Supplementary Materials

Strengthening high-stacking-fault-energy metals via parallelogram nanotwins

Yuefei Zhang[†],*, Jin Wang[†], Haiquan Shan[†], Kejie Zhao[‡],*

[†]Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, P. R. China

[‡]School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906, USA

*Correspondence should be addressed to Y. Z <u>yfzhang@bjut.edu.cn</u> and K. Z.

kjzhao@purdue.edu

Experimental methods

Fabrication of nanotwinned Ni. High-purity Ni foils samples with nanoscale twins were synthesized by means of electrodeposition on Cu substrate. The deposition was performed in a NiSO₄ and H₃BO₃ solution. The solution was maintained at a pH level of 1.0-3.5 and bath temperature of 30-80 °C. Electrodeposition was done with a two-electrode system with an electrolytic Ni sheet (99.8%) as anode and a Cu plate as cathode. During deposition, the electrolyte was mechanically stirred continuously. The optimized conditions on the twin density were obtained through a series of experiments in which various experimental parameters were tested (Tables S2-S6). The as-deposited Ni foils have in-plane dimensions of 30 mm by 30 mm and a thickness of 30 μm with a uniform microstructure.

Microstructure and mechanical property characterization. The as-deposited Ni foils were peeled off from Cu substrates. The microstructure of Ni foils was characterized by high-resolution

transmission electron microscopy (JEOL 2010F) and conventional transmission electron microscopy (FEI G20). TEM specimens were double-jet electropolished in a solution of 25% nitric acid and 75% methanol at 15 V and -20 °C. Chemical composition analysis on both the asdeposited Ni foils and anode plate was made via X-Ray Fluorescence (Magix pw2403). XRD measurements were performed with a Bruker D8 X-ray detector. For the tensile test, the asdeposited Ni foils were cut into dog-bone-shaped specimens with a gauge length of 12 mm and width of 1 mm for tensile tests. The samples were tested on a CMT5000 testing system (MTS) with a specially designed clamping jig at a nominal strain rate 10^{-4} s⁻¹ at room temperature. The load cell capacity was 200 N. The surface and fracture morphology were imaged using a scanning electron microscopy (SEM, FEI Quanta 250, and JEOL 6500F).

In-situ thermal stability characterization. In-situ thermal stability experiment was performed in a JEOL 2010 LaB₆ TEM operating at 200 kV. A Gatan double tilt-heating holder (Model 625) is used for heating. The maximum operating temperature for the holder is up to 1000 °C. A TEM sample was fabricated by electropolishing, and then was mounted on the TEM heating holder for observation up to 700 °C. The heating rate was 20 °C/min. There is no obvious change of morphology of NT Ni at temperatures below 400 °C.

Table S1. Electrodeposition conditions in the synthesis of Ni samples with parallel and parallelogram nanotwins. Each processing parameter is tested separately in the range listed in the table, and individual effect on the microstructure of as-deposited samples is shown in Tables S2-S5.

Compounds	Parallel Nanotwin	Parallelogram Nanotwin	
NiSO ₄ ·6H ₂ O(g/L)	250-400	250-400	
$H_3BO_3(g/L)$	20-35	20-35	Electrolyte
Temperature($^{\circ}$ C)	30-80	30-80	Ni ²⁺ SO ²⁻
pH Value	1.0-3.5	1.0-3.5	
Current density (A/dm ²)	7-20	7-20	
Pulse (T_{on}/T_{off}) (ms)	20/20-1000	On time Ton	Cathode Anode $Ni^{2+}+2e \rightarrow Ni \qquad Ni \rightarrow Ni^{2+}+2e$

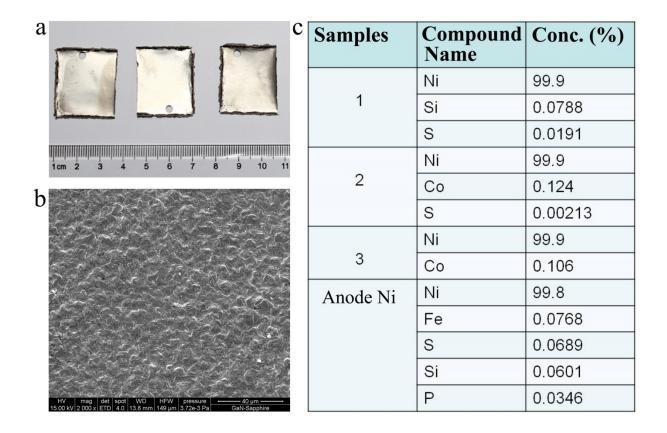
Table S2. Effect of the bath temperature on the average grain size, twin thickness, and twin length in the as-deposited samples.

