
ECE 661 - Computer Vision
Homework - 9

Arnav Singh

Contents
1 Theory Question 2

2 Task - 1: Projective Stereo Reconstruction 3
2.1 Methodology . 3

2.1.1 Image Rectification . 3
2.1.2 Interest Point Detection . 5
2.1.3 Projective Reconstruction . 5

2.2 Results . 6

3 Task - 2: Loop And Zhang 10
3.1 Methodology . 10
3.2 Discussion . 10
3.3 Results . 11

4 Task - 3: Dense Stereo Matching 13
4.1 Methodology . 13
4.2 Discussion . 13
4.3 Results . 14

5 Task - 4: Depth Maps and Automatic Extraction of Dense Correspondences 17
5.1 Methodology . 17
5.2 Results . 18

6 Source Code 28
6.1 Task 1 and 3 . 28

6.1.1 stereo_cameras.py . 28
6.1.2 dense_matching.py . 39
6.1.3 plotting.py . 40
6.1.4 main.py . 44

6.2 Task 4 . 46

1

1 Theory Question

Figure 1: Epipolar geometry

The equation of the line that joins the world point X and center of projection of the left camera C is

L ≡ C + λX

where, λ is any scalar quantity.
The image of L in the right image is

l′ = P ′ L = P ′ C + λP ′ X = e′ + λx′

The line l′ = e′ + λx′ represents a line that passes through the points e′ and x′, which is the exact definition of
the right epipolar line.
This proves that the correspondence (x′ in the right image) of x in the left image lies on the right epipolar line.

2

2 Task - 1: Projective Stereo Reconstruction
2.1 Methodology
2.1.1 Image Rectification

Image rectification is the process of applying appropriate homographies to the left and right image so their epipolar
lines lie parallel to the x-axis. This implies that the epipoles (images of the camera center of projections in the
other camera) corresponding to both cameras lie at the ideal point along x-axis i.e.,

[
1 0 0

]⊤.

• To find the epipoles and epipolar lines we must find and initial estimate of the rank 2, 3 × 3 fundamental
matrix F that contains all the information about the pair of cameras. In order to calculate F we manually
select a set (minimum 8) of correspondences (xi ↔ x′

i) in images I, I ′ and are constrained to F by

x′⊤F x = 0.

This can be solved using linear least squares (preceded by normalization of the coordinates x, x′). The
condition of |F | = 0 can be forced by setting its smallest singular value to 0.

The normalization of the points xi =
[
xi yi 1

]⊤ can be done using a 3 × 3 transformation matrix T

x̃i = T xi T =

c 0 −cx̄
0 c −cȳ
0 0 1


where (x̄, ȳ) is the centroid of the set of correspondences, c is defined as 2√

D̄
and D̄ is the mean Euclidean

distance of the centroid from the correspondence points.
The set of homogeneous equations to solve for F̃ are

Af̃ = 0

where

A =

 x̃′
1x̃1 x̃′

1ỹ1 x̃′
1 ỹ′

1x̃1 ỹ′
1ỹ1 ỹ′

1 x̃1 ỹ1 1
...

...
...

...
...

...
...

...
...

x̃′
N x̃N x̃′

N ỹN x̃′
N ỹ′

N x̃N ỹ′
N ỹN ỹ′

N x̃N ỹN 1

 f̃ =



f11
f12
f13
f21
f22
f23
f31
f32
f33


The final F is obtained by

F = T ′⊤ F̃ T (1)

followed by setting its smallest singular value to 0.

• The left and right epipoles e, e′ are the null vectors of F and F ⊤, respectively.

• We assume that the cameras are in their canonical configuration, i.e., the world co-ordinate frame coincides
with co-ordinate frame of the left camera, and, the right camera is at a rotation, translation w.r.t the left
camera. This simplifies the form of the projection matrices and left camera’s center of projection

P =

1 0 0 0
0 1 0 0
0 0 1 0

 C =
[
0 0 0 1

]⊤ (2)

P ′ = [[e′]×F |e′] (3)

where [a]× is the 3 × 3 cross-product representation of any vector a.

3

• This initial estimate is refined using non-linear least squares (for example Levenberg-Marquardt). The pa-
rameters over which the cost minimization are the twelve matrix elements of P ′ and the triangulated world
points using the N manually selected correspondences (total 12 + 3N parameters). The cost function C here
is the reprojection error calculated by projecting the triangulated point back on the image sensor planes.

C = ||X − f(p)||2

The triangulation for the world point Qi using correspondence (xi ↔ x′
i) is done by solving the following

homogeneous set of equations
AiQi = 0

where

Ai =


xiP

3⊤ − P 1⊤

yiP
3⊤ − P 2⊤

x′
iP

′3⊤ − P ′1⊤

y′
iP

′3⊤ − P ′2⊤


and P k⊤ is the k−th row of projection matrix P (similar for primed counter-parts).

• The rectification homography for the right image H ′ can be calculated using a series of homographies:

– Translate the origin to the center of the image by

T =

1 0 −w/2
0 1 −h/2
0 0 1


where w, h are the width and height of the image.

– Rotate the image to align the right epipole with the x-axis

θ = − arctan
e′

y − h/2
e′

x − w/2

R =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


– Send the right epipole to the ideal point along the x-axis

f = cos θ(e′
x − w/2) − sin θ(e′

y − h/2)

G =

 1 0 0
0 1 0

−1/f 0 1


The final H ′ is given by

H ′ = T −1 G R T

• The rectification homography for the left image H can be calculated using a series of steps:

– Define homographies H0 and HA

H0 = H ′ P ′ P †

HA =

a b c
0 1 0
0 0 1


– Let x̂i = H0xi and x̂′

i = H ′x′
i

– Solve for a, b, c using
arg min

∑
i

(ax̂i + bŷi + c − x̂′
i)2

The final H is given by
H = HA H0

4

2.1.2 Interest Point Detection

Now that we have rectified the left and right images using rectification homographies H, H ′; we can find a larger
set of correspondences (xi ↔ x′

i) because the correspondences now lie in the same row (or adjoining rows for
robustness). We can use the Canny edges of the rectified images as potential interest points, and then proceed
to find matches using any metric (for example SSD). Now the search space for matching is significantly smaller.
These interest points in the rectified images are then transformed back to the original images using the inverse of
the rectification homographies.

2.1.3 Projective Reconstruction

We can re-calculate a refined fundamental matrix F using the interest points detected using canny edges (1). Using
this refined F , we can calculate the projection matrices P , P ′ of the canonical cameras from (2), (3). The world
points of the correspondences are calculated using non-linear least squares.

5

2.2 Results

(a) left.jpg (b) right.jpg

Figure 2: Images for this task

Manually selected points

Figure 3: Manually selected correspondences

Rectified images

Figure 4: Rectified images

6

Canny Edges

Figure 5: Canny edges of the rectified images

Detected Interest Points

Figure 6: Detected interest points using Canny and SSD

7

X

2
1

0
1
2
3
4

Y

1.00.50.00.51.01.52.0

Z

1
0

1
2

3

Stereo Reconstruction

Figure 7: View 1 of the stereo reconstruction. Source images not shown; just outlines shown for better visibility.

8

X

2
1

0
1
2
3
4

Y

1.0
0.5

0.0
0.5
1.0
1.5
2.0

Z

1 0 1 2 3

Stereo Reconstruction

Figure 8: View 2 of the stereo reconstruction. Source images not shown; just outlines shown for better visibility.

9

3 Task - 2: Loop And Zhang
3.1 Methodology
The Loop and Zhang algorithm for image rectification involves breaking down the rectification homographies as a
product of a purely projective homography and an affine homography.

H = Ha Hp

H ′ = H ′
a H ′

p

The purely projective homographies Hp, H ′
p are homographies that send the epipoles e, e′ to infinity in a direction

that causes the least distortion to the images.
The affine homographies Ha, H ′

a are primarily for mitigating the distortions that are caused by highly-distortive
projective homographies. The affine homographies can be further broken down into shearing and similarity homo-
graphies.

3.2 Discussion
The set of rectified images returned by the Loop and Zhang algorithm have lower projective distortion but detects
fewer number of correspondences because it uses the BRISK (open source alternative to SIFT). My pipeline uses
canny edges as potential interest points and is effective in finding large number of correspondences for the calculation
of the fundamental matrix and camera projection matrices (up to a canonical configuration).

