ECE 661 - Computer Vision
Homework - 9

Arnav Singh

Contents
1 Theory Question

2 Task - 1: Projective Stereo Reconstruction

2.1 Methodology
2.1.1 Image Rectification L
2.1.2 Imterest Point Detection
2.1.3 Projective Reconstruction e

2.2 Results. e

3 Task - 2: Loop And Zhang

3.1 Methodology e e

3.2 DISCUSSION o v o e e e e e e

3.3 Results. . . . o e
4 Task - 3: Dense Stereo Matching

4.1 Methodology

4.2 DISCUSSION v v i e e e e e e e e e e e e

4.3 Results. . . . o o e
5 Task - 4: Depth Maps and Automatic Extraction of Dense Correspondences

5.1 Methodology L

5.2 Results. o

6 Source Code

6.1 Task land 3
6.1.1 stereo_cameras.Pyt i i e e e
6.1.2 demse_matching.py
6.1.3 plotting.py e
6.1.4 main.pyo

6.2 Task 4

13
13
13
14

17
17
18

1 Theory Question

Figure 1: Epipolar geometry

The equation of the line that joins the world point X and center of projection of the left camera C' is
L=C+)X

where, A is any scalar quantity.
The image of L in the right image is

!=P L=P C+)P X=¢€"+X\2

The line I’ = €’ + Az’ represents a line that passes through the points €’ and z’, which is the exact definition of
the right epipolar line.
This proves that the correspondence (2’ in the right image) of « in the left image lies on the right epipolar line.

2 Task - 1: Projective Stereo Reconstruction

2.1 Methodology
2.1.1 Image Rectification

Image rectification is the process of applying appropriate homographies to the left and right image so their epipolar

lines lie parallel to the x-axis. This implies that the epipoles (images of the camera center of projections in the

other camera) corresponding to both cameras lie at the ideal point along x-axis i.e., [1 0 0] T

e To find the epipoles and epipolar lines we must find and initial estimate of the rank 2, 3 x 3 fundamental
matrix F' that contains all the information about the pair of cameras. In order to calculate F' we manually
select a set (minimum 8) of correspondences (x; > ;) in images I, I’ and are constrained to F by

T Fx =0.

This can be solved using linear least squares (preceded by normalization of the coordinates x,«’). The
condition of |F'| = 0 can be forced by setting its smallest singular value to 0.

. . T . . .
The normalization of the points x; = [ml Yi 1] can be done using a 3 x 3 transformation matrix T’

c 0 —czx
ii‘i = TZBZ' T=10 c 767;
0 0 1

where (Z, %) is the centroid of the set of correspondences, ¢ is defined as %5 and D is the mean Euclidean
distance of the centroid from the correspondence points.

The set of homogeneous equations to solve for F' are
Af=0

where

fi1]
J12
&l 5 Ay > ~1 ~1 ~1 5 ~ 1 f13
L7121 Y1 T Y Yiyir Y1 1 Y1 for
: : : : N f= /o
ENEN FnOn Ty GhEN ONON On N Gy] ?3
31
f32
| f33]

The final F' is obtained by ~
F=TTFT (1)

followed by setting its smallest singular value to 0.
« The left and right epipoles e, e’ are the null vectors of F' and F'T, respectively.

o We assume that the cameras are in their canonical configuration, i.e., the world co-ordinate frame coincides
with co-ordinate frame of the left camera, and, the right camera is at a rotation, translation w.r.t the left
camera. This simplifies the form of the projection matrices and left camera’s center of projection

100 0

P=10 10 0 c=0 oo 1" (2)
0010

P’ =[[¢/] F|€] (3)

where [a]« is the 3 x 3 cross-product representation of any vector a.

o This initial estimate is refined using non-linear least squares (for example Levenberg-Marquardt). The pa-
rameters over which the cost minimization are the twelve matrix elements of P’ and the triangulated world
points using the N manually selected correspondences (total 12 + 3N parameters). The cost function C here
is the reprojection error calculated by projecting the triangulated point back on the image sensor planes.

C=[X - f(pIP

The triangulation for the world point Q; using correspondence (x; <> ;) is done by solving the following
homogeneous set of equations

AiQ; =0
where
z;P3 — pl’
A _ | wP - P
i /P/ST I)/lT

and P*' is the k—th row of projection matrix P (similar for primed counter-parts).
¢ The rectification homography for the right image H’ can be calculated using a series of homographies:
— Translate the origin to the center of the image by
1 0 —w/2
T=1|0 1 —h/2
0 0 1

where w, h are the width and height of the image.
— Rotate the image to align the right epipole with the x-axis

" —h/2
9:—arctane;’7/
el —w/2

cosf —sinf 0
R = |[sinf cosf O
0 0 1

— Send the right epipole to the ideal point along the x-axis
f=cosf(e), —w/2) —sinb(e, — h/2)

1
G=1| 0
—1/f

o = O

0
0
1

The final H’ is given by
H=T'GRT

e The rectification homography for the left image H can be calculated using a series of steps:

— Define homographies Hy and H 4
H,=H' P P!

a b c
Hy=10 1 0
0 0 1
— Let &; = Hox; and &, = H'x},
— Solve for a, b, ¢ using
arg min Z(a:%l- + by + ¢ — 2)?
T

The final H is given by
H=H, H,

2.1.2 Interest Point Detection

Now that we have rectified the left and right images using rectification homographies H, H’; we can find a larger
set of correspondences (x; <> x}) because the correspondences now lie in the same row (or adjoining rows for
robustness). We can use the Canny edges of the rectified images as potential interest points, and then proceed
to find matches using any metric (for example SSD). Now the search space for matching is significantly smaller.
These interest points in the rectified images are then transformed back to the original images using the inverse of
the rectification homographies.

2.1.3 Projective Reconstruction

We can re-calculate a refined fundamental matrix F' using the interest points detected using canny edges (1). Using
this refined F', we can calculate the projection matrices P, P’ of the canonical cameras from (2), (3). The world
points of the correspondences are calculated using non-linear least squares.

2.2 Results

(a) left.jpg (b) right.jpg

Figure 2: Images for this task

Manually selected points

Figure 3: Manually selected correspondences

Rectified images

__

Figure 4: Rectified images

Canny Edges

Figure 5: Canny edges of the rectified images

Detected Interest Points

Figure 6: Detected interest points using Canny and SSD

Stereo Reconstruction

Figure 7: View 1 of the stereo reconstruction. Source images not shown; just outlines shown for better visibility.

Stereo Reconstruction

Figure 8: View 2 of the stereo reconstruction. Source images not shown; just outlines shown for better visibility.

3 Task - 2: Loop And Zhang
3.1 Methodology

The Loop and Zhang algorithm for image rectification involves breaking down the rectification homographies as a
product of a purely projective homography and an affine homography.

H=H, H,
H' =H, H,

The purely projective homographies H,, H 1’, are homographies that send the epipoles e, €’ to infinity in a direction
that causes the least distortion to the images.

The affine homographies H,, H! are primarily for mitigating the distortions that are caused by highly-distortive
projective homographies. The affine homographies can be further broken down into shearing and similarity homo-
graphies.

3.2 Discussion

The set of rectified images returned by the Loop and Zhang algorithm have lower projective distortion but detects
fewer number of correspondences because it uses the BRISK (open source alternative to SIFT). My pipeline uses
canny edges as potential interest points and is effective in finding large number of correspondences for the calculation
of the fundamental matrix and camera projection matrices (up to a canonical configuration).

10

3.3 Results

(a) left.jpg (b) right.jpg

Figure 9: Images for this task

(a) Left image rectified (b) Right image rectified

11

(a) Matched interest points in left image (b) Matched interest points in right image

12

4

4.1

Task - 3: Dense Stereo Matching
Methodology

The census transform is a simple method for dense stereo matching, involving the following steps:

1.

4.2

For each pixel in the left image, (z;,y;), a candidate correspondence pixel in the right image is selected as
(2} — d,y}), where d is the disparity value under consideration.

Around each pixel in the correspondence pair, an M x N neighborhood is defined.

For each M x N neighborhood, an M x N bit-vector is constructed. A bit in the bit-vector is set to 1 if the
corresponding pixel value in the neighborhood is strictly greater than the central pixel’s value; otherwise, it
is set to 0.

Two bit-vectors are generated at each iteration: one for the left image and one for the right image. These
bit-vectors are then compared using a bit-wise XOR, operation. The Hamming distance (the number of 1’s in
the XOR result) is computed, representing the data cost for the candidate correspondence.

The disparity map is populated by finding the disparity d that minimizes the data cost for each pixel position
in the left image.

Discussion

Overall, the estimated disparity maps using census transforms are good and accurate to ground truth disparity
maps. The accuracy does not change much when we use a square window of size 11 x 11 or 21 x 21. Relaxing the
distance threshold (§) increases the accuracy by 2 — 3%. Using a rectangular window of size 11 x 21 also does not
change the accuracy by a lot.

13

4.3 Results

Census Transform - (11, 11) window

Ground truth disparity

- ¢
40 40
20 20
0 0

Challenge regions, delta =1 Challenge regions, delta = 2
Accuracy=0.7350 Accuracy=0.7503
L) A FEAEES SR w
200 200
100 100
0 0
Figure 12

14

Census Transform - (21, 11) window

Ground truth disparity Estimated disparity

40

20

0

Challenge regions, delta =1 Challenge regions, delta = 2
Accuracy=0.7351 Accuracy=0.7506
— 0(it 2 .

200

100

0

Figure 13

15

40

20

200

100

Census Transform - (21, 21) window

Ground truth disparity Estimated disparity
Yo e - - . "
40 40
20 20
0 0
Challenge regions, delta =1 Challenge regions, delta = 2
Accuracy=0.7295 Accuracy=0.7456
i . } 7 o ¥ 7,‘ i K
200 200
100 100
0 0
Figure 14

16

5 Task - 4: Depth Maps and Automatic Extraction of Dense Corre-
spondences

5.1 Methodology

Automatic extraction of dense correspondences using depth maps leverages the geometric relationship between
stereo images and their depth information for efficient and accurate correspondence matching. The process is
outlined below:

1. Depth to 3D Projection: The depth value D(x) for each pixel in the first image is combined with the
camera’s intrinsic and extrinsic parameters to compute the 3D coordinates of the pixel in the world coordinate

system:
Xworld = T_l Xcamv Xcam = D(:I:) K_l Z,

where K is the intrinsic camera matrix, T is the transformation from the camera to the world frame, and x
is the pixel’s homogeneous image coordinates.

2. Reprojection to the Second Image: The computed 3D world coordinates Xyopq are re-projected onto
the second image using the second camera’s intrinsic and extrinsic parameters:

$/ = K/ [R/ | t/] Xworlda
resulting in a candidate pixel =’ in the second image.

3. Depth Check for Validation: The depth of the candidate pixel in the second image, D'(x’), is compared
with the depth derived from reprojection. If the absolute difference is below a threshold §, the correspondence

is validated: R
D'(z') — D(z")| < 6.

4. Output Correspondences: Validated correspondences are recorded as dense matches between the two
images.
Usefulness:
1. Efficiency: Automates dense correspondence extraction without requiring exhaustive searches.
2. Precision: Ensures geometric consistency using depth maps.

3. Applications: Enables tasks such as stereo matching, image registration, and 3D reconstruction, while also
facilitating training of deep-learning-based feature extraction networks like SuperPoint and LoFTR.

17

5.2 Results

Figure 15: Pair 0

18

Figure 16: Pair 1

19

Figure 17: Pair 2

20

Figure 18: Pair 3

21

Figure 19: Pair 4

22

Figure 20: Pair 5

23

Figure 21: Pair 6

24

Figure 22: Pair 7

25

Figure 23: Pair 8

26

Figure 24: Pair 9

27

6
6.1

Source Code

Task 1 and 3

6.1.1 stereo_cameras.py

impo
impo
impo
from
from
from

from

eps

clas

def

def

def

rt cv2 as cv

rt numpy as np

rt os
scipy.optimize import least_squares
tqdm import tqdm
skimage import feature

LM_optim import LM_optim

= np.finfo(float) .eps

s ClickRecorder:

Class to record clicked points.

def __init__(self):
self.clicked_points = []

def mouse_callback(self, event, x, y, flags, param):
if event == cv.EVENT_LBUTTONDOWN :
self.clicked_points.append ((x, y))
print (£"Clicked point: {self.clicked_points[-1]1}")

def get_clicked_points(self):

return self.clicked_points

select_points (img) :

Function to select and return selected points on an image using OpenCV’s mouse callback.
click_recorder = ClickRecorder ()

cv.namedWindow ("select_points", cv.WINDOW_NORMAL)

cv.imshow("select_points", img)

cv.setMouseCallback("select_points", click_recorder.mouse_callback)

cv.waitKey (0)

print (£"All selected points: {click_recorder.get_clicked_points()}")
cv.destroyAllWindows ()

return np.array(click_recorder.get_clicked_points())

_get_cross_product_matrix(a):
nnn
Function to calculate the cross product matrix for a 3D vector a.
nnn
assert len(a) == 3
return np.array([[0, -a[2], al1l],
[al2], 0, -al01],
[-al1]l, af0l, 011)
_normalize_coords (points):
nnn
Function to normalize 2D points using the mean and standard deviation.
nnun
mu = np.mean(points, axis=0)
dist = np.sqrt(np.sum((points - mu)**2, axis=1))
mean_dist = np.mean(dist)

