ 0:35

We0:2Re0:5

G. Liang, I. Mudawar / International Journal of Heat and Mass Transfer 101 (2016) 577–599 593
Weiss and Yarin [46] and Deegan et al. [31] summarized the
evolution of the ejecta sheet as follows. (i) The ejecta sheet
becomes the leading edge of the crown sheet, as the latter grows
underneath the former, as shown in Fig. 18(b). (ii) The ejecta sheet
collides with the liquid film to produce bubble rings as shown in
Fig. 18(c). (iii) The ejecta sheet breaks up immediately for prompt
splashing conditions as shown in Fig. 18(d). Condition (iii) may
lead to additional irregularity in the crown sheet and kickstart
crown rim instability. In Fig. 18(b), the leading section of the ejecta
sheet is shown bending down to meet the surface of the liquid film
or pool. When the sheet touches the liquid bellow, it ruptures and
sends off micro-droplets by a ‘slingshot’ mechanism [2]. In Fig. 18
(c), bubble rings are formed, which then break up into many tiny
bubbles. An interesting von Kármán vortex street has been
observed emerging in the bubble rings region [50,155–157].
However, most investigators do not distinguish between the
ejecta and the lamella. As described above, the ejecta sheet is
formed almost immediately (within 100 ls) upon impact, while
the lamella is a slower sheet that emerges after the ejecta, typically
500–1000 ls after impact. Zhang et al. [48] dispelled the ambiguity
concerning the two sheets by providing definitive evidence of both
from experiments using an X-ray technique. Shown in Fig. 19
(a) and (b) are a thin ejecta sheet and a thicker lamella sheet.
Fig. 19(c) shows the ejecta and lamella sheets combining into a sin-
gle sheet. Fig. 19(d) shows a We–Re regime diagram indicating the
number and type of sheets resulting from the drop impact.
Recently, Agbaglah and Deegan [105] found similar evidence of
the two sheets from simulations. As indicated above, the ejecta
sheet becomes the leading edge of the crown at low Re, but breaks
up in the form of prompt random splashing at high Re [31,46].
However, there is a lack of understanding of the earliest stages of
contact, including initial formation of the ejecta sheet [158], as
well as the transition between the more ordered transition of the
ejecta into the leading edge of the crown, and the more random
ejecta splashing. Some of these issues were addressed in a
follow-up study by Zhang et al. [119], who identified a third
type of sheet (secondary ejecta) distinct from the ejecta or the
lamella, that produces droplets with a size intermediate to those
from the ejecta and the lamella. This, of course, adds further
complexity to the depiction of events immediately following the
droplet impact.

The thresholds for ejecta formation, and the ejecta’s speed,
emergence time and position are four important parameters for
quantitative characterization of the ejecta. Weiss and Yarin [46]
indicated that the ejecta occurs at We = 40, but simulations by
Davidson [103] point to a much higher value of We = 200, which
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is close to value of We = 180 obtained experimentally by Zhang
et al. [48].

According to Thoroddsen [49,104] and Josserand and Zaleski
[49,104], the speed, ve, of the intact ejecta decreases with increas-

ing viscosity according to ve � m�1=2
f , and is much higher (over 10

times) than the impact velocity [49,104]. Josserand and Zaleski
related the ejecta speed to impact velocity according to

ve ¼ Re0:5 vdrop: ð15Þ
Thoroddsen [49,104] and Coppola et al. [68] recommended an alter-

native velocity expression of the form ve � m�1=2
f v1:5

drop. However,
experiments by Zhang et al. [48] suggest that the ejecta speed

depends more strongly on impact velocity, ve � m�1=4
f v1:8

drop .

For the ejecta emergence time, te, which is measured from the

moment of impact, Zhang et al. [48] found that te � m1=2f =v2:6
drop,

while Coppola et al. [68] stated that their data do not follow a
power law relative to time.

The ejecta position is defined in terms of contact length, re,
which is the distance from the drop centerline to the neck. Table 5
provides a summary of correlations for re.

