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Bulge test is an effective technique to measure the mechanical properties of thin films. As the

membrane size decreases to nano-scale, the surface effect plays a significant role in determining

the mechanical behavior of the membrane, and the techniques commonly used to measure the

bulk materials properties are not applicable. We explore the surface effect on the nano-scale

bulge test using combined continuum theories and atomistic simulations. We formulate the

load-deflection relation by incorporating the surface effect and analyze its size-dependent

behavior. The present theoretical model is in quantitative agreement with the molecular

dynamics simulations. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817298]

The mechanical properties of nano-scale structures can be

measured by various techniques such as the microtensile test,1

nano-indentation,2,3 and the bulge test.4,5 A new setup of bulge

test has been developed recently which incorporates an atomic

force microscope (AFM).6 It allows an in situ recording of

topographic images of the samples under different load condi-

tions. The improvement on resolution renders this technique

particularly suitable for the nano-scale measurements.

Bulge test has been performed to measure the mechani-

cal properties of a number of nano-scale membranes such as

freely suspended nanocomposites,7 free-standing hybrid

nanofilms,8 circular cross-linked polymeric membranes,9

and one-nanometer rectangular carbon nano-sheets.10 In the

above examples, the load-deflection relation derived for

the bulk materials is used to extract the elastic modulus of the

nano-structures. However, it is noteworthy that as the mate-

rial size decreases to nanometers, the surface effects become

prominent in determining its mechanical behavior.11–15 Such

effects usually result in the size-dependent performance of

the nano-structures which is largely deviated from the bulk

materials behavior. In this letter, we explore the surface

effects on the nano-scale bulge test using combined contin-

uum theories and atomistic simulations. We refine the load-

deflection relation by incorporating the surface effects and

analyze its size-dependent nature. We further employ molec-

ular dynamics (MD) simulations to obtain the material

parameters of a nano-scale aluminum (Al) membrane. The

theoretical prediction is in quantitative agreement with the

atomistic simulations.

In the continuum theory of surface elasticity, a solid

surface is treated as a thin layer adhering to the underlying

material without slipping.16,17 The equilibrium and constitu-

tive equations of the bulk are the same as those in the classi-

cal elasticity theory, but the boundary conditions must

ensure the force balance of the surface layer which results in

the surface tension s0. The elastic constants characterizing

the surface Esand �s are different from those of the bulk ma-

terial E and �, where E and � denote the Young’s modulus

and Poisson’s ratio, respectively. Thus, the free energy of the

system is composed of three parts: the bulk energy, the sur-

face tension, and the surface elasticity.18 While for most

materials the contribution of the surface elasticity is small

compared to the surface tension,18 we neglect this part in our

present analysis for simplicity.

The load-deflection relation for a plane strain bulge test

has been well studied.19,20 Herein, we extend the analysis by

considering the surface effects. A typical setup is shown in

the schematic of Fig. 1. The membrane with thickness h and

length 2a is subject to a uniform pressure q. Particularly, h is

of a few nanometers. Let u, v, and w denote the displacement

component along the x-, y-, and z- directions, respectively.

The strains in the mid-plane of the membrane are given by

the non-linear plate theory21
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Assuming the material is elastic and isotropic, the free

energy of the membrane is
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The first term in Eq. (2) represents the stretching energy of

the membrane. The bending energy has been neglected

because the deflection is much larger than the thickness of

the membrane. The second term represents the contribution

from the surface tension, and the third term is the potential
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energy of the external dead pressure. Herein we focus the

analysis on the surface effect and assume a dead load condi-

tion that the external pressure is always along the z-direction.

The difference between the dead load and the live load (the

pressure is perpendicular to the membrane in the course of

deformation) is quantified later.

Minimization of the potential energy in Eq. (2) with

respect to the undetermined displacement components leads

to a set of governing equations for a membrane. We assume

that the membrane size along the y-direction is much larger;

thus, a plane strain condition is set. Therefore the governing

equations are reduced to the following forms:

dNt

dx
¼ 0;

Nt
d2w

dx2
¼ �q;

(3)

where Nt ¼ Nx þ 2s0, Nx is the in-plane force which relates

to the in-plane strain by Nx ¼ Eh
1��2 ex. The first equation in

Eq. (3) gives Nt ¼ const. Integrating the second equation

twice and substituting the clamped boundary conditions

wð6aÞ ¼ 0, it yields wðxÞ ¼ q
2Nt
ða2 � x2Þ. Inserting wðxÞ

into Eq. (1) and integrating du
dx we have uðxÞ ¼ 1��2

Eh Nxx

� q2x3

6N2
t
þ c, where the integral constant c vanishes because of

the boundary condition uð0Þ ¼ 0. Setting uð6aÞ ¼ 0, it gives
6
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t ¼ q2. Replacing Nx and Nt with central deflec-

tion w0 by the relation w0 ¼ qa2

2Nt
, we obtain the following

load-deflection relation:
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Once the material parameters E, �, and s0 and the geometric

parameters a and h are given, we can plot the load-deflection

curve q� w0. Alternatively, for a given set of experimental

curves q� w0 from the bulge test, we can extract the mate-

rial parameters. Rewrite Eq. (4) in the dimensionless form
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It is clearly seen from the term s0

Eh of Eq. (5) that the func-

tional dependence of the dimensionless load qa
Eh on the dimen-

sionless deflection w0

a is size dependent. This indicates that it

is necessary to vary the thickness of the membrane in the

experiments to obtain the bulk and the surface parameters.

Alternatively one can obtain the surface parameters from

other settings and then calculate the bulk material parameters

from the bulge test data. If the surface tension s0 is zero, then

Eq. (5) reduces to the classical results for the bulk material.