¢ = np.sqrt(2) / mean_dist
T = np.array([[c, 0, -c*mul[0]],

28

66 [0, ¢, -cxmul1]1],

67 o, o, 111D

68 points_hc = np.hstack((points, np.ones((len(points), 1)))).T
69 points_normalized = T @ points_hc

70

71 return points_normalized[:2, :].T, T

74 def _calculate_F_from_points(l_points, r_points, 1_T, r_T):
nnn

76 Function to calculate Fundamental Matrix from two sets of corresponding points.

78 A =[]

79 for (x, y), (xp, yp) in zip(l_points, r_points):
80 A.append ([xp*x, xp*y, Xp, ypP*X, yp*y, yp, X, y, 11)
81

82 A = np.array(A)

83 _, _, vt = np.linalg.svd(A)

84 F = vt[-1, :].reshape(3, 3)

85

86 F=r_T. T @F@1_T

87 u, d, vt = np.linalg.svd(F)

88 d[-1] = 0

89 F = u @ np.diag(d) @ vt

90 F /= F[2, 2] + eps

05 def _calculate_epipoles(F):

97 Function to calculate the epipoles from the Fundamental Matrix.
nnn

99 _, _, vt = np.linalg.svd(F)

100 1_epipole = vt[-1, :]

101 1_epipole /= 1_epipole[2] + eps
102

103 _, _, vt = np.linalg.svd(F.T)
104 r_epipole = vt[-1, :]

105 r_epipole /= r_epipole[2] + eps
106

107 return 1l_epipole, r_epipole

108

109

110 def _calculate_projection_matrices(F, r_epipole):

111 nun

112 Function to calculate the projection matrices from the Fundamental Matrix and the right
epipole.

113 nnn

114 1 P = np.eye(3, 4, dtype=np.float64)

_get_cross_product_matrix(r_epipole)
= np.hstack((s @ F, r_epipole[:, Nonel))

o

S
117 r_

119 return 1_P, r_P

def _triangulate(l_P, r_P, 1_point, r_point):

124 Function to triangulate for the world point using the projection matrices.
125 nnn

126 1_P1 = 1_P[o0]
127 1_P2 = 1_P[1]
128 1_P3 = 1_P[2]
129

130 r_P1 = r_P[0]
131 r_ P2 = r_P[1]
132 r_P3 = r_P[2]
133

134 A = []

135 A.append([1_point[0] * 1_P3 - 1_P1])

29

136 A.append ([1_point [1] * 1_P3 - 1_P2])
.append ([r_point [0] * r_P3 - r_P1])
138 A.append ([r_point [1] * r_P3 - r_P2])
139

140 A = np.array(A).squeeze ()

_, vt = np.linalg.svd(A.T @ A)

3
=

141 o0
142
143 X
144 X
145
146 return X

148

140 def _cost_func_r_P(params, 1_P, 1_points, r_points):
nnn

151 Cost function to refine P’ and world points using LM.
nnn

153 r_P = np.reshape(params[:12], (3, 4))

155 X = [1

156 F = []

157

158 for i, (l_point, r_point) in enumerate(zip(l_points, r_points)):

160 X.extend (1_point)
161 X.extend(r_point)

163 idx = 12 + 3 * i
165 world_point = np.array([*params[idx: idx+3], 1])

167 1_point_reproj = 1_P @ world_point
168 1l_point_reproj /= 1l_point_reproj[2] + eps

170 r_point_reproj
171 r_point_reproj

r_P @ world_point
= r_point_reproj[2] + eps

~ |

173 F.extend (1_point_reproj [:2])
174 F.extend(r_point_reproj[:2])
175

176 X = np.array(X)

177 F = np.array(F)

178

179 return X - F

180

152 def _cost_func_world_points(params, 1_P, r_P, 1l_points, r_points):

183 nun

184 Cost function to refine world points using LM.

185 e

186 X = []

187 F = []

188

189 for i, (l_point, r_point) in enumerate(zip(l_points, r_points)):

190
191 X.extend(1l_point)

192 X.extend (r_point)

193

194 world_point = np.array([*params[3*i: 3x(i+1)], 1])
195

196 1_point_reproj = 1_P @ world_point

197 1l_point_reproj /= 1l_point_reproj[2] + eps

198

199 r_point_reproj
200 r_point_reproj

r_P @ world_point
= r_point_reproj[2] + eps

~N

202 F.extend(l_point_reproj[:2])
203 F.extend(r_point_reproj[:2])

205 X = np.array(X)
np.array (F)

¥
]
[}

30

return X - F

def _calculate_F_from_P(r_P):

Function to calculate Fundamental Matrix from the right projection matrix.
nnn

r_epipole = r_P[:, -1]

s = _get_cross_product_matrix(r_epipole)
F=3s @ r_P[:3, :3]
F /= F[2, 2] + eps

def _ssd(l_img_rectified, r_img _rectified, 1l_interest_points, r_interest_points, M=7, T=60, n_rows
=3, col_diff=15):

Function to find matches between the interest points usign SSD metric.
nnn
m=M// 2 + 1
1_img_padded = np.pad(l_img_rectified, ((m, m), (m, m)),
"constant", constant_values=0)
r_img_padded = np.pad(r_img_rectified, ((m, m), (m, m)),
"constant", constant_values=0)

1_matches = []

row_min = np.min(l_interest_points[:, 0])
row_max = np.max(l_interest_points[:, 0])

for row in tqdm(range (row_min, row_max+1)):

1_val_points = 1_interest_points[:, 0] == row
r_val_points = (
(row - n_rows) <= r_interest_points[:, 0]) & (r_interest_points[:, 0] <= (row + n_rows

))
if (len(l_interest_points[l_val_points]) and len(r_interest_points[r_val_points])):
print(l_interest_points[l_val_points], r_interest_points[r_val_points])

1_points_idx = np.arange(len(l_interest_points))[1l_val_points]
r_points_idx = np.arange(len(r_interest_points))[r_val_points]

for 1_idx in 1_points_idx:
yl1, x1 = 1_interest_points[1l_idx]
nbdl = 1_img_padded[yl: yl1+2*m, x1: x1+2%m]
ssds = []
if np.all(nbdl):
for r_idx in r_points_idx:
y2, x2 = r_interest_points[r_idx]
nbd2 = r_img_padded[y2: y2+2*m, x2: x2+2%*m]
if np.all(nbd2):
try:
ssd = np.mean((nbdl - nbd2) **2)
except:
continue

ssds.append (ssd)
else:
ssds.append(np.inf)
continue
else:
ssds.append (np.inf)

if len(ssds) > O:
min_ssd_idx = np.argmin(ssds)
if ssds[min_ssd_idx] < T:
1_matches.append (
(1_idx, r_points_idx[min_ssd_idx], ssds[min_ssd_idx]))

31

277 r_matches = []

278 row_min = np.min(r_interest_points[:, 0])

279 row_max = np.max(r_interest_points[:, 0])

280

281 for row in tqdm(range(row_min, row_max+1)):

283 r_val_points = r_interest_points[:, 0] == row

284 1_val_points = (

285 (row - n_rows) <= 1l_interest_points[:, 0]) & (l_interest_points[:, 0] <= (row + n_rows
))

286 if (len(l_interest_points[l_val_points]) and len(r_interest_points[r_val_points])):

288 1_points_idx = np.arange(len(l_interest_points))[1l_val_points]

289 r_points_idx = np.arange(len(r_interest_points))[r_val_points]

291 for r_idx in r_points_idx:

292 y2, x2 = r_interest_points[r_idx]
293 nbd2 = r_img_padded[y2: y2+2*m, x2: x2+2*m]
294 ssds = []

295 if np.all(nbd2):

296 for 1_idx in 1_points_idx:

297 yl1, x1 = 1_interest_points[1l_idx]

298 nbdl = 1_img_padded[yl: y1+2*m, x1: x1+2%m]
299 if np.all(nbdl):

300 try:

301 ssd = np.mean((nbdl - nbd2) *x*2)
302 except:

303 continue

304 ssds.append (ssd)

305 else:

306 ssds.append(np.inf)

307 continue

308 else:

309 ssds.append (np.inf)

311 if len(ssds) > O:

312 min_ssd_idx = np.argmin(ssds)

313 if ssds[min_ssd_idx] < T:

314 r_matches.append(

315 (1_points_idx[min_ssd_idx], r_idx, ssds[min_ssd_idx]))

317 matches = list(set(l_matches).intersection(r_matches))
318 sorted_matches = sorted(matches, key=lambda x: 1l_interest_points[x[0]][0])
319 filtered_matches = []

321 curr_row l_interest_points[matches [0] [0]] [0]

322 curr_col = 1_interest_points[matches[0][0]][1]

324 for match in sorted_matches:

326 1_idx match [0]
327 r_idx = match[1]

329 if 1_interest_points[1l_idx][0] == curr_row:

330 if 1_interest_points[1l_idx][1] >= curr_col:

331 if ((l_interest_points[1l_idx][1] - r_interest_points[r_idx][1]) **2) < col_diff**2:
332 curr_col = 1_interest_points[1l_idx][1]

333 filtered_matches.append(match)

335 else:

336 curr_row = 1l_interest_points[1l_idx]I[0]

338 if ((l_interest_points[1l_idx][1] - r_interest_points[r_idx][1]) **2) < col_diff x*2:
339 curr_col = 1_interest_points[1l_idx][1]

340 filtered_matches.append(match)

341

342 sorted_matches = sorted(filtered_matches, key=lambda x: x[2])

344 return sorted_matches

32

346

347 def _calculate_right_ H(r_epipole, h, w):

349 Calculate the right rectification homography matrix H.
150 o

351 T1 = np.array([[1, O, -w / 2],

352 [o, 1, -nh / 21,

353 o, o, 111)

355 angle = np.arctan2(-(r_epipole[1] - h/2), (r_epipolel[0] - w/2))

357 R = np.array([[np.cos(angle), -np.sin(angle), 0],
358 [np.sin(angle), np.cos(angle), 0],
359 [0, 0, 111)

361 f = np.abs((r_epipole[0] - w/2) * np.cos(angle) -
362 (r_epipole[1] - h/2) * np.sin(angle))

364 G = np.array([[1, O, O],
365 [O H 1 » O])
366 [-1/f, 0, 111)

368 H = np.linalg.inv(T1) @ G @ R @ T1
370 H /= H[2, 2] + eps
372 return H

def _calculate_left_H(1_P, r_P, r_H, 1l_points, r_points):

377 Calculate the left rectification homography matrix H.

379 left_P_pinv = np.linalg.pinv(1l_P)

381 HO = r_ H @ r_ P @ left_P_pinv

383 1_points_hc = np.hstack((l_points, np.ones((len(l_points), 1)))).T
384 r_points_hc = np.hstack((r_points, np.ones((len(r_points), 1)))).T
385

386 x1 = HO @ 1_points_hc

387 x1 /= x1[2] + eps

388

389 x2 = r_H @ r_points_hc

390 x2 /= x2[2] + eps

391

392 A = x1.T

393 b = x2[0]

395 abc = np.linalg.pinv(A) @ b

397 Ha = np.array([[*abc],

398 [0, 1, 0],
399 [o, o, 11O
400

101 H = Ha @ HO

102

103 H /= H[2, 2] + eps

104

405 return H

106

407

08 class StereoVision:

109 """Class for Stereo Vision.
110 nnn

411

412 def __init__(self, 1_img_fn: str, r_img_fn: str, matching: str = "manual", optimizer: str = "
scipy_1lm"):

413 """Initialize the StereoVision object.

114

415 Args:

33

l1_img_fn (str):

Path to the left image file.

r_img_fn (str): Path to the right image file.
matching (str): Matching method. If matching is ¢‘load’’,
If no file found, will run in ¢ ‘manual’’ mode.
optimizer (str): Optimizer method. If optimizer is ‘‘scipy_lm‘°¢,
least squares method. If optimizer is ‘‘Im‘‘, it will my implementation
LM.
nnn
if matching not in ["manual", "load"]:
raise ValueError (
"Invalid matching method. Choose from [’manual’, ’load’].")
if optimizer not in ["scipy_lm", "1lm"]:
raise ValueError(
"Invalid optimizer. Choose from [’scipy_lm’, ’1m’].")
self.1l_img_fn = 1_img_£fn
self .r_img_fn = r_img_£fn
if matching == "manual":
self .matching_method = matching
self. _match_manual (l_img _fn, r_img_£fn)
assert len(self.l_points) == len(self.r_points)
elif matching == "load":
self .matching_method = matching
self. _match_load(l_img_fn, r_img_£fn)
assert len(self.l_points) == len(self.r_points)
self .1l _norm_points, self.1_T = _normalize_coords(self.l_points)

def

self .r_norm_points, self
self .F =
self.l_norm_points,

self .1l _epipole,

.r_ T =

self .1 _P, self.r_P =
self .F, self.r_epipole)
params = []

params.extend (self.r_P.r

for 1l_point,
world_point =

avel ())

_calculat

r_point in zip(self.l_points,
_triangulate(self.1_P, s

params.extend (world_point [:3].ravel ())

if optimizer
solution =

elif optimizer == "Im":

solution =

self .r_P =

self .F =
self .1l _epipole,

"scipy_1lm":
least_squares(_cost_func_r_P, params, method=’1lm’,

self.1_P, self .r_points])

self.1_P,

np.reshape (solution.x[:12],

sel

LM_optim(_cost_func_r_P, params,

self.1_p

(3,

_calculate_F_from_P(self.r_P)
self.r_epipole =

_calculat

_normalize_coords(self.r_points)
_calculate_F_from_points(

self .r_norm_points,
self.r_epipole =
_calculate_projection_matrices(

self.1_T, self.r_T)
e_epipoles(self.F)

self.r_points):
elf.r_P, 1l_point,

f.1_points,

verbose=1, args=[

oints, self.r_points])

4))

e_epipoles(self.F)

rotate the rectified images by 180.

self .rectified = False
self.int_detected = False
return
rectify(self, rot: bool = True):
"""Rectify the stereo images.
Args:

rot (bool): If True,
nnn
self .rectified = True

h, w = self.1l_img.shapel[:2]

self . r_H =

self .1_H = _calculate_left_H(
self .1 P, self.r_P, self.r_H,

self.1_p

34

_calculate_right_H(self.r_epipole, h, w)

oints, self.r_points)

r_point)

verbose=2,

it will load saved points.

it will use scipy’s

args=[

def

and

if rot:
H_rot = np.array([[-1, 0, 0],
[o, -1, ol,
[o, o, 111)

H_tr = np.array([[1, 0, -w/2],
[0, 1, -h/2],
[0, o, 111)

H_tr_inv = np.array([[1, 0, w/2],
[o, 1, h/2],
[o, o, 111)

self .1_H = H_tr_inv @ H_rot @ H_tr @ self.l1l_H
self . r_H H_tr_inv @ H_rot @ H_tr @ self.r_H

temp = np.linalg.inv(self.r H.T) @ self.F @ np.linalg.inv(self.1l_H)
Should look like

[[0, 0, 0]]

[[0, O, -11]

[[0, 1, 0]]

print (temp/temp[2, 11)

self.1_img_rectified
self.1l_img, self.
self . r_img _rectified
self.r_img, self.

5)
<

.warpPerspective (
(int (1.2%w), int(1.2%h)))
.warpPerspective (
(int (1.2*w), int(1.2xh)))

(LI i |
I

o =

< .

2]
=]

left_points_hc = np.hstack(

(self.1l_points, np.ones((len(self.1l_points), 1)))).T
right_points_hc = np.hstack(

(self .r_points, np.ones((len(self.r_points), 1)))).T

self .l _points_rectified = self.1_H @ left_points_hc
self.r_points_rectified = self.r_H @ right_points_hc

self .1l _points_rectified /= self.l_points_rectified[2]
self.r_points_rectified /= self.r_points_rectified[2]

self .1l _points_rectified = self.l_points_rectified[:2].astype(int)
self.r_points_rectified = self.r_points_rectified[:2].astype(int)

return

detect_interest_points(self, matching: str = "manual", metric: str = "ssd"):
nnn

Detect interest points in the rectified images.

Args:
matching (str): Method for matching interest points. Supported methods are
>load’.

metric (str): Metric for matching interest points. Supported metrics are ’ssd’.

if metric not in ["ssd"]:

raise ValueError("Invalid metric. Supported metric is ’ssd’.")
if matching not in ["manual", "load"]:

raise ValueError (

"Invalid matching method. Supported methods are ’manual’ and ’load’.")

if not self.rectified:

print ("Perform rectification first.")

return

1l _gray = cv.cvtColor(self.l_img _rectified, cv.COLOR_BGR2GRAY)
r_gray = cv.cvtColor(self.r_img_rectified, cv.COLOR_BGR2GRAY)

pl = np.vstack(((self.l_points_rectified + 20).T,
(self.1_points_rectified - 20).T))
p2 = np.vstack (((self.r_points_rectified + 20).T,

(self.r_points_rectified - 20).T))

35

555 1_hull = cv.convexHull (pl)
556 r_hull = cv.convexHull (p2)

558 1 _mask = cv.fillConvexPoly(np.zeros(l_gray.shape), 1_hull, 255)
559 r_mask = cv.fillConvexPoly(np.zeros(r_gray.shape), r_hull, 255)

561 l_canny_img = 255 *x \
562 feature.canny(l_gray, 1, 20, 100, 1_mask).astype(np.uint8)
563 r_canny_img = 255 * \
564 feature.canny(r_gray, 1, 20, 100, r_mask).astype(np.uint8)

566 # cv.imshow ("1l _canny", 1_canny_img)

5677 # cv.imshow ("r_canny", r_canny_img)

568 # cv.waitKey ()

569 # cv.destroyAllWindows ()

570

571 l_interest_points = np.array(np.where(l_canny_img > 0)).T

572 r_interest_points = np.array(np.where(r_canny_img > 0)).T

574 if matching == "manual":

575 if metric == "ssd":

576 matches = _ssd(l_gray, r_gray, l_interest_points,

577 r_interest_points)

579 1l_match_points = []

580 r_match_points = []

581

582 for i in range(len(self.l_points_rectified.T)):

583 1_match_points.append([*self.1l_points_rectified[:, il, 1])
584 r_match_points.append ([*self.r_points_rectified[:, i], 1])
585

586 # Choose first 300 matches

587 for match in matches [:300]:

588 1_match_points.append ([*1_interest_points[match[0]J][::-1], 1])
589 r_match_points.append ([*r_interest_points[match[1]][::-1], 1])
590

591 l_match_points = np.array(l_match_points).T

592 r_match_points = np.array(r_match_points).T

593

594 1_int_points = np.linalg.inv(self.1_H) @ 1_match_points

595 l_int_points /= 1l_int_points[2] + eps

596

597 r_int_points = np.linalg.inv(self.r_H) @ r_match_points

598 r_int_points /= r_int_points[2] + eps

599

600 self.l_interest_points = (l_int_points[:2, :]1).T

601 self.r_interest_points = (r_int_points[:2, :]).T

602

603 print (£"Number of matches found: {len(self.l_interest_points)l}")
604

605 dire = self.l_img_£fn[7:12]

606 np.save (os.path.join("./int_points", dire, "left"),
607 self.1l_interest_points)

608 np.save (os.path.join("./int_points", dire,

609 "right"), self.r_interest_points)

610

611 elif matching == "load":

612 dire = self.l_img_£fn[7:12]

613

614 try:

615 self.l_interest_points = np.load(

616 os.path.join("./int_points", dire, "left.npy"))
617 self.r_interest_points = np.load(

618 os.path.join("./int_points", dire, "right.npy"))

620 except FileNotFoundError:
621 print (
622 f"Points not found. Running with matching = ’manual’ to generate and save them

623 return

36

653
654
655
656
657
658
659
660
661

662

663

664
665
666

667

def

print (£"Number of matches found: {len(self.l_interest_points)}")
self.int_detected = True

return

refine (self, optimizer: str = "scipy_lm"):

Refine the fundamental matrix, projection matrices using matched interest points.

if optimizer not in ["scipy_1lm", "1Im"]:
raise ValueError (
"Invalid optimizer. Supported optimizers are ’scipy_lm’ and ’1m’.")

if not self.int_detected:

print (
"Interest points not detected. Please run detect_interest_points first.")
return
self .l _norm_int_points, self.1_T = _normalize_coords(
self.1l_interest_points)
self .r_norm_int_points, self.r_T = _normalize_coords(
self.r_interest_points)
self .F_refined = _calculate_F_from_points(

self .1l _norm_int_points, self.r_norm_int_points, self.l1_ T, self.r_T)

self .1l _epipole, self.r_epipole = _calculate_epipoles(self.F_refined)

self .1_P, self.r_P = _calculate_projection_matrices(
self .F_refined, self.r_epipole)

params = []

for 1_point, r_point in zip(self.l_interest_points, self.r_interest_points):
world_point = _triangulate(self.1l_P, self.r_P, 1_point, r_point)

params.extend (world_point [:3].ravel())

if optimizer == "scipy_lm":

solution = least_squares(_cost_func_world_points, params, method=’1lm’, verbose=2,

self .1_P, self.r_P, self.l_interest_points, self.

r_interest_points])

i)

def

elif optimizer == "Im":
solution = LM_optim(_cost_func_world_points, params, verbose=2, args=[

args

self .1_P, self.r_P, self.l_interest_points, self.r_interest_points

self .world_points = np.reshape(solution.x, (-1, 3))

self .F = _calculate_F_from_P(self.r_P)
self .1l _epipole, self.r_epipole = _calculate_epipoles(self.F)
return

_match_manual (self, 1_img _fn, r_img_fn):
nnn

Function to select the correspondences manually and save them.
nmnn

self.1_img = cv.imread(l_img_£fn)
self.r_img cv.imread(r_img_fn)

dire = 1_img_fn[7:12]

self .1 _points = select_points(self.l_img)
np.save (os.path.join("./points", dire, "left"), self.l_points)

self.r_points = select_points(self.r_img)
np.save (os.path.join("./points", dire, "right"), self.r_points)
return

37

def _match_load(self, 1_img_fn, r_img_fn):

nwun

Function to load the correspondences from saved file.

nwun

self.l_img cv.imread(1l_img_£fn)
self .r_img = cv.imread(r_img_£fn)

dire = 1_img_£fn[7:12]

try:
self .1l _points = np.load(os.path.join("./points", dire, "left.npy"))
self.r_points np.load (os.path. join(
"./points", dire, "right.npy"))

except FileNotFoundError:
print (
f"Points not found. Running with mode = ’manual’ to select points and save them.")
self. _match_manual (l_img_fn, r_img_£fn)

return

38

N

6.1.2 dense_matching.py

import numpy as np
import cv2 as cv
from tqdm import tqdm

def census_transform(l_img_fn, r_img fn, 1_disp_fn, window_size=(11, 31), delta=2):

Function to use census transform to calculate disparity map.
o

l_img = cv.cvtColor(cv.imread(l_img_fn), cv.COLOR_BGR2GRAY)

r_img = cv.cvtColor(cv.imread(r_img_£fn), cv.COLOR_BGR2GRAY)

1_disp = (cv.imread(l_disp_fn, cv.IMREAD_GRAYSCALE) .astype(
np.float32) / 4).astype(np.uint8)

d_max = np.max(l_disp)
h, w = 1_img.shape

m = block height

n = block width
m, n = window_size
b_size_row = d_max + m//2

b_size_col

= d_max + n//2
l_img_padded =

np.pad(l_img, ((b_size_row, b_size_row),
(b_size_col, b_size_col)), mode=’edge’)
r_img_padded = np.pad(r_img, ((b_size_row, b_size_row),
(b_size_col, b_size_col)), mode=’edge’)
1 _disp_est = np.zeros(l_img.shape)
for y in tqdm(range(m//2, h-m//2)):
for x in range(n//2, w-n//2):

cost = np.array([np.inf] * (d_max))

p = l_img_padded[y+d_max:y+d_max+m, x+d_max: x+d_max+n]

p_win = (p > 1l_imgly, x1)
for d in range(min(x, d_max)):

q = r_img_padded[y+d_max:y+d_max+m, (x-d)+d_max:
q_win = (q > r_imgly, x-d])

¢ = np.sum(np.logical_xor(p_win, g_win))
cost[d] = ¢

1_disp_est[y, x] = np.argmin(cost)
ch = (np.abs(l_disp_est - 1_disp) <= delta) & (1l_disp > 0)

return 1l_disp, 1l_disp_est, ch

39

(x-d)+d_max+n]

N

6.1.3 plotting.py

import cv2 as cv
import numpy as np

import matplotlib.pyplot as plt

from matplotlib.gridspec import GridSpec

from matplotlib.patches import ConnectionPatch
from mpl_toolkits.mplot3d import proj3d

from stereo_cameras import StereoVision

np.random.seed (4)

Task 1

def show_correspondences(sv: StereoVision, save_fn: str = None):

Plotting function to display manually selected correspondences.

n_pts = len(sv.l_points)
left_img = sv.l_img
right_img = sv.r_img

hi, wl = left_img.shape[:2]
h2, w2 = right_img.shape[:2]

canvas = np.zeros ((max(hl, h2), wl + w2, 3),
canvas[:hl, :wl] = left_img
canvas[:h2, wi:] = right_img

dtype=np.uint8)

canvas = cv.cvtColor (canvas, cv.COLOR_BGR2RGB)

plt.figure(figsize=(9, 9))

plt.imshow (canvas)

for i in range(n_pts):
color = np.random.random(3)
1_point_x = sv.1l_points[i][0]
1_point_y = sv.l_points[i][1]
r_point_x = sv.r_points[i][0] + w1l
r_point_y = sv.r_points[i][1]

plt.plot ([1_point_x, r_point_x], [l_point_y, r_point_y],

ms=3, linewidth=1, linestyle=’--’,

plt.axis(’off’)
plt.title("Manually selected points")
plt.tight_layout ()
if save_fn is not None:
plt.savefig(save_fn, bbox_inches=’tight’

plt.show ()
plt.close()

return

, pad_inches=0.1,

def show_rectification(sv: StereoVision, save_fn: str = None):

Plotting function to display rectified images.

n_pts = len(sv.l_points)
left_img = sv.l_img_rectified
right_img = sv.r_img_rectified

hli, wi = left_img.shapel[:2]
h2, w2 = right_img.shape[:2]

canvas = np.zeros ((max(hl, h2), wil + w2, 3),
canvas[:hl, :wl] = left_img
canvas[:h2, wl:] = right_img

dtype=np.uint8)

canvas = cv.cvtColor (canvas, cv.COLOR_BGR2RGB)

plt.figure(figsize=(9, 9))
plt.imshow (canvas)
for i in range(n_pts):

color = np.random.random(3)

1_point_x = sv.1l_points_rectified[0, il
1l_point_y = sv.l_points_rectified[1, il
r_point_x = sv.r_points_rectified[0, il

+ wil

40

color=color,

marker=’.’, markerfacecolor=color)

dpi=600)

def

def

r_point_y = sv.r_points_rectified[1, i]
plt.plot([1_point_x, r_point_x], [l_point_y, r_point_yl, color=color,
ms=3, linewidth=1, linestyle=’--’, marker=’.’, markerfacecolor=color)

plt.axis (’off’)
plt.title("Rectified images")
plt.tight_layout ()
if save_fn is not None:
plt.savefig(save_fn, bbox_inches=’tight’, pad_inches=0.1, dpi=600)

plt.show ()
plt.close ()

return

show_interest_points(sv: StereoVision, save_fn: str = None):

Plotting function to display detected interest points.
left_img = sv.l_img

right_img = sv.r_img

hi, wi = left_img.shapel[:2]

h2, w2 = right_img.shape[:2]

canvas = np.zeros ((max(hl, h2), wi + w2, 3), dtype=np.uint8)
canvas [:hl, :wl] = left_img

canvas[:h2, wl:] = right_img

canvas = cv.cvtColor (canvas, cv.COLOR_BGR2RGB)
plt.figure(figsize=(9, 9))

plt.imshow (canvas)

for i in range(len(sv.l_interest_points)):

color = np.random.random(3)
x1, yl = sv.l_interest_points[i]
X2, y2 = sv.r_interest_points[i]

x2 += wil

plt.plot([x1, x2], [yl, y2], color=color, ms=3, linewidth=1,
linestyle=’--’, marker=’.’, markerfacecolor=color)

plt.axis (’off’)
plt.title("Detected Interest Points")
plt.tight_layout ()

if save_fn is not None:
plt.savefig(save_fn, bbox_inches=’tight’, pad_inches=0.1, dpi=600)

plt.show ()
plt.close ()

return

show_reconstruction(sv: StereoVision, lines_to_show: list, save_fn: str = None):
nnn

Plotting function to display 3D stereo reconstruction.
fig = plt.figure(figsize=(12, 8))

fig.suptitle("Stereo Reconstruction")

gs = GridSpec(2, 2, fig)

axl = fig.add_subplot(gs[0, 0])

ax2 = fig.add_subplot(gs[0, 1])

ax3 = fig.add_subplot(gs[i, :]1, projection=’3d’)

ax3.set_xlabel (’X’)
ax3.set_ylabel (’Y’)
ax3.set_zlabel(’Z’)

ax3.view_init (elev=45, azim=-135, roll=120, vertical_axis=’y’)
ax3.view_init(elev=-45, azim=0, roll=0, vertical_axis=’x’)

41

ax3.dist = 10

axl.axis(’off’)
ax2.axis (’off’)

def _norm_world_points(world_points):
mu = np.mean(world_points, axis=0)
std = np.std(world_points, axis=0)

norm_world_points =
return norm_world_points

(world_points - mu) / std

norm_w_p = _norm_world_points(sv.world_points)

ax1l.imshow (cv.cvtColor(sv.1l_img,
ax2.imshow(cv.cvtColor(sv.r_img,
for start_idx, end_idx in lines_to_show:

¢ = np.random.random (3)
c_r = [1, 0, 0]

axl.plot(sv.l_interest_points[[start_idx,
end_idx], 11,
color=c, ms=5, linewidth=2,
ax2.plot(sv.r_interest_points[[start_idx,
end_idx], 1],

cv.COLOR_BGR2GRAY),
cv.COLOR_BGR2GRAY),

linestyle="-",

cmap=’gray’)
cmap=’gray’)

end_idx], 0], sv.l_interest_points[[start_idx,

marker=’.’, markerfacecolor=c_r)

end_idx], 0], sv.r_interest_points[[start_idx,

color=c, ms=5, linewidth=2, linestyle=’-’, marker=’.’, markerfacecolor=c_r)
ax3.plot(norm_w_p[[start_idx, end_idx], 0],
norm_w_p[[start_idx, end_idx], 1],
norm_w_p[[start_idx, end_idx], 2],
color=c, ms=5, linewidth=2, linestyle=’-’, marker=’.’, markerfacecolor=c_r)
axl.scatter(sv.l_interest_points[:, 0], sv.l_interest_points[:, 1], s=3, color=[
0, 0, 1], marker=’.’)
ax2.scatter(sv.r_interest_points[:, 0], sv.r_interest_points[:, 1], s=3, color=[

0, 0, 1], marker=’.’)

ax3.scatter(norm_w_p[:, 0], norm_w_pl[:, 1],

norm_w_pl[:, 2], s=2, color=[0, O, 1], marker=’.’)
for i in range (7):
¢ = np.random.random(3)
x_sc_1, y_sc_1, _ = proj3d.proj_transform(*norm_w_pl[i], ax3.get_proj())
conl = ConnectionPatch((x_sc_1, y_sc_1), (sv.l_interest_points[i, 0], sv.l_interest_points
[i, 11,

coordsA=ax3.transData,

1s=’:’, color=c)
fig.add_artist (conl)

con2 = ConnectionPatch((x_sc_1,

i, 11),

y_sc_1),

coordsA=ax3.transData,

ls=’:’, color=c)
fig.add_artist (con2)

con3 = ConnectionPatch((sv.1l_interest_points[i, 0],

coordsB=axl.transData, axesA=ax3, axesB=axl,

(sv.r_interest_points[i, 0], sv.r_interest_points

coordsB=ax2.transData, axesA=ax3, axesB=ax2,

1),

sv.l_interest_points[i,

(sv.r_interest_points[i, 0],

sv.r_interest_points[i,
coordsA=axl.transData,

ls=’:’, color=c)
fig.add_artist (con3)

plt.tight_layout ()

if save_fn is not None:

plt.savefig(save_fn, bbox_inches=’tight’,

11),

coordsB=ax2.transData, axesA=axl, axesB=ax2,

pad_inches=0.1, dpi=600)

42

plt.
plt.

show ()
close ()

return

Task 3

def show_disp_maps(l_disp: np.ndarray, 1l_disp_est: np.ndarray, ch: np.ndarray,
delta: int, accuracy: float, save_fn: str = None):

Visualize the disparity map and estimated disparity map,

fig

gs =

ax1
ax?2
ax3

fig.

iml

axl.
ax1
plt.

im2

ax2.
ax2.
plt.

im3
ax3
ax3.
plt

= plt.figure(figsize=(9, 9))
GridSpec (2, 2, fig)
fig.add_subplot(gs[0, :1)
fig.add_subplot(gs[1l, 0])
fig.add_subplot(gs[1l, 11)

suptitle (f"Census Transform - {window_size} window")

= axl.imshow(l_disp, cmap="GnBu")
set_title("Ground truth disparity")

.axis (Poff’)

colorbar (iml, ax=axl, shrink=0.5, pad=0.1)

= ax2.imshow((l_disp_est).astype(np.uint8), cmap="GnBu")
set_title("Estimated disparity")

axis(’off’)

colorbar (im2, ax=ax2, shrink=0.5, pad=0.1)

= ax3.imshow ((255 * ch.astype(np.uint8)), cmap="gray")

.set_title(f"Challenge regions, delta={deltal}\nAccuracy={accuracy:.4f}")

axis (’off’)

.colorbar (im3, ax=ax3, shrink=0.5, pad=0.1)

if save_fn is not None:

plt.
plt.

plt.savefig(save_fn, bbox_inches=’tight’, pad_inches=0.2, dpi=600)

show ()
close ()

return

43

window_size:

tuple,

along with the challenge regions.

N

6.1.4 main.py

import os

import numpy as np

from stereo_cameras import StereoVision

from plotting import show_correspondences,
show_reconstruction, show_disp_maps

show_re

from dense_matching import census_transform

bl > .

if __name__ == __main__

run_stereo = True

run_dense_matching = False

if run_stereo:
data_dir = "./data"
out_dir = "./outs"
pairs = [f"pair{i}" for i in range(4, 5)]
rot = True
rot = False

for pair in pairs:
left_img_filename
right_img_filename

os.path. join(data

sv = StereoVision(left_img_filename,
right_img_filename,
save_fn = os.path.join(out_dir, pair,

save_fn None
show_correspondences (sv, save_fn)

sv.rectify(rot=rot)

save_fn os.path.join(out_dir,
show_rectification(sv, save_fn)

pair,

sv.detect_interest_points (matching="1o

save_fn = os.path.join(out_dir, pair,

show_interest_points(sv, save_fn)

sv.refine ()

lines_to_show = [(0, 1), (1, 2), (2, 3
(4, 5), (56, 6), (6, 2
(3, 5), (8, 9), (9, 1
(8, 7), (12, 13), (13
(14, 15), (16, 15), (
(8, 3), (8, 5), (7, 0
(18, 3), (18, 5), (18

save_fn = os.path.join(out_dir, pair,

show_reconstruction(sv, lines_to_show,

if run_dense_matching:

data_dir = "./Task3Images"
out_dir = "./outs"
img_fnames = [os.path.join(data_dir, im)
for im in ["im2.png", "im6.p
disp_fnames = [os.path.join(data_dir, disp
windows = [(11, 11), (11, 21), (21, 11),
windows = [(5, 5)]
deltas = [1, 2]
for w in windows:
for d in deltas:
print (f"Window size: {w}, Delta: {
1 _disp, 1l_disp_est, ch = census_tr
*img_fnames, *disp_fnames, w,

44

os.path.join(data_dir,
_dir, pair,

ctification,

"left.jpg")
"right.jpg")

pair,

matching="1load")

"manual_corr.pdf")

"rectified.pdf")

ad")

"interest_points.pdf")

), (0, 3),

), (4, 0),

0), (10, 7),

, 11), (11, 12),
17, 16), (17, 14),
), (7, 4),

» 2), (18, 6)]

"reconstructionl.pdf")
save_fn)

ngn]]

) for disp in ["disp2.png"]]

(21, 21), (31, 31)]

d}n)

ansform (
d, save_fn)

show_interest_points,

69 accuracy = np.count_nonzero(ch) / np.count_nonzero(l_disp)

70 print (f"Accuracy: {accuracy:.4f}")

71

72 save_fn = os.path. join(

73 out_dir, "task3", f"dense_{w[0]}_{w([1]l}_{d}.pdf")

74 show_disp_maps(l_disp, 1l_disp_est, ch, w, d, accuracy, save_fn)

Usage:
python ./src/main.py

45

66

6.2

Task 4

import numpy as np

import pickle as pkl

import matplotlib.pyplot as plt
import hbpy # for reading depth maps

A few notes on the scene_info dictionary:
- depth maps are stored as hb5 files. Depth is the distance of the object from the camera (ie Z

coordinate in camera coordinates). The depth map can contain invalid points (depth = 0) which
correspond to points where the depth could not be estimated.

- The intrinsics are stored as a 3x3 matrix.
- The poses [R,t] are stored as a 4x4 matrix to allow for easy transformation of points from one

camera to the other. The resulting transformation matrix is a 4x4 matrix is of the form:
T = [[R, t]
[0, 1]] where R is a 3x3 rotation matrix and t is a 3x1 translation vector.

DEPTH_THR = 0.1

def

def

plot_image_and_depth(imgO, depthO, imgl, depthl, plot_name):
Enable constrained layout for uniform subplot sizes
fig, ax = plt.subplots(2, 2, figsize=(9, 6), constrained_layout=True)

Image O

ax [0, 0].imshow(imgO)

ax [0, 0].set_title(’Image 0’)
ax[0, 0].axis(’off?)

Depth O

iml = ax[0, 1].imshow(depthO, cmap=’jet’)

ax[0, 1].set_title(’Depth 0°’)

ax[0, 1].axis(’off’)

cbarl = fig.colorbar (iml, ax=ax[0, 1], shrink=0.8, aspect=20)
cbarl.ax.yaxis.set_ticks_position(’left’)
cbarl.ax.yaxis.set_label_position(’left’)
cbarl.ax.tick_params (labelsize=15)

Image 1

ax[1, 0].imshow(imgl)

ax[1, 0].set_title(’Image 17)
ax[1, O0].axis(’off’)

Depth 1

im2 = ax[1, 1].imshow(depthl, cmap=’jet’)

ax[1, 1].set_title(’Depth 17)

ax[1, 1].axis(’off’)

cbar2 = fig.colorbar (im2, ax=ax[1, 1], shrink=0.8, aspect=20)
cbar2.ax.yaxis.set_ticks_position(’left’)
cbar2.ax.yaxis.set_label_position(’left’)
cbar2.ax.tick_params (labelsize=15)

plt.savefig(plot_name, bbox_inches=’tight’, pad_