Other interesting aspects of the ejecta sheet can be inferred
from pressure distribution shortly after impact. Most significantly,
as shown in Fig. 20, a pressure peak is observed along the impact
neck [65,68,94,104], and the maximum pressure is given by [104]

Pmax ¼ qf v2
drop s

0:5: ð16Þ

Liang et al. [94] pointed out that the high pressure in the neck con-
tributes to the generation of the ejecta sheet, the effect of which
gradually abates with impact evolution as the ejecta sheet develops
into the leading edge of the crown, aided by radial flow in the liquid
film.

5.2. Low-velocity impact

Three important phenomena associated with low-velocity
impact are spreading, coalescence and rebound. Drop spreading is
more commonly investigated in studies of drop impact on a solid
dry wall [83,159–163], mainly for the purpose of describing
t (ms)

Fig. 21. Drop rebound on a wetted cylinder for butanol with
wetting or cooling phenomena. Deposition is a term similar to
spreading, except that it refers to relatively lower velocities, where
the impact fails to generate capillary waves [68]. Coalescence is
commonly encountered in drop impact on a liquid pool at low
velocity [11,78,79,164–167]. In experiments by Liang et al. [117],
a liquid drop impacting a very thin film (less than 100 lm) below
0.74 m/s was observed to avoid coalescing directly with film’s liq-
uid. Instead, the drop spread over the film forming its own liquid
film. About 1–2 min later, liquid from the newly formed film coa-
lesced completely with the original film. But if the film is thick
enough, the impact results in early coalescence between the drop’s
liquid and the original film.

Broad spreading of the drop’s liquid is desired in some applica-
tions such as ink jet printing [168]. Several authors investigated
the drop’s spreading scale (span) in the initial stages following
low velocity impact on a horizontal liquid film [68,69,103,104].
Chowdhury et al. [169] reported the spreading and recoil of
surfactant-containing, low velocity water drops on various alcohol
films with h = 72 lm supported on glass slides. They found that the
concentration of surfactant in the drop plays a crucial role in the
spreading and recoil time of the drop, with higher surfactant con-
centrations hastening both the spread and recoil. Liang et al. [117]
and Šikalo et al. [124] examined low velocity drop impact on an
inclined target covered by a thin film whose thickness is deter-
mined by impact angle, /, and liquid type as shown in Fig. 13(a).
Šikalo et al. speculated that the outcomes of inclined low velocity
impact on a liquid film are similar to those on a dry surface. But
experiments by Liang et al. [117] showed that the two are quite
different, noting that the initial front and back spreading velocities
increase with increasing impact velocity and impact angle. They
explained the unexpected influence of impact angle on the front
spreading velocity by the combined effects of viscous dissipation
and tangential component of the impact velocity. Liang et al.
[170] also showed that the front spreading span can be increased
by increasing impact velocity or reducing impact angle, whereas
the back spreading span is weakly dependent on impact velocity
but increases with decreasing impact angle.

Drop rebound is closely associated with low impact We. Liang
et al. [171,172] investigated drop rebound on wetted cylindrical
and spherical surfaces; images of impact on a cylindrical surface
are shown in Fig. 21. They suggested that the critical We for
rebound must lie between upper and lower limits, rather than be
smaller than a specific value. An impact We above the upper limit
would cause the air layer between the drop and wetted surface to
be damaged by shear upon impact, so the drop begins to spread on
the wetted surface. On the other hand, an impact We below the
lower limit may not possess sufficient kinetic energy to bounce
off the wetted surface. Unfortunately, they were not able to accu-
rately determine the lower limit because of large errors associated
with very low velocity measurements. The upper limit of about
We = 9.2 was found to be insensitive to surface curvature for low
curvatures below x = 0.5, but decreases with increasing curvature
for x > 0.5. For We values exceeding the upper limit, the drop was
observed to spread on very thin films, and the spreading span for
wetted cylinders can be expressed as a power law of dimensionless
time s, according to
We = 4 and x = 0.091. Adapted from Liang et al. [171].
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Fig. 23. Evolution of interfacial behavior for three adjacent water drops impacting a
liquid film with vdrop = 3.84 m/s and h⁄ = 0.6. Adapted from Cossali et al. [174].
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L� ¼ Csn; ð17Þ
as shown in Fig. 22(a) and (b), where the spreading factor L⁄ is the
horizontal spread of the drop normalized by the drop diameter. It
should be noted that the exponent in Eq. (17) is n � 0.5 for
x < 0.5. This power law dependence is similar to that of the crown
diameter by Yarin andWeiss [27] as discussed earlier. For spreading
on spherical surfaces, Liang et al. [173] defined a spreading factor,
A⁄, in terms of the spreading area, As, normalized by the drop’s sur-
face area, Adrop,