We perform MD simulations to obtain the material

parameters––the Young’s modulus, the Poisson’s ratio, and

the surface tension of an Al membrane via uniaxial tensile

simulations. We further model the plane strain bulge test to

compare with the theoretical predictions. MD simulations

are conducted using the package large-scale atomic/molecu-

lar massively parallel simulator (LAMMPS).22 Al is a face-

centered cubic (FCC) crystal with the stiffness constants

c11 ¼ 114:3 GPa, c12 ¼ 61:92 GPa, and c44 ¼ 31:62 GPa.23

The degree of isotropy for a FCC crystal can be character-

ized by the parameter A ¼ 2c44=ðc11 � c12Þ, which measures

the ratio of the shear stiffness in the crystal directions of

[100] and [110]. When the parameter A is close to unity, the

material is isotropic.23 For aluminum, the parameter A¼ 1.2.

Therefore we use Al to model an isotropic material. The

modified embedded-atom method (MEAM) potential is

adopted to describe the interaction of Al atoms.24

We perform uniaxial tensile simulations in the follow-

ing procedure. We first consider an infinite plate with thick-

ness 2.43 nm subject to a uniaxial stress rx in the [100]

direction, and periodic boundary conditions are applied in

all the three directions. We record the strains and calculate

the elastic parameters by E ¼ rx=ex and � ¼ �ey=ex and

obtain E ¼ 63 GPa and � ¼ 0:37, which are close to the

experimental data E ¼ 70 GPa and � ¼ 0:35.25 We then per-

form the same simulation with exposed free surfaces along

the out-of-plane direction. In this case the surface tension s0

is generated naturally because of the rearrangement of the

surface atoms. The surface tension together with the exter-

nal uniaxial stress produces the deformation

rx � 2s0=h ¼ Eex: (6)

Again here we have neglected surface elasticity. We obtain

the surface tension s0 ¼ 0:98 N=m that is comparable with

the first-principles result 0:96 N=m.18

Using the material parameters E, �, and s0 obtained

through the MD simulations, we plot the theoretical load-

deflection relation in Fig. 1. A clear size-dependent behavior

is seen for the membranes of thickness less than 10 nm. Such

size dependence is attributed to the surface tension at nano-

scale, and its significance can be exemplified by comparing

the load for the membranes of different thickness for a given

deflection––the magnitude varies by up to a factor of 4.

Furthermore, a strong size effect particularly presents at the

initial stage of the load-deflection curve. This can be under-

stood from Eq. (4) that the surface tension term dominates

while the cubic term is rather small at this stage. This

FIG. 1. The theoretical prediction of the load-deflection relation for the

nano-scale bulge test on membranes of different thickness. A strong size-

dependent behavior presents when the thickness of the membrane is less

than 10 nm. As the thickness exceeds about 100 nm, the size effect becomes

negligible. Such size dependence is attributed to the effect of the surface ten-

sion. The inset sketches the setup of a plain strain bulge test.
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behavior is similar to the effect of the residual stress on

bulge test,26,27 but their physical origins are different, and

moreover the surface effects induce size dependence while

the residual stress effects do not. The term of the residual

stress can also be incorporated in Eq. (4), but this will not

contribute to our focus on the surface effects. As the thick-

ness exceeds about 100 nm, the surface effects become negli-

gible. The load-deflection curves of membranes of thickness

100 nm and 1000 nm almost coincide. The scale under which

surface effects must be considered may be estimated by com-

paring h � s0=E.

We perform MD simulations on the bulge test to verify

the theoretical prediction. We study two membranes under

the plane strain condition of the same length of 24.3 nm but of

different thickness of 1.2 nm and 1.6 nm, subject to a uniform

pressure. The load-deflection relations are plotted in Fig. 2,

together with the theoretical prediction using the material

parameters from the MD tensile test. The inset shows the

image of the MD simulations. The atoms are color-coded by

the centrosymmetry parameter.28 Red spheres represent the

surface atoms, and blue spheres represent the bulk atoms. The

MD simulations agree remarkably well with the results pre-

dicted by the continuum theory of surface elasticity, both

of which show clear difference from the classical results

which do not consider the surface effects. The MD simulation

validates the theoretical prediction, and again as a virtual

experiment it shows the importance of the surface effects on

nano-scale structures.

If the deflection is larger than the membrane length, the

governing equations (3) should be modified to incorporate

the effect of live pressure as follows:19

dNt

dx
¼ 0;

Nt
d2w

dx2
¼ �q 1þ dw

dx

� �2
" #3=2

:

(7)

If the deflection is small, the square of the bending angle dw
dx

is small compared to unity; then, Eq. (7) reduces to Eq. (3).

Equation (7) is numerically solved using MATLAB, and the

results are shown in Fig. 3. When the dimensionless load qa
Eh

is smaller than 0.05, results of Eqs. (3) and (7) are almost

identical. When the load is bigger, the difference shows up.

However, as long as the deflection is smaller than the mem-

brane length, the simplified Eq. (3) is a good approximation

of Eq. (7) for analysis.

In summary, we investigate the surface effect on nano-

scale bulge test based on the continuum theory of surface

elasticity and atomistic simulations. We refine the load-

deflection relation and illustrate its strong size-dependent na-

ture. Such size effect is prominent for the membranes of

thickness less than 10 nm. The theoretical prediction is fur-

ther validated by the molecular dynamics simulations. We

stress that the bulge test for bulk materials is not directly ap-

plicable for nano-scale measurements. The modified load-

deflection relation enables a nano-scale bulge test to obtain

the Young’s modulus, the Poisson’s ratio, and the surface

tension of membranes.
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