10

3.3 Results

(a) left.jpg (b) right.jpg

Figure 9: Images for this task

(a) Left image rectified (b) Right image rectified

11

(a) Matched interest points in left image (b) Matched interest points in right image

12

4 Task - 3: Dense Stereo Matching
4.1 Methodology
The census transform is a simple method for dense stereo matching, involving the following steps:

1. For each pixel in the left image, (xi, yi), a candidate correspondence pixel in the right image is selected as
(x′

i − d, y′
i), where d is the disparity value under consideration.

2. Around each pixel in the correspondence pair, an M × N neighborhood is defined.

3. For each M × N neighborhood, an M × N bit-vector is constructed. A bit in the bit-vector is set to 1 if the
corresponding pixel value in the neighborhood is strictly greater than the central pixel’s value; otherwise, it
is set to 0.

4. Two bit-vectors are generated at each iteration: one for the left image and one for the right image. These
bit-vectors are then compared using a bit-wise XOR operation. The Hamming distance (the number of 1’s in
the XOR result) is computed, representing the data cost for the candidate correspondence.

5. The disparity map is populated by finding the disparity d that minimizes the data cost for each pixel position
in the left image.

4.2 Discussion
Overall, the estimated disparity maps using census transforms are good and accurate to ground truth disparity
maps. The accuracy does not change much when we use a square window of size 11 × 11 or 21 × 21. Relaxing the
distance threshold (δ) increases the accuracy by 2 − 3%. Using a rectangular window of size 11 × 21 also does not
change the accuracy by a lot.

13

4.3 Results

Ground truth disparity Estimated disparity

Challenge regions, delta = 1
Accuracy=0.7350

Challenge regions, delta = 2
Accuracy=0.7503

0

20

40

0

20

40

0

100

200

0

100

200

Census Transform - (11, 11) window

Figure 12

14

Ground truth disparity Estimated disparity

Challenge regions, delta = 1
Accuracy=0.7351

Challenge regions, delta = 2
Accuracy=0.7506

0

20

40

0

20

40

0

100

200

0

100

200

Census Transform - (21, 11) window

Figure 13

15

Ground truth disparity Estimated disparity

Challenge regions, delta = 1
Accuracy=0.7295

Challenge regions, delta = 2
Accuracy=0.7456

0

20

40

0

20

40

0

100

200

0

100

200

Census Transform - (21, 21) window

Figure 14

16

5 Task - 4: Depth Maps and Automatic Extraction of Dense Corre-
spondences

5.1 Methodology
Automatic extraction of dense correspondences using depth maps leverages the geometric relationship between
stereo images and their depth information for efficient and accurate correspondence matching. The process is
outlined below:

1. Depth to 3D Projection: The depth value D(x) for each pixel in the first image is combined with the
camera’s intrinsic and extrinsic parameters to compute the 3D coordinates of the pixel in the world coordinate
system:

Xworld = T −1 Xcam, Xcam = D(x) K−1 x,

where K is the intrinsic camera matrix, T is the transformation from the camera to the world frame, and x
is the pixel’s homogeneous image coordinates.

2. Reprojection to the Second Image: The computed 3D world coordinates Xworld are re-projected onto
the second image using the second camera’s intrinsic and extrinsic parameters:

x′ = K ′ [R′ | t′] Xworld,

resulting in a candidate pixel x′ in the second image.

3. Depth Check for Validation: The depth of the candidate pixel in the second image, D′(x′), is compared
with the depth derived from reprojection. If the absolute difference is below a threshold δ, the correspondence
is validated: ∣∣∣D′(x′) − D̂(x′)

∣∣∣ < δ.

4. Output Correspondences: Validated correspondences are recorded as dense matches between the two
images.

Usefulness:

1. Efficiency: Automates dense correspondence extraction without requiring exhaustive searches.

2. Precision: Ensures geometric consistency using depth maps.

3. Applications: Enables tasks such as stereo matching, image registration, and 3D reconstruction, while also
facilitating training of deep-learning-based feature extraction networks like SuperPoint and LoFTR.

17

5.2 Results

Figure 15: Pair 0

18

Figure 16: Pair 1

19

Figure 17: Pair 2

20

Figure 18: Pair 3

21

Figure 19: Pair 4

22

Figure 20: Pair 5

23

Figure 21: Pair 6

24

Figure 22: Pair 7

25

Figure 23: Pair 8

26

Figure 24: Pair 9

27

6 Source Code
6.1 Task 1 and 3
6.1.1 stereo_cameras.py

1 import cv2 as cv
2 import numpy as np
3 import os
4 from scipy . optimize import least_squares
5 from tqdm import tqdm
6 from skimage import feature
7

8 from LM_optim import LM_optim
9

10 eps = np. finfo (float).eps
11

12

13 class ClickRecorder :
14 """
15 Class to record clicked points .
16 """
17

18 def __init__ (self):
19 self. clicked_points = []
20

21 def mouse_callback (self , event , x, y, flags , param):
22 if event == cv. EVENT_LBUTTONDOWN :
23 self. clicked_points . append ((x, y))
24 print (f" Clicked point : {self. clicked_points [-1]}")
25

26 def get_clicked_points (self):
27

28 return self. clicked_points
29

30

31 def select_points (img):
32 """
33 Function to select and return selected points on an image using OpenCV ’s mouse callback .
34 """
35 click_recorder = ClickRecorder ()
36 cv. namedWindow (" select_points ", cv. WINDOW_NORMAL)
37 cv. imshow (" select_points ", img)
38 cv. setMouseCallback (" select_points ", click_recorder . mouse_callback)
39 cv. waitKey (0)
40 print (f"All selected points : { click_recorder . get_clicked_points ()}")
41 cv. destroyAllWindows ()
42

43 return np. array (click_recorder . get_clicked_points ())
44

45

46 def _get_cross_product_matrix (a):
47 """
48 Function to calculate the cross product matrix for a 3D vector a.
49 """
50 assert len(a) == 3
51

52 return np. array ([[0 , -a[2] , a[1]] ,
53 [a[2] , 0, -a[0]] ,
54 [-a[1] , a[0] , 0]])
55

56

57 def _normalize_coords (points):
58 """
59 Function to normalize 2D points using the mean and standard deviation .
60 """
61 mu = np.mean(points , axis =0)
62 dist = np.sqrt(np.sum ((points - mu)**2 , axis =1))
63 mean_dist = np.mean(dist)
64 c = np.sqrt (2) / mean_dist
65 T = np. array ([[c, 0, -c*mu [0]] ,

28

66 [0, c, -c*mu [1]] ,
67 [0, 0, 1]])
68 points_hc = np. hstack ((points , np.ones ((len(points), 1)))).T
69 points_normalized = T @ points_hc
70

71 return points_normalized [:2 , :].T, T
72

73

74 def _calculate_F_from_points (l_points , r_points , l_T , r_T):
75 """
76 Function to calculate Fundamental Matrix from two sets of corresponding points .
77 """
78 A = []
79 for (x, y), (xp , yp) in zip(l_points , r_points):
80 A. append ([xp*x, xp*y, xp , yp*x, yp*y, yp , x, y, 1])
81

82 A = np. array (A)
83 _, _, vt = np. linalg .svd(A)
84 F = vt[-1, :]. reshape (3, 3)
85

86 F = r_T.T @ F @ l_T
87 u, d, vt = np. linalg .svd(F)
88 d[-1] = 0
89 F = u @ np.diag(d) @ vt
90 F /= F[2, 2] + eps
91

92 return F
93

94

95 def _calculate_epipoles (F):
96 """
97 Function to calculate the epipoles from the Fundamental Matrix .
98 """
99 _, _, vt = np. linalg .svd(F)

100 l_epipole = vt[-1, :]
101 l_epipole /= l_epipole [2] + eps
102

103 _, _, vt = np. linalg .svd(F.T)
104 r_epipole = vt[-1, :]
105 r_epipole /= r_epipole [2] + eps
106

107 return l_epipole , r_epipole
108

109

110 def _calculate_projection_matrices (F, r_epipole):
111 """
112 Function to calculate the projection matrices from the Fundamental Matrix and the right

epipole .
113 """
114 l_P = np.eye (3, 4, dtype =np. float64)
115

116 s = _get_cross_product_matrix (r_epipole)
117 r_P = np. hstack ((s @ F, r_epipole [:, None]))
118

119 return l_P , r_P
120

121

122 def _triangulate (l_P , r_P , l_point , r_point):
123 """
124 Function to triangulate for the world point using the projection matrices .
125 """
126 l_P1 = l_P [0]
127 l_P2 = l_P [1]
128 l_P3 = l_P [2]
129

130 r_P1 = r_P [0]
131 r_P2 = r_P [1]
132 r_P3 = r_P [2]
133

134 A = []
135 A. append ([l_point [0] * l_P3 - l_P1])

29

136 A. append ([l_point [1] * l_P3 - l_P2])
137 A. append ([r_point [0] * r_P3 - r_P1])
138 A. append ([r_point [1] * r_P3 - r_P2])
139

140 A = np. array (A). squeeze ()
141 _, _, vt = np. linalg .svd(A.T @ A)
142

143 X = vt[-1, :]
144 X /= X[3] + eps
145

146 return X
147

148

149 def _cost_func_r_P (params , l_P , l_points , r_points):
150 """
151 Cost function to refine P’ and world points using LM.
152 """
153 r_P = np. reshape (params [:12] , (3, 4))
154

155 X = []
156 F = []
157

158 for i, (l_point , r_point) in enumerate (zip(l_points , r_points)):
159

160 X. extend (l_point)
161 X. extend (r_point)
162

163 idx = 12 + 3 * i
164

165 world_point = np. array ([* params [idx: idx +3] , 1])
166

167 l_point_reproj = l_P @ world_point
168 l_point_reproj /= l_point_reproj [2] + eps
169

170 r_point_reproj = r_P @ world_point
171 r_point_reproj /= r_point_reproj [2] + eps
172

173 F. extend (l_point_reproj [:2])
174 F. extend (r_point_reproj [:2])
175

176 X = np. array (X)
177 F = np. array (F)
178

179 return X - F
180

181

182 def _cost_func_world_points (params , l_P , r_P , l_points , r_points):
183 """
184 Cost function to refine world points using LM.
185 """
186 X = []
187 F = []
188

189 for i, (l_point , r_point) in enumerate (zip(l_points , r_points)):
190

191 X. extend (l_point)
192 X. extend (r_point)
193

194 world_point = np. array ([* params [3*i: 3*(i+1)], 1])
195

196 l_point_reproj = l_P @ world_point
197 l_point_reproj /= l_point_reproj [2] + eps
198

199 r_point_reproj = r_P @ world_point
200 r_point_reproj /= r_point_reproj [2] + eps
201

202 F. extend (l_point_reproj [:2])
203 F. extend (r_point_reproj [:2])
204

205 X = np. array (X)
206 F = np. array (F)

30

207

208 return X - F
209

210

211 def _calculate_F_from_P (r_P):
212 """
213 Function to calculate Fundamental Matrix from the right projection matrix .
214 """
215 r_epipole = r_P [:, -1]
216 s = _get_cross_product_matrix (r_epipole)
217

218 F = s @ r_P [:3 , :3]
219 F /= F[2, 2] + eps
220

221 return F
222

223

224 def _ssd(l_img_rectified , r_img_rectified , l_interest_points , r_interest_points , M=7, T=60 , n_rows
=3, col_diff =15):

225 """
226 Function to find matches between the interest points usign SSD metric .
227 """
228 m = M // 2 + 1
229 l_img_padded = np.pad(l_img_rectified , ((m, m), (m, m)),
230 " constant ", constant_values =0)
231 r_img_padded = np.pad(r_img_rectified , ((m, m), (m, m)),
232 " constant ", constant_values =0)
233

234 l_matches = []
235

236 row_min = np.min(l_interest_points [:, 0])
237 row_max = np.max(l_interest_points [:, 0])
238

239 for row in tqdm(range (row_min , row_max +1)):
240

241 l_val_points = l_interest_points [:, 0] == row
242 r_val_points = (
243 (row - n_rows) <= r_interest_points [:, 0]) & (r_interest_points [:, 0] <= (row + n_rows

))
244 if (len(l_interest_points [l_val_points]) and len(r_interest_points [r_val_points])):
245 # print (l_interest_points [l_val_points], r_interest_points [r_val_points])
246

247 l_points_idx = np. arange (len(l_interest_points))[l_val_points]
248 r_points_idx = np. arange (len(r_interest_points))[r_val_points]
249

250 for l_idx in l_points_idx :
251 y1 , x1 = l_interest_points [l_idx]
252 nbd1 = l_img_padded [y1: y1 +2*m, x1: x1 +2*m]
253 ssds = []
254 if np.all(nbd1):
255 for r_idx in r_points_idx :
256 y2 , x2 = r_interest_points [r_idx]
257 nbd2 = r_img_padded [y2: y2 +2*m, x2: x2 +2*m]
258 if np.all(nbd2):
259 try:
260 ssd = np.mean ((nbd1 - nbd2)**2)
261 except :
262 continue
263

264 ssds. append (ssd)
265 else:
266 ssds. append (np.inf)
267 continue
268 else:
269 ssds. append (np.inf)
270

271 if len(ssds) > 0:
272 min_ssd_idx = np. argmin (ssds)
273 if ssds[min_ssd_idx] < T:
274 l_matches . append (
275 (l_idx , r_points_idx [min_ssd_idx], ssds[min_ssd_idx]))

31

276

277 r_matches = []
278 row_min = np.min(r_interest_points [:, 0])
279 row_max = np.max(r_interest_points [:, 0])
280

281 for row in tqdm(range (row_min , row_max +1)):
282

283 r_val_points = r_interest_points [:, 0] == row
284 l_val_points = (
285 (row - n_rows) <= l_interest_points [:, 0]) & (l_interest_points [:, 0] <= (row + n_rows

))
286 if (len(l_interest_points [l_val_points]) and len(r_interest_points [r_val_points])):
287

288 l_points_idx = np. arange (len(l_interest_points))[l_val_points]
289 r_points_idx = np. arange (len(r_interest_points))[r_val_points]
290

291 for r_idx in r_points_idx :
292 y2 , x2 = r_interest_points [r_idx]
293 nbd2 = r_img_padded [y2: y2 +2*m, x2: x2 +2*m]
294 ssds = []
295 if np.all(nbd2):
296 for l_idx in l_points_idx :
297 y1 , x1 = l_interest_points [l_idx]
298 nbd1 = l_img_padded [y1: y1 +2*m, x1: x1 +2*m]
299 if np.all(nbd1):
300 try:
301 ssd = np.mean ((nbd1 - nbd2)**2)
302 except :
303 continue
304 ssds. append (ssd)
305 else:
306 ssds. append (np.inf)
307 continue
308 else:
309 ssds. append (np.inf)
310

311 if len(ssds) > 0:
312 min_ssd_idx = np. argmin (ssds)
313 if ssds[min_ssd_idx] < T:
314 r_matches . append (
315 (l_points_idx [min_ssd_idx], r_idx , ssds[min_ssd_idx]))
316

317 matches = list(set(l_matches). intersection (r_matches))
318 sorted_matches = sorted (matches , key= lambda x: l_interest_points [x [0]][0])
319 filtered_matches = []
320

321 curr_row = l_interest_points [matches [0][0]][0]
322 curr_col = l_interest_points [matches [0][0]][1]
323

324 for match in sorted_matches :
325

326 l_idx = match [0]
327 r_idx = match [1]
328

329 if l_interest_points [l_idx][0] == curr_row :
330 if l_interest_points [l_idx][1] >= curr_col :
331 if ((l_interest_points [l_idx][1] - r_interest_points [r_idx][1]) **2) < col_diff **2:
332 curr_col = l_interest_points [l_idx][1]
333 filtered_matches . append (match)
334

335 else:
336 curr_row = l_interest_points [l_idx][0]
337

338 if ((l_interest_points [l_idx][1] - r_interest_points [r_idx][1]) **2) < col_diff **2:
339 curr_col = l_interest_points [l_idx][1]
340 filtered_matches . append (match)
341

342 sorted_matches = sorted (filtered_matches , key= lambda x: x[2])
343

344 return sorted_matches
345

32

346

347 def _calculate_right_H (r_epipole , h, w):
348 """
349 Calculate the right rectification homography matrix H.
350 """
351 T1 = np. array ([[1 , 0, -w / 2],
352 [0, 1, -h / 2],
353 [0, 0, 1]])
354

355 angle = np. arctan2 (-(r_epipole [1] - h/2) , (r_epipole [0] - w/2))
356

357 R = np. array ([[np.cos(angle), -np.sin(angle), 0],
358 [np.sin(angle), np.cos(angle), 0],
359 [0, 0, 1]])
360

361 f = np.abs ((r_epipole [0] - w/2) * np.cos(angle) -
362 (r_epipole [1] - h/2) * np.sin(angle))
363

364 G = np. array ([[1 , 0, 0],
365 [0, 1, 0],
366 [-1/f, 0, 1]])
367

368 H = np. linalg .inv(T1) @ G @ R @ T1
369

370 H /= H[2, 2] + eps
371

372 return H
373

374

375 def _calculate_left_H (l_P , r_P , r_H , l_points , r_points):
376 """
377 Calculate the left rectification homography matrix H.
378 """
379 left_P_pinv = np. linalg .pinv(l_P)
380

381 H0 = r_H @ r_P @ left_P_pinv
382

383 l_points_hc = np. hstack ((l_points , np.ones ((len(l_points), 1)))).T
384 r_points_hc = np. hstack ((r_points , np.ones ((len(r_points), 1)))).T
385

386 x1 = H0 @ l_points_hc
387 x1 /= x1 [2] + eps
388

389 x2 = r_H @ r_points_hc
390 x2 /= x2 [2] + eps
391

392 A = x1.T
393 b = x2 [0]
394

395 abc = np. linalg .pinv(A) @ b
396

397 Ha = np. array ([[* abc],
398 [0, 1, 0],
399 [0, 0, 1]])
400

401 H = Ha @ H0
402

403 H /= H[2, 2] + eps
404

405 return H
406

407

408 class StereoVision :
409 """ Class for Stereo Vision .
410 """
411

412 def __init__ (self , l_img_fn : str , r_img_fn : str , matching : str = " manual ", optimizer : str = "
scipy_lm "):

413 """ Initialize the StereoVision object .
414

415 Args:

33

416 l_img_fn (str): Path to the left image file.
417 r_img_fn (str): Path to the right image file.
418 matching (str): Matching method . If matching is ‘‘load ’’, it will load saved points .

If no file found , will run in ‘‘manual ’’ mode.
419 optimizer (str): Optimizer method . If optimizer is ‘‘scipy_lm ‘‘, it will use scipy ’s

least squares method . If optimizer is ‘‘lm ‘‘, it will my implementation
420 LM.
421 """
422 if matching not in [" manual ", "load"]:
423 raise ValueError (
424 " Invalid matching method . Choose from [’ manual ’, ’load ’].")
425 if optimizer not in [" scipy_lm ", "lm"]:
426 raise ValueError (
427 " Invalid optimizer . Choose from [’ scipy_lm ’, ’lm ’].")
428

429 self. l_img_fn = l_img_fn
430 self. r_img_fn = r_img_fn
431 if matching == " manual ":
432 self. matching_method = matching
433 self. _match_manual (l_img_fn , r_img_fn)
434 assert len(self. l_points) == len(self. r_points)
435

436 elif matching == "load":
437 self. matching_method = matching
438 self. _match_load (l_img_fn , r_img_fn)
439 assert len(self. l_points) == len(self. r_points)
440

441 self. l_norm_points , self.l_T = _normalize_coords (self. l_points)
442 self. r_norm_points , self.r_T = _normalize_coords (self. r_points)
443 self.F = _calculate_F_from_points (
444 self. l_norm_points , self. r_norm_points , self.l_T , self.r_T)
445 self.l_epipole , self. r_epipole = _calculate_epipoles (self.F)
446 self.l_P , self.r_P = _calculate_projection_matrices (
447 self.F, self. r_epipole)
448

449 params = []
450 params . extend (self.r_P. ravel ())
451

452 for l_point , r_point in zip(self.l_points , self. r_points):
453 world_point = _triangulate (self.l_P , self.r_P , l_point , r_point)
454 params . extend (world_point [:3]. ravel ())
455

456 if optimizer == " scipy_lm ":
457 solution = least_squares (_cost_func_r_P , params , method =’lm ’, verbose =2, args =[
458 self.l_P , self.l_points , self. r_points])
459

460 elif optimizer == "lm":
461 solution = LM_optim (_cost_func_r_P , params , verbose =1, args =[
462 self.l_P , self.l_points , self. r_points])
463

464 self.r_P = np. reshape (solution .x[:12] , (3, 4))
465

466 self.F = _calculate_F_from_P (self.r_P)
467 self.l_epipole , self. r_epipole = _calculate_epipoles (self.F)
468

469 self. rectified = False
470 self. int_detected = False
471

472 return
473

474 def rectify (self , rot: bool = True):
475 """ Rectify the stereo images .
476

477 Args:
478 rot (bool): If True , rotate the rectified images by 180.
479 """
480 self. rectified = True
481 h, w = self. l_img . shape [:2]
482 self.r_H = _calculate_right_H (self.r_epipole , h, w)
483 self.l_H = _calculate_left_H (
484 self.l_P , self.r_P , self.r_H , self.l_points , self. r_points)

34

485

486 if rot:
487 H_rot = np. array ([[-1 , 0, 0],
488 [0, -1, 0],
489 [0, 0, 1]])
490

491 H_tr = np. array ([[1 , 0, -w/2] ,
492 [0, 1, -h/2] ,
493 [0, 0, 1]])
494

495 H_tr_inv = np. array ([[1 , 0, w/2] ,
496 [0, 1, h/2] ,
497 [0, 0, 1]])
498

499 self.l_H = H_tr_inv @ H_rot @ H_tr @ self.l_H
500 self.r_H = H_tr_inv @ H_rot @ H_tr @ self.r_H
501

502 temp = np. linalg .inv(self.r_H.T) @ self.F @ np. linalg .inv(self.l_H)
503 # Should look like
504 # [[0 , 0, 0]]
505 # [[0 , 0, -1]]
506 # [[0 , 1, 0]]
507 print (temp/temp [2, 1])
508

509 self. l_img_rectified = cv. warpPerspective (
510 self.l_img , self.l_H , (int (1.2* w), int (1.2* h)))
511 self. r_img_rectified = cv. warpPerspective (
512 self.r_img , self.r_H , (int (1.2* w), int (1.2* h)))
513

514 left_points_hc = np. hstack (
515 (self.l_points , np.ones ((len(self. l_points), 1)))).T
516 right_points_hc = np. hstack (
517 (self.r_points , np.ones ((len(self. r_points), 1)))).T
518

519 self. l_points_rectified = self.l_H @ left_points_hc
520 self. r_points_rectified = self.r_H @ right_points_hc
521

522 self. l_points_rectified /= self. l_points_rectified [2]
523 self. r_points_rectified /= self. r_points_rectified [2]
524

525 self. l_points_rectified = self. l_points_rectified [:2]. astype (int)
526 self. r_points_rectified = self. r_points_rectified [:2]. astype (int)
527

528 return
529

530 def detect_interest_points (self , matching : str = " manual ", metric : str = "ssd"):
531 """
532 Detect interest points in the rectified images .
533

534 Args:
535 matching (str): Method for matching interest points . Supported methods are ’manual ’

and ’load ’.
536 metric (str): Metric for matching interest points . Supported metrics are ’ssd ’.
537 """
538 if metric not in ["ssd"]:
539 raise ValueError (" Invalid metric . Supported metric is ’ssd ’.")
540 if matching not in [" manual ", "load"]:
541 raise ValueError (
542 " Invalid matching method . Supported methods are ’manual ’ and ’load ’.")
543 if not self. rectified :
544 print (" Perform rectification first .")
545 return
546

547 l_gray = cv. cvtColor (self. l_img_rectified , cv. COLOR_BGR2GRAY)
548 r_gray = cv. cvtColor (self. r_img_rectified , cv. COLOR_BGR2GRAY)
549

550 p1 = np. vstack (((self. l_points_rectified + 20).T,
551 (self. l_points_rectified - 20).T))
552 p2 = np. vstack (((self. r_points_rectified + 20).T,
553 (self. r_points_rectified - 20).T))
554

35

555 l_hull = cv. convexHull (p1)
556 r_hull = cv. convexHull (p2)
557

558 l_mask = cv. fillConvexPoly (np. zeros (l_gray . shape), l_hull , 255)
559 r_mask = cv. fillConvexPoly (np. zeros (r_gray . shape), r_hull , 255)
560

561 l_canny_img = 255 * \
562 feature . canny (l_gray , 1, 20, 100 , l_mask). astype (np. uint8)
563 r_canny_img = 255 * \
564 feature . canny (r_gray , 1, 20, 100 , r_mask). astype (np. uint8)
565

566 # cv. imshow (" l_canny ", l_canny_img)
567 # cv. imshow (" r_canny ", r_canny_img)
568 # cv. waitKey ()
569 # cv. destroyAllWindows ()
570

571 l_interest_points = np. array (np. where (l_canny_img > 0)).T
572 r_interest_points = np. array (np. where (r_canny_img > 0)).T
573

574 if matching == " manual ":
575 if metric == "ssd":
576 matches = _ssd(l_gray , r_gray , l_interest_points ,
577 r_interest_points)
578

579 l_match_points = []
580 r_match_points = []
581

582 for i in range (len(self. l_points_rectified .T)):
583 l_match_points . append ([* self. l_points_rectified [:, i], 1])
584 r_match_points . append ([* self. r_points_rectified [:, i], 1])
585

586 # Choose first 300 matches
587 for match in matches [:300]:
588 l_match_points . append ([* l_interest_points [match [0]][:: -1] , 1])
589 r_match_points . append ([* r_interest_points [match [1]][:: -1] , 1])
590

591 l_match_points = np. array (l_match_points).T
592 r_match_points = np. array (r_match_points).T
593

594 l_int_points = np. linalg .inv(self.l_H) @ l_match_points
595 l_int_points /= l_int_points [2] + eps
596

597 r_int_points = np. linalg .inv(self.r_H) @ r_match_points
598 r_int_points /= r_int_points [2] + eps
599

600 self. l_interest_points = (l_int_points [:2 , :]).T
601 self. r_interest_points = (r_int_points [:2 , :]).T
602

603 print (f" Number of matches found : {len(self. l_interest_points)}")
604

605 dire = self. l_img_fn [7:12]
606 np.save(os.path.join("./ int_points ", dire , "left"),
607 self. l_interest_points)
608 np.save(os.path.join("./ int_points ", dire ,
609 " right "), self. r_interest_points)
610

611 elif matching == "load":
612 dire = self. l_img_fn [7:12]
613

614 try:
615 self. l_interest_points = np.load(
616 os.path.join("./ int_points ", dire , "left.npy"))
617 self. r_interest_points = np.load(
618 os.path.join("./ int_points ", dire , " right .npy"))
619

620 except FileNotFoundError :
621 print (
622 f" Points not found . Running with matching = ’manual ’ to generate and save them

.")
623 return
624

36

625 print (f" Number of matches found : {len(self. l_interest_points)}")
626 self. int_detected = True
627

628 return
629

630 def refine (self , optimizer : str = " scipy_lm "):
631 """
632 Refine the fundamental matrix , projection matrices using matched interest points .
633 """
634

635 if optimizer not in [" scipy_lm ", "lm"]:
636 raise ValueError (
637 " Invalid optimizer . Supported optimizers are ’scipy_lm ’ and ’lm ’.")
638

639 if not self. int_detected :
640 print (
641 " Interest points not detected . Please run detect_interest_points first .")
642 return
643

644 self. l_norm_int_points , self.l_T = _normalize_coords (
645 self. l_interest_points)
646 self. r_norm_int_points , self.r_T = _normalize_coords (
647 self. r_interest_points)
648 self. F_refined = _calculate_F_from_points (
649 self. l_norm_int_points , self. r_norm_int_points , self.l_T , self.r_T)
650

651 self.l_epipole , self. r_epipole = _calculate_epipoles (self. F_refined)
652 self.l_P , self.r_P = _calculate_projection_matrices (
653 self.F_refined , self. r_epipole)
654

655 params = []
656

657 for l_point , r_point in zip(self. l_interest_points , self. r_interest_points):
658 world_point = _triangulate (self.l_P , self.r_P , l_point , r_point)
659 params . extend (world_point [:3]. ravel ())
660

661 if optimizer == " scipy_lm ":
662 solution = least_squares (_cost_func_world_points , params , method =’lm ’, verbose =2, args

=[
663 self.l_P , self.r_P , self. l_interest_points , self.

r_interest_points])
664

665 elif optimizer == "lm":
666 solution = LM_optim (_cost_func_world_points , params , verbose =2, args =[
667 self.l_P , self.r_P , self. l_interest_points , self. r_interest_points

])
668

669 self. world_points = np. reshape (solution .x, (-1, 3))
670

671 self.F = _calculate_F_from_P (self.r_P)
672 self.l_epipole , self. r_epipole = _calculate_epipoles (self.F)
673

674 return
675

676 def _match_manual (self , l_img_fn , r_img_fn):
677 """
678 Function to select the correspondences manually and save them.
679 """
680 self. l_img = cv. imread (l_img_fn)
681 self. r_img = cv. imread (r_img_fn)
682

683 dire = l_img_fn [7:12]
684

685 self. l_points = select_points (self. l_img)
686 np.save(os.path.join("./ points ", dire , "left"), self. l_points)
687

688 self. r_points = select_points (self. r_img)
689 np.save(os.path.join("./ points ", dire , " right "), self. r_points)
690

691 return
692

37

693 def _match_load (self , l_img_fn , r_img_fn):
694 """
695 Function to load the correspondences from saved file.
696 """
697 self. l_img = cv. imread (l_img_fn)
698 self. r_img = cv. imread (r_img_fn)
699

700 dire = l_img_fn [7:12]
701

702 try:
703 self. l_points = np.load(os.path.join("./ points ", dire , "left.npy"))
704 self. r_points = np.load(os.path.join(
705 "./ points ", dire , " right .npy"))
706

707 except FileNotFoundError :
708 print (
709 f" Points not found . Running with mode = ’manual ’ to select points and save them.")
710 self. _match_manual (l_img_fn , r_img_fn)
711

712 return

38

6.1.2 dense_matching.py

1 import numpy as np
2 import cv2 as cv
3 from tqdm import tqdm
4

5

6 def census_transform (l_img_fn , r_img_fn , l_disp_fn , window_size =(11 , 31) , delta =2):
7 """
8 Function to use census transform to calculate disparity map.
9 """

10 l_img = cv. cvtColor (cv. imread (l_img_fn), cv. COLOR_BGR2GRAY)
11 r_img = cv. cvtColor (cv. imread (r_img_fn), cv. COLOR_BGR2GRAY)
12 l_disp = (cv. imread (l_disp_fn , cv. IMREAD_GRAYSCALE). astype (
13 np. float32) / 4). astype (np. uint8)
14

15 d_max = np.max(l_disp)
16 h, w = l_img . shape
17

18 # m = block height
19 # n = block width
20

21 m, n = window_size
22 b_size_row = d_max + m//2
23 b_size_col = d_max + n//2
24 l_img_padded = np.pad(l_img , ((b_size_row , b_size_row),
25 (b_size_col , b_size_col)), mode=’edge ’)
26 r_img_padded = np.pad(r_img , ((b_size_row , b_size_row),
27 (b_size_col , b_size_col)), mode=’edge ’)
28

29 l_disp_est = np. zeros (l_img . shape)
30

31 for y in tqdm(range (m//2 , h-m//2)):
32

33 for x in range (n//2 , w-n//2):
34

35 cost = np. array ([np.inf] * (d_max))
36 p = l_img_padded [y+ d_max :y+ d_max +m, x+ d_max : x+ d_max +n]
37 p_win = (p > l_img [y, x])
38

39 for d in range (min(x, d_max)):
40

41 q = r_img_padded [y+ d_max :y+ d_max +m, (x-d)+ d_max : (x-d)+ d_max +n]
42 q_win = (q > r_img [y, x-d])
43

44 c = np.sum(np. logical_xor (p_win , q_win))
45 cost[d] = c
46

47 l_disp_est [y, x] = np. argmin (cost)
48

49 ch = (np.abs(l_disp_est - l_disp) <= delta) & (l_disp > 0)
50

51 return l_disp , l_disp_est , ch

39

6.1.3 plotting.py

1 import cv2 as cv
2 import numpy as np
3

4 import matplotlib . pyplot as plt
5 from matplotlib . gridspec import GridSpec
6 from matplotlib . patches import ConnectionPatch
7 from mpl_toolkits . mplot3d import proj3d
8

9 from stereo_cameras import StereoVision
10

11 np. random .seed (4)
12

13 # Task 1
14 def show_correspondences (sv: StereoVision , save_fn : str = None):
15 """
16 Plotting function to display manually selected correspondences .
17 """
18 n_pts = len(sv. l_points)
19 left_img = sv. l_img
20 right_img = sv. r_img
21 h1 , w1 = left_img . shape [:2]
22 h2 , w2 = right_img . shape [:2]
23 canvas = np. zeros ((max(h1 , h2), w1 + w2 , 3) , dtype =np. uint8)
24 canvas [:h1 , :w1] = left_img
25 canvas [:h2 , w1 :] = right_img
26 canvas = cv. cvtColor (canvas , cv. COLOR_BGR2RGB)
27 plt. figure (figsize =(9 , 9))
28 plt. imshow (canvas)
29 for i in range (n_pts):
30 color = np. random . random (3)
31 l_point_x = sv. l_points [i][0]
32 l_point_y = sv. l_points [i][1]
33 r_point_x = sv. r_points [i][0] + w1
34 r_point_y = sv. r_points [i][1]
35 plt.plot ([l_point_x , r_point_x], [l_point_y , r_point_y], color =color ,
36 ms=3, linewidth =1, linestyle =’--’, marker =’.’, markerfacecolor = color)
37

38 plt.axis(’off ’)
39 plt. title (" Manually selected points ")
40 plt. tight_layout ()
41 if save_fn is not None:
42 plt. savefig (save_fn , bbox_inches =’tight ’, pad_inches =0.1 , dpi =600)
43

44 plt.show ()
45 plt. close ()
46

47 return
48

49

50 def show_rectification (sv: StereoVision , save_fn : str = None):
51 """
52 Plotting function to display rectified images .
53 """
54 n_pts = len(sv. l_points)
55 left_img = sv. l_img_rectified
56 right_img = sv. r_img_rectified
57 h1 , w1 = left_img . shape [:2]
58 h2 , w2 = right_img . shape [:2]
59 canvas = np. zeros ((max(h1 , h2), w1 + w2 , 3) , dtype =np. uint8)
60 canvas [:h1 , :w1] = left_img
61 canvas [:h2 , w1 :] = right_img
62 canvas = cv. cvtColor (canvas , cv. COLOR_BGR2RGB)
63 plt. figure (figsize =(9 , 9))
64 plt. imshow (canvas)
65 for i in range (n_pts):
66 color = np. random . random (3)
67 l_point_x = sv. l_points_rectified [0, i]
68 l_point_y = sv. l_points_rectified [1, i]
69 r_point_x = sv. r_points_rectified [0, i] + w1

40

70 r_point_y = sv. r_points_rectified [1, i]
71 plt.plot ([l_point_x , r_point_x], [l_point_y , r_point_y], color =color ,
72 ms=3, linewidth =1, linestyle =’--’, marker =’.’, markerfacecolor = color)
73

74 plt.axis(’off ’)
75 plt. title (" Rectified images ")
76 plt. tight_layout ()
77 if save_fn is not None:
78 plt. savefig (save_fn , bbox_inches =’tight ’, pad_inches =0.1 , dpi =600)
79

80 plt.show ()
81 plt. close ()
82

83 return
84

85

86 def show_interest_points (sv: StereoVision , save_fn : str = None):
87 """
88 Plotting function to display detected interest points .
89 """
90 left_img = sv. l_img
91 right_img = sv. r_img
92 h1 , w1 = left_img . shape [:2]
93 h2 , w2 = right_img . shape [:2]
94 canvas = np. zeros ((max(h1 , h2), w1 + w2 , 3) , dtype =np. uint8)
95 canvas [:h1 , :w1] = left_img
96 canvas [:h2 , w1 :] = right_img
97 canvas = cv. cvtColor (canvas , cv. COLOR_BGR2RGB)
98 plt. figure (figsize =(9 , 9))
99 plt. imshow (canvas)

100

101 for i in range (len(sv. l_interest_points)):
102 color = np. random . random (3)
103 x1 , y1 = sv. l_interest_points [i]
104 x2 , y2 = sv. r_interest_points [i]
105

106 x2 += w1
107

108 plt.plot ([x1 , x2], [y1 , y2], color =color , ms=3, linewidth =1,
109 linestyle =’--’, marker =’.’, markerfacecolor = color)
110

111 plt.axis(’off ’)
112 plt. title (" Detected Interest Points ")
113 plt. tight_layout ()
114

115 if save_fn is not None:
116 plt. savefig (save_fn , bbox_inches =’tight ’, pad_inches =0.1 , dpi =600)
117

118 plt.show ()
119 plt. close ()
120

121 return
122

123

124 def show_reconstruction (sv: StereoVision , lines_to_show : list , save_fn : str = None):
125 """
126 Plotting function to display 3D stereo reconstruction .
127 """
128 fig = plt. figure (figsize =(12 , 8))
129 fig. suptitle (" Stereo Reconstruction ")
130 gs = GridSpec (2, 2, fig)
131 ax1 = fig. add_subplot (gs[0, 0])
132 ax2 = fig. add_subplot (gs[0, 1])
133 ax3 = fig. add_subplot (gs[1, :], projection =’3d’)
134

135 ax3. set_xlabel (’X’)
136 ax3. set_ylabel (’Y’)
137 ax3. set_zlabel (’Z’)
138

139 ax3. view_init (elev =45 , azim = -135 , roll =120 , vertical_axis =’y’)
140 # ax3. view_init (elev =-45, azim =0, roll =0, vertical_axis =’x ’)

41

141 ax3.dist = 10
142

143 ax1.axis(’off ’)
144 ax2.axis(’off ’)
145

146 def _norm_world_points (world_points):
147 mu = np.mean(world_points , axis =0)
148 std = np.std(world_points , axis =0)
149

150 norm_world_points = (world_points - mu) / std
151 return norm_world_points
152

153 norm_w_p = _norm_world_points (sv. world_points)
154

155 ax1. imshow (cv. cvtColor (sv.l_img , cv. COLOR_BGR2GRAY), cmap=’gray ’)
156 ax2. imshow (cv. cvtColor (sv.r_img , cv. COLOR_BGR2GRAY), cmap=’gray ’)
157

158 for start_idx , end_idx in lines_to_show :
159

160 c = np. random . random (3)
161 c_r = [1, 0, 0]
162

163 ax1.plot(sv. l_interest_points [[start_idx , end_idx], 0], sv. l_interest_points [[start_idx ,
end_idx], 1],

164 color =c, ms=5, linewidth =2, linestyle =’-’, marker =’.’, markerfacecolor =c_r)
165

166 ax2.plot(sv. r_interest_points [[start_idx , end_idx], 0], sv. r_interest_points [[start_idx ,
end_idx], 1],

167 color =c, ms=5, linewidth =2, linestyle =’-’, marker =’.’, markerfacecolor =c_r)
168

169 ax3.plot(norm_w_p [[start_idx , end_idx], 0],
170 norm_w_p [[start_idx , end_idx], 1],
171 norm_w_p [[start_idx , end_idx], 2],
172 color =c, ms=5, linewidth =2, linestyle =’-’, marker =’.’, markerfacecolor =c_r)
173

174 ax1. scatter (sv. l_interest_points [:, 0], sv. l_interest_points [:, 1], s=3, color =[
175 0, 0, 1], marker =’.’)
176 ax2. scatter (sv. r_interest_points [:, 0], sv. r_interest_points [:, 1], s=3, color =[
177 0, 0, 1], marker =’.’)
178

179 ax3. scatter (norm_w_p [:, 0], norm_w_p [:, 1],
180 norm_w_p [:, 2], s=2, color =[0 , 0, 1], marker =’.’)
181

182 for i in range (7):
183

184 c = np. random . random (3)
185 x_sc_1 , y_sc_1 , _ = proj3d . proj_transform (* norm_w_p [i], ax3. get_proj ())
186

187 con1 = ConnectionPatch ((x_sc_1 , y_sc_1), (sv. l_interest_points [i, 0], sv. l_interest_points
[i, 1]) ,

188 coordsA =ax3.transData , coordsB =ax1.transData , axesA =ax3 , axesB =ax1 ,
ls=’:’, color =c)

189 fig. add_artist (con1)
190

191 con2 = ConnectionPatch ((x_sc_1 , y_sc_1), (sv. r_interest_points [i, 0], sv. r_interest_points
[i, 1]) ,

192 coordsA =ax3.transData , coordsB =ax2.transData , axesA =ax3 , axesB =ax2 ,
ls=’:’, color =c)

193 fig. add_artist (con2)
194

195 con3 = ConnectionPatch ((sv. l_interest_points [i, 0], sv. l_interest_points [i, 1]) ,
196 (sv. r_interest_points [i, 0],
197 sv. r_interest_points [i, 1]) ,
198 coordsA =ax1.transData , coordsB =ax2.transData , axesA =ax1 , axesB =ax2 ,

ls=’:’, color =c)
199 fig. add_artist (con3)
200

201 plt. tight_layout ()
202

203 if save_fn is not None:
204 plt. savefig (save_fn , bbox_inches =’tight ’, pad_inches =0.1 , dpi =600)

42

205

206 plt.show ()
207 plt. close ()
208

209 return
210

211 # Task 3
212

213

214 def show_disp_maps (l_disp : np.ndarray , l_disp_est : np.ndarray , ch: np.ndarray , window_size : tuple ,
delta : int , accuracy : float , save_fn : str = None):

215 """
216 Visualize the disparity map and estimated disparity map , along with the challenge regions .
217 """
218 fig = plt. figure (figsize =(9 , 9))
219 gs = GridSpec (2, 2, fig)
220 ax1 = fig. add_subplot (gs[0, :])
221 ax2 = fig. add_subplot (gs[1, 0])
222 ax3 = fig. add_subplot (gs[1, 1])
223

224 fig. suptitle (f" Census Transform - { window_size } window ")
225

226 im1 = ax1. imshow (l_disp , cmap="GnBu")
227 ax1. set_title (" Ground truth disparity ")
228 ax1.axis(’off ’)
229 plt. colorbar (im1 , ax=ax1 , shrink =0.5 , pad =0.1)
230

231 im2 = ax2. imshow ((l_disp_est). astype (np. uint8), cmap="GnBu")
232 ax2. set_title (" Estimated disparity ")
233 ax2.axis(’off ’)
234 plt. colorbar (im2 , ax=ax2 , shrink =0.5 , pad =0.1)
235

236 im3 = ax3. imshow ((255 * ch. astype (np. uint8)), cmap="gray")
237 ax3. set_title (f" Challenge regions , delta ={ delta }\ nAccuracy ={ accuracy :.4f}")
238 ax3.axis(’off ’)
239 plt. colorbar (im3 , ax=ax3 , shrink =0.5 , pad =0.1)
240

241 if save_fn is not None:
242 plt. savefig (save_fn , bbox_inches =’tight ’, pad_inches =0.2 , dpi =600)
243

244 plt.show ()
245 plt. close ()
246

247 return

43

6.1.4 main.py

1 import os
2 import numpy as np
3 from stereo_cameras import StereoVision
4 from plotting import show_correspondences , show_rectification , show_interest_points ,

show_reconstruction , show_disp_maps
5

6 from dense_matching import census_transform
7

8 if __name__ == ’__main__ ’:
9 run_stereo = True

10 run_dense_matching = False
11

12 if run_stereo :
13 data_dir = "./ data"
14 out_dir = "./ outs"
15 pairs = [f"pair{i}" for i in range (4, 5)]
16 # rot = True
17 rot = False
18

19 for pair in pairs :
20 left_img_filename = os.path.join(data_dir , pair , "left.jpg")
21 right_img_filename = os.path.join(data_dir , pair , " right .jpg")
22

23 sv = StereoVision (left_img_filename ,
24 right_img_filename , matching ="load")
25

26 save_fn = os.path.join(out_dir , pair , " manual_corr .pdf")
27 # save_fn = None
28 show_correspondences (sv , save_fn)
29

30 sv. rectify (rot=rot)
31

32 save_fn = os.path.join(out_dir , pair , " rectified .pdf")
33 show_rectification (sv , save_fn)
34

35 sv. detect_interest_points (matching ="load")
36

37 save_fn = os.path.join(out_dir , pair , " interest_points .pdf")
38 show_interest_points (sv , save_fn)
39

40 sv. refine ()
41

42 lines_to_show = [(0 , 1) , (1, 2) , (2, 3) , (0, 3) ,
43 (4, 5) , (5, 6) , (6, 2) , (4, 0) ,
44 (3, 5) , (8, 9) , (9, 10) , (10 , 7) ,
45 (8, 7) , (12 , 13) , (13 , 11) , (11 , 12) ,
46 (14 , 15) , (16 , 15) , (17 , 16) , (17 , 14) ,
47 (8, 3) , (8, 5) , (7, 0) , (7, 4) ,
48 (18 , 3) , (18 , 5) , (18 , 2) , (18 , 6)]
49

50 save_fn = os.path.join(out_dir , pair , " reconstruction1 .pdf")
51 show_reconstruction (sv , lines_to_show , save_fn)
52

53 if run_dense_matching :
54 data_dir = "./ Task3Images "
55 out_dir = "./ outs"
56

57 img_fnames = [os.path.join(data_dir , im)
58 for im in ["im2.png", "im6.png"]]
59 disp_fnames = [os.path.join(data_dir , disp) for disp in [" disp2 .png"]]
60 # windows = [(11 , 11) , (11 , 21) , (21 , 11) , (21 , 21) , (31 , 31)]
61 windows = [(5 , 5)]
62 deltas = [1, 2]
63 for w in windows :
64 for d in deltas :
65 print (f" Window size: {w}, Delta : {d}")
66

67 l_disp , l_disp_est , ch = census_transform (
68 * img_fnames , * disp_fnames , w, d, save_fn)

44

69 accuracy = np. count_nonzero (ch) / np. count_nonzero (l_disp)
70 print (f" Accuracy : { accuracy :.4f}")
71

72 save_fn = os.path.join(
73 out_dir , " task3 ", f" dense_ {w[0]}_{w[1]}_{d}. pdf")
74 show_disp_maps (l_disp , l_disp_est , ch , w, d, accuracy , save_fn)

Usage:
python ./src/main.py

45

6.2 Task 4

1 import numpy as np
2 import pickle as pkl
3 import matplotlib . pyplot as plt
4 import h5py # for reading depth maps
5

6 """
7 A few notes on the scene_info dictionary :
8 - depth maps are stored as h5 files . Depth is the distance of the object from the camera (ie Z

coordinate in camera coordinates). The depth map can contain invalid points (depth = 0) which
correspond to points where the depth could not be estimated .

9 - The intrinsics are stored as a 3x3 matrix .
10 - The poses [R,t] are stored as a 4x4 matrix to allow for easy transformation of points from one

camera to the other . The resulting transformation matrix is a 4x4 matrix is of the form:
11 T = [[R, t]
12 [0, 1]] where R is a 3x3 rotation matrix and t is a 3x1 translation vector .
13 """
14

15 DEPTH_THR = 0.1
16

17

18 def plot_image_and_depth (img0 , depth0 , img1 , depth1 , plot_name):
19 # Enable constrained layout for uniform subplot sizes
20 fig , ax = plt. subplots (2, 2, figsize =(9 , 6) , constrained_layout =True)
21

22 # Image 0
23 ax[0, 0]. imshow (img0)
24 ax[0, 0]. set_title (’Image 0’)
25 ax[0, 0]. axis(’off ’)
26

27 # Depth 0
28 im1 = ax[0, 1]. imshow (depth0 , cmap=’jet ’)
29 ax[0, 1]. set_title (’Depth 0’)
30 ax[0, 1]. axis(’off ’)
31 cbar1 = fig. colorbar (im1 , ax=ax[0, 1], shrink =0.8 , aspect =20)
32 cbar1 .ax. yaxis . set_ticks_position (’left ’)
33 cbar1 .ax. yaxis . set_label_position (’left ’)
34 cbar1 .ax. tick_params (labelsize =15)
35

36 # Image 1
37 ax[1, 0]. imshow (img1)
38 ax[1, 0]. set_title (’Image 1’)
39 ax[1, 0]. axis(’off ’)
40

41 # Depth 1
42 im2 = ax[1, 1]. imshow (depth1 , cmap=’jet ’)
43 ax[1, 1]. set_title (’Depth 1’)
44 ax[1, 1]. axis(’off ’)
45 cbar2 = fig. colorbar (im2 , ax=ax[1, 1], shrink =0.8 , aspect =20)
46 cbar2 .ax. yaxis . set_ticks_position (’left ’)
47 cbar2 .ax. yaxis . set_label_position (’left ’)
48 cbar2 .ax. tick_params (labelsize =15)
49

50 plt. savefig (plot_name , bbox_inches =’tight ’, pad_inches =0.1)
51 plt. close ()
52

53

54 def depth_to_world (depth_map , K, T, img):
55 valid_coords = np. column_stack (np. where (depth_map > 0))
56 depth_values = depth_map [valid_coords [:, 0],
57 valid_coords [:, 1]]. reshape ((-1, 1))
58 c = (img[valid_coords [:, 0], valid_coords [:, 1]] / 255). reshape ((-1, 3))
59 K_inv = np. linalg .inv(K)
60 pixel_coords = np. hstack (
61 (valid_coords [:, :: -1] , np.ones ((valid_coords . shape [0] , 1))))
62 cam_coords = (depth_values .T) * (K_inv @ pixel_coords .T)
63

64 cam_coords_hc = np. vstack ((cam_coords , np.ones ((1 , cam_coords . shape [1]))))
65 X_world_hc = np. linalg .inv(T) @ cam_coords_hc
66

46

67 return X_world_hc [:3 , :].T, c
68

69

70 def plot_3D_world_points (X_world_A , X_world_B , c_A , c_B , save_fn =None):
71 fig = plt. figure (figsize =(10 , 8))
72 ax = fig. add_subplot (111 , projection =’3d’)
73

74 ax. scatter (- X_world_A [:, 0], -X_world_A [:, 1],
75 X_world_A [:, 2], c=c_A , s=0.1 , marker =’,’)
76 ax. scatter (- X_world_B [:, 0], -X_world_B [:, 1],
77 X_world_B [:, 2], c=c_B , s=0.1 , marker =’,’)
78

79 ax. set_title (’3D World Points ’)
80 ax. set_xlabel (’X’)
81 ax. set_ylabel (’Y’)
82 ax. set_zlabel (’Z’)
83 ax. view_init (elev =20 , azim =180 , vertical_axis =’y’)
84 ax.dist = 8
85 if save_fn is not None:
86 plt. savefig (save_fn , bbox_inches =’tight ’, dpi =600 , pad_inches =0.4)
87 # plt.show ()
88 plt. close ()
89

90

91 if __name__ == " __main__ ":
92 scene_info = pkl.load(open(’./ data/ scene_info /1589 _subset .pkl ’, ’rb ’))
93

94 for i_pair in range (len(scene_info))[:]:
95 # print (scene_info [i_pair]. keys ())
96 # [’ image0 ’,’image1 ’,’depth0 ’, ’depth1 ’, ’K0 ’, ’K1 ’, ’T0 ’, ’T1 ’, ’overlap_score ’]
97 # print (scene_info [i_pair][’ image0 ’]) # path to image0
98 # print (scene_info [i_pair][’ image1 ’]) # path to image1
99 # print (scene_info [i_pair][’ depth0 ’]) # path to depth0

100 # print (scene_info [i_pair][’ depth1 ’]) # path to depth1
101 # print (scene_info [i_pair][’K0 ’]) # intrinsic matrix of camera 0 [3 ,3]
102 # print (scene_info [i_pair][’K1 ’]) # intrinsic matrix of camera 1 [3 ,3]
103 # print (scene_info [i_pair][’T0 ’]) # pose matrix of camera 0 [4 ,4]
104 # print (scene_info [i_pair][’T1 ’]) # pose matrix of camera 1 [4 ,4]
105 # print (’-------------------’)
106

107 # read images
108 img0 = plt. imread (scene_info [i_pair][’image0 ’])
109 img1 = plt. imread (scene_info [i_pair][’image1 ’])
110

111 # read depth
112 with h5py.File(scene_info [i_pair][’depth0 ’], ’r’) as f:
113 depth0 = f[’depth ’][:]
114 with h5py.File(scene_info [i_pair][’depth1 ’], ’r’) as f:
115 depth1 = f[’depth ’][:]
116

117 # check shapes
118 h0 , w0 = img0. shape [: -1]
119 h1 , w1 = img1. shape [: -1]
120 assert img0. shape [:-
121 1] == depth0 .shape , f" depth and image shapes do not match : {img0}, {

depth0 }"
122 assert img1. shape [:-
123 1] == depth1 .shape , f" depth and image shapes do not match : {img1}, {

depth1 }"
124

125 # plot image and depth
126 plot_name = f’./ pics/ image_and_depth_pair_ { i_pair }. png ’
127 plot_image_and_depth (img0 , depth0 , img1 , depth1 , plot_name)
128

129 # (1) make meshgrid of points in image 0
130 x = np. linspace (10 , img0. shape [1] -10 , 11) # ignore a border of 10 pxls
131 y = np. linspace (10 , img0. shape [0] -10 , 11) # ignore a border of 10 pxls
132

133 xx , yy = np. meshgrid (x, y)
134 # make homogeneous coordinates for points0 #[3 , N]
135

47

136 points0 = np. vstack ((xx. ravel () , yy. ravel ()))
137 points0 = np. vstack ((points0 , np.ones(points0 . shape [1])))
138

139 # (2) get depth values at points0
140 depth_values0 = depth0 [(yy). astype (np. int32), (xx). astype (np. int32)]
141 # remove points with depth 0 (invalid points)
142 valid_points = depth_values0 > 0
143 # mask points0 and depth_values0
144

145 valid_depth_values0 = depth_values0 [valid_points]
146 points0 = points0 [:, valid_points . ravel ()]
147

148 # (3) Find the 3D coordinates of these points in camera 0 frame
149 K0 = scene_info [i_pair][’K0 ’] # [3 ,3]
150 T0 = scene_info [i_pair][’T0 ’] # [4 ,4]
151 # inverse of K0
152 K0_inv = np. linalg .inv(K0)
153 # convert points0 to camera coordinates
154 xyz_cam0 = K0_inv @ points0
155 # normalize xyz_cam0 to set z = 1 (sanity check)
156 xyz_cam0 /= xyz_cam0 [2]
157 # get the point at depth
158 xyz_cam0 = valid_depth_values0 * xyz_cam0
159 # make homogeneous coordinates [4,N]
160 xyz_cam0_hc = np. vstack ((xyz_cam0 , np.ones(xyz_cam0 . shape [1])))
161 # convert to world frame [4,N]
162 xyz_world_hc = np. linalg .inv(T0) @ xyz_cam0_hc
163

164 # (4) Transform these points to camera 1 frame
165 K1 = scene_info [i_pair][’K1 ’]
166 T1 = scene_info [i_pair][’T1 ’]
167 # transform points to camera 1 frame
168 xyz_cam1_hc = T1 [:3 , :] @ xyz_world_hc
169 # get z coordinates for depth check
170 estimated_depth_values1 = xyz_cam1_hc [2]
171

172 # project to image 1
173 points1 = K1 @ xyz_cam1_hc # [3, N]
174 # normalize by dividing by last row
175 points1 /= points1 [2] # [3, N]
176 # check if points1 are within image bounds
177 valid_points1 = (points1 [0] >= 0) & (points1 [0] < w1) & (
178 points1 [1] >= 0) & (points1 [1] < h1)
179 # mask points1 and estimated_depth_values1
180 points1 = (points1 [:2 , valid_points1 . ravel ()]). astype (np. int32)
181 # get the depth values at these points using the depth map
182 true_depth_values1 = depth1 [points1 [1, :], points1 [0, :]]
183

184 # (5) plot matching points in image 0 and image 1 with depth check such that the depth
values match

185 fig , ax = plt. subplots (1, 1, figsize =(10 , 5))
186 # Horizontally stack the images
187 combined_img = np.ones(
188 (max(img0. shape [0] , img1. shape [0]) , img0. shape [1] + img1. shape [1] , 3) , dtype =np. uint8)

* 255
189 combined_img [: img0. shape [0] , :img0. shape [1]] = img0
190 combined_img [: img1. shape [0] , img0. shape [1]:] = img1
191

192 ax. imshow (combined_img , aspect =’auto ’)
193 ax. scatter (xx , yy , c=’r’, s=5)
194 ax. set_title (’Matching points in Image 0 and Image 1’)
195 ax.axis(’off ’)
196

197 # draw lines between matching points
198 for i in range (points1 . shape [1]):
199 # if depth values match
200 if (true_depth_values1 [i] > 0) and (np.abs(estimated_depth_values1 [i] -

true_depth_values1 [i]) < DEPTH_THR):
201 ax.plot ([points0 [0, i], points1 [0, i] + img0. shape [1]] ,
202 [points0 [1, i], points1 [1, i]], ’g’)
203

48

204 plt. savefig (
205 f’./ pics/ depth_check_pair_ { i_pair }. png ’, bbox_inches =’tight ’, pad_inches =0.1)
206 plt. close ()
207

208 # (6) Plot all 3D points for the pair
209 """
210 <Student code >
211 ...
212 """
213 X_world_A , c_A = depth_to_world (depth0 , K0 , T0 , img0)
214 X_world_B , c_B = depth_to_world (depth1 , K1 , T1 , img1)
215 # save_fn = None
216 save_fn = f"./ pics/ reconstruct_pair_ { i_pair }. png"
217 plot_3D_world_points (X_world_A , X_world_B , c_A , c_B , save_fn)
218 print (f"Done with pair { i_pair }")

Usage:
python ./plot_depth_check_v1.py

49

	Theory Question
	Task - 1: Projective Stereo Reconstruction
	Methodology
	Image Rectification
	Interest Point Detection
	Projective Reconstruction

	Results

	Task - 2: Loop And Zhang
	Methodology
	Discussion
	Results

	Task - 3: Dense Stereo Matching
	Methodology
	Discussion
	Results

	Task - 4: Depth Maps and Automatic Extraction of Dense Correspondences
	Methodology
	Results

	Source Code
	Task 1 and 3
	stereo_cameras.py
	dense_matching.py
	plotting.py
	main.py

	Task 4