A� ¼ As

Adrop
: ð18Þ

The experiments by Liang et al. [173] showed that this defini-
tion of spreading factor yields a rather linear dependence on
non-dimensional time, s, as shown in Fig. 22(c) and (d), instead
of the power law for L⁄ over cylindrical surfaces.

5.3. Multi-drop impact

Research addressing adjacent-drop impact on a liquid film is an
unavoidable step toward understanding the multi-drop interac-
tions prevalent in sprays. Although single-drop research provides
a logical foundation for mechanistic understanding of multi-drop
impact, the models and correlations developed for single drops
cannot be extrapolated to multi-drop impact.

Aside from the secondary droplet formation from single drop
impact discussed earlier, secondary drops can result from crown–
crown interactions in adjacent drop impacts [17]. Roisman and
Tropea [96] examined crown–crown interactions theoretically,
using their kinematic discontinuity model discussed earlier.
Crown–crown interactions were also observed experimentally for
three side-by-side drops by Cossali et al. [174], as shown in
Fig. 23. They reported that these interactions accentuate splashing
due to more sites being generated for jet formation along the rim of
the combined liquid crown. Additionally, splashing was observed
to take place below the We threshold for a single drop, and
break-up of the liquid sheet generated by the crown–crown inter-
actions yields secondary droplets that are larger than those from a
single drop. Barnes et al. [18] named the combined liquid sheet
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hump, and investigated its height with respect to the distance
between impact centerlines of adjacent drops. They showed that
maximum hump height is achieved when this distance is equal
to 2ddrop, and that the hump ceases to exist for distances over
3.5ddrop. Their measurements also show that secondary droplets
from the hump acquire appreciably lower speeds than those from
a single crown.

Xu et al. [90] used 2D simulations to model two drops impact-
ing a thin liquid film, where each drop is represented as a liquid
cylinder impacting the film. For successive impact of drops along
the same axis, a secondary crown is formed [175], the propagation
of which depends on vertical distance between the two drops. For
simultaneous impact (i.e., drops impacting the film in unison), a
liquid sheet similar to the hump in [18,174] was achieved, the
height of which decreases with increasing distance between cen-
terlines of the two drops. Additionally, they computed a large pres-
sure rise in the collision region between the two drops. Similar
conclusions were arrived at in the 2D numerical study by Raman
et al. [85], who also addressed the effects of film thickness, viscos-
ity ratio, density ratio and velocity for thin moving films.

It is important to point out that simultaneous impact is a 3D
problem, which brings into question the validity of findings from
2D simulations. One proof of the limitations of 2D simulations
[85,90] is that they predict crown rims extending outwards from
the wall with crown angles much smaller than those from experi-
ments. Therefore, future multi-drop impact research must rely on
more rigorous 3D simulations that capture the spherical shape of
the impacting drops.

Sivakumar and Tropea [17] investigated drop behavior within a
spray impacting a liquid film. Their experimental data show a
crown proportional to s0.2, which is considerably different from
the s0.5 dependence obtained by Yarin and Weiss [27] for single
drop impact. Sivakumar and Tropea also reported that, even with-
out drop–drop interactions, crown development can be highly
asymmetric, which they attributed to spatial variations in film
thickness and/or film velocity. For a mono-dispersed spray (i.e.,
spray with uniformly sized and equal velocity drops) impinging
on a film, Ghielmetti et al. [176] correlated theWe threshold corre-
sponding to the onset of splashing according to

K ¼ WeOh�0:4 ¼ 759þ 867h�0:15 ð19Þ
where We = 290–830, Oh = 9.9 � 10�3–1.2 � 10�2 and h⁄ = 0.2–1.2.
The critical We values given by Eq. (19) are lower than those for a
single drop, mainly because of multiple drop impact causing
increased waviness and shear in the liquid film. These findings
prove that multi-drop impact on a film cannot be modeled by
superposition of undisturbed single drop impacts.