Bath composition ar	nd conditions used for	deposition	(200)
			(111) (220) 80°C
NiSO ₄ ·6H ₂ O	300(g/L)	ntensity	
H ₃ BO ₃	30(g/L)	Inte	50℃
pH Value	1.5		
Current Density	$15A/dm^2$		30°C
Pulse T _{on} /T _{off}	20ms/20ms	30	
		_	2 Theta /degree
Variable property settings	A	В	С
Temperature /°C	30	50	80
Microstructure Feature	200 nm/	200 nm	200 am
Materials	(nm)	(nm)	(nm)
Properties		-	
Average Grain Size	850	600	350
Twin thickness	55	35	30
Twin length	650	350	200

Table S3. Effect of the current density on the average grain size, twin thickness, and twin length in the as-deposited samples.

Bath composition	n and conditions us	sed for deposition	_	(220)
NiSO ₄ ·6H ₂ O H ₃ BO ₃ pH Value Temperature PulseT _{on} /T _{off}	350(g/ 35(g/ 1.5 30°C 20ms		Intensity (III)	20 A/dm ² (113) 15 A/dm ² 10 A/dm ² 7 A/dm ² 50 60 70 80 90 100 2 Theta /degree
Variable property settings	A	В	С	D
Current density (A/dm ²)	7	10	15	20
Typical Microstructure Feature	<u>15-2_</u> µnj		<u>0.7</u> μm	0.2. um
Materials Properties	(nm)	(nm)	(nm)	(nm)
Average Grain Size	600	600	450	300
Twin thickness	110	80	50	30
Twin length	550	500	400	300

Table S4. 1 Effect of the Ni²⁺ concentration on the average grain size, twin thickness, and twin length in the as-deposited samples.


Rath composition	and conditions	ısed for deposition		(220)
Dath Composition	and conditions	isca for acposition	- [400 g/L
H ₃ BO ₃	35(g/L)		(113)
pH Value	2.0	5,)	Intensity	350 g/L
Temperature	30°		— <u>-</u> -	300 g/L
PulseT _{on} /T _{off}	20n	ns/0		NiSO ₄ : 280 g/L
Current density	$\frac{25 \text{MeV}}{15 \text{A/dm}^2}$		-	
			30 40 50 2	60 70 80 90 100 Theta /degree
Variable	A	В	С	D
property settings				
$NiSO_4 \cdot 6H_2O(g/$	280	300	350	400
L)				
Typical			CE STATE	AND THE PARTY OF T
Microstructure				
Feature				
	建工		100	
	200 nm	200 nm		
Materials	(nm)	(nm)	(nm)	(nm)
Properties				
Average Grain				
Size	550	400	500	450
Twin thickness	85	50	40	35
Twin length	500	400	450	450

 $\begin{table}{ll} \textbf{Table S5.} Effect of the T_{on}/T_{off} on the average grain size, twin thickness, and twin length in the as-deposited samples. \end{table}$

1			<u>-</u>	
Bath compositi	ion and condition	ns used for deposition	-	20ms/1000ms
NiSO ₄ ·6H ₂ O	30	00(g/L)	- sity	20ms/500ms
H ₃ BO ₃		5(g/L)	Intensity	
pH Value	*	.0		20ms/20ms
Temperature	30	0°C	-	T _{on} /T _{off} =20ms/0ms
Current density	1:	5A/dm ²	-	
	·		30 40	50 60 70 80 90 100 2 Theta /degree
Variable property settings	A	В	С	D
Pulse T _{on} /T _{off}	20ms/0	20ms/20ms	20ms/500ms	20ms/1000ms
Typical Microstructure Feature	90m	0.2 Jh		100 np
Materials Properties	(nm)	(nm)	(nm)	(nm)
Average Grain Size Twin	600	500	400	350
thickness	50	60	50	30
Twin length	300	400	200	300

Table S6. Qualitative effects of the variation of experimental parameters on the twin density and average grain size in the as-deposited samples. The up-arrow represents the increase of the quantity, down-arrow the decrease, and left-right arrow no obvious change. Quantification of each individual effect is shown in Tables S2-S5.

Electrolyte:	Temperature	pH Value	Current density	T _{off} time	Ni ²⁺ concentration
NiSO ₄ +H ₃ BO ₃	Î	Î	1	Î	Î
Twin density	1		Î	Î	Î
Grain Size	$\hat{\mathbb{I}}$				\bigcirc

Figure S1. Morphology and composition of as-deposited Ni foils. (a) Ni foils synthesized by electrodeposition. The peeled-off samples have in-plane dimensions of 30 mm \times 30 mm and thickness of 30 μ m. (b) A SEM image shows the surface morphology. (c) Composition analysis indicates the high purity of as-deposited samples.

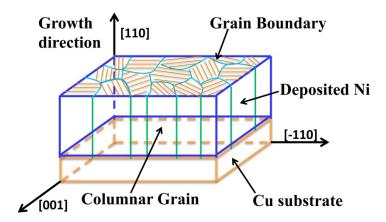
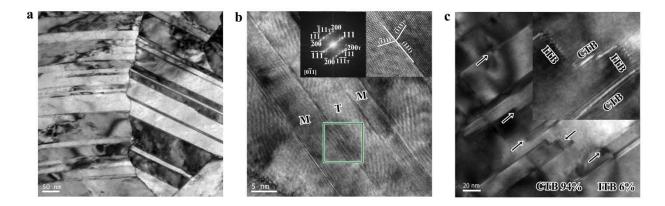
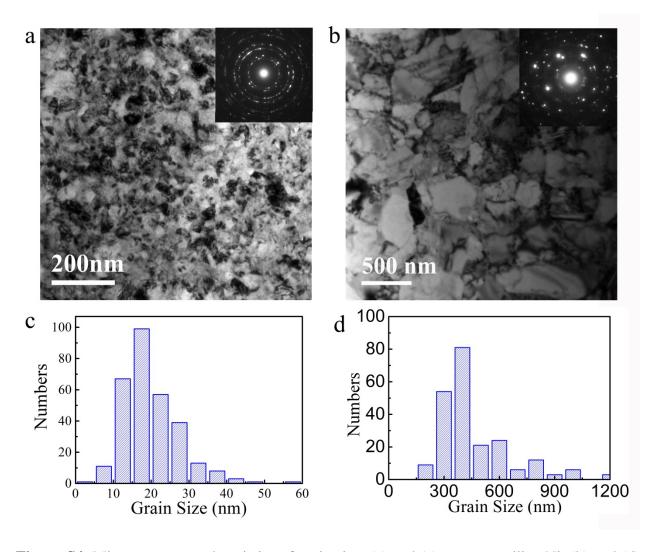
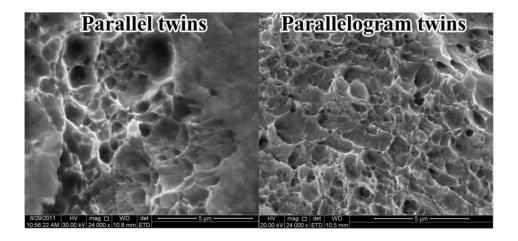


Figure S2. Schematics of the columnar grain structure and the growth direction of Ni samples.

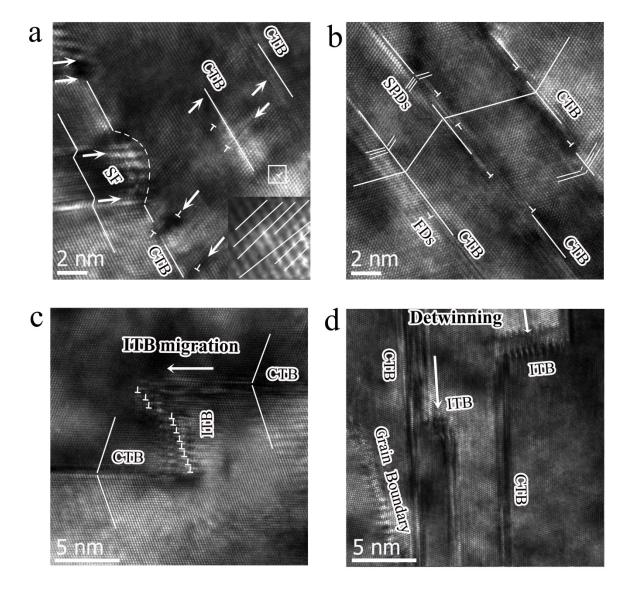

Figure S3. High-resolution TEM images show the microstructure of parallel nanotwins. (a) Nanotwins in {111} planes are parallel to each other in Ni foils synthesized by pulsed electrodeposition. (b) HRTEM image and the electron diffraction pattern (inset) show the twinning sequence of matrix-twin-matrix. (c) Coexistence of $\Sigma 3$ {111} CTBs and $\Sigma 3$ {112} ITBs. The arrows indicate the ITBs.

Figure S4. Microstructure and statistics of grain size. (a) and (c) nanocrystalline Ni. (b) and (d) coarse-grained polycrystalline Ni.

Figure S5. SEM images show the ductile dimpled surface and microvoid coalescence upon fracture of nanotwinned Ni.

Figure S6. Deformation mechanisms of nanotwinned Ni examined by post-mortem HRTEM. (a) Dislocations pile-up at CTBs and transmit across the twin boundaries. The interactions between dislocations with CTBs generate well populations of stacking faults and distort the twin boundaries. The arrows indicate stacking faults. (b) Glissile Shockley partial dislocations slip along twin planes and mediate the migration of CTBs. Sessile Frank dislocations are left at CTBs. (c) Migration of ITB through collective motions of dislocations within the grain. (d) Detwinning accompanied with the migration of $\Sigma 3$ {112} ITBs.