6. Concluding remarks

This study reviewed published literature addressing the fluid
mechanics of a drop impacting a liquid film. Included in the review
are depictions of the intermediate stages of evolution of the
impact, supported by detailed identification of dominant mecha-
nisms. Key topics discussed are the crown sheet, the ejecta sheet,
and splashing for high-velocity impact. Also reviewed are multi-
drop impact, and the phenomena of spreading, coalescence and
rebound in low-velocity impact. This article also reviewed both
the experimental and numerical techniques used by various
authors to investigate these mechanisms and phenomena. Key
observations from this review can be summarized as follows.

(1) Recent understanding of drop impact, especially the illu-
sive drop–film neck region, have benefitted greatly from
use of advanced experimental methods such as high-
speed imaging and phase-contrast X-ray. Another method
that is expected to play a crucial role in future studies is
3D Particle Image Velocimetry (PIV), owing to its ability
to provide detailed measurements of liquid flow field. Pro-
gress in the understanding of impact behavior is also
expected from recent advances in numerical methods.
The Coupled Level Set and Volume of Fluid (CLSVOF),
Smoothed Particle Hydrodynamics (SPH), and Moving Par-
ticle Semi-implicit (MPS) methods are deemed most
promising in modeling drop impact, particularly in simula-
tions of the splashing process.

(2) Aside from impact parameters of the drop and the film, the
shape and evolution of the crown are greatly influenced by
properties of the surrounding gas and shape and curvature
of the solid wall beneath the film. Overall, the kinematic dis-
continuity theory has been verified both experimentally and
numerically as an effective method for describing the forma-
tion and evolution of the crown sheet.

(3) Two primary types of splashing, prompt and delayed, are
responsible for formation of secondary droplets. In general,
better predictions of splashing thresholds are achieved
with relations of the form K =WeOh�0.4 than with those
based on We alone. The importance of splashing warrants
further investigation of the two splashing types, and
refinement of splashing thresholds. Overall, experiments
involving broad ranges of drop parameters and liquid–
gas combinations, aided by new high-speed imaging
techniques, are needed to better understand splashing
mechanisms and enhance the accuracy of related
correlations.

(4) Several theories have been proposed for dominant mecha-
nisms for the production of secondary droplets by splashing.
And despite the popularity of the Rayleigh-Plateau instabil-
ity and nonlinear amplification as possible mechanisms,
there is increasing evidence that splashing is caused by a
combination of different instabilities. More careful theoreti-
cal, numerical and experimental research is required to
identify the true mechanism(s) of splashing for different
operating conditions.

(5) Early moments of the impact are associated with complex
interfacial features around the drop–film neck region. Three
such features, the ejecta sheet, the adjacent lamella sheet,
and the secondary ejecta sheet have been recently captured
with aid of X-ray techniques. However, uncertainty remains
over such issues as initial formation, speed and emergence
time of the ejecta, and the transition from ejecta to random
splashing.

(6) Multi-drop impact has received far less attention than
single-drop impact. Much of the multi-drop technical kno-
whow concerns the formation and evolution of a liquid
hump from crown–crown interactions of adjacent drops.
Overall, multi-drop impact is highly complicated by interac-
tion among drops and increased waviness and shear in the
liquid film, and therefore cannot be modeled by superposi-
tion of a multitude of single-drop impacts. Multi-drop
impact is therefore a topic that warrants significant new
experimental and theoretical work.

(7) Another very important topic that has been widely over-
looked in the published literature is heat transfer between
a solid wall covered with a liquid film, and an impacting
drop or drops. A new field of study is needed that would cap-
italize upon the present understanding of the fluid mechan-
ics of the impact to determine the heat transfer coefficient
associated with sensible heating, interfacial evaporation or
interfacial condensation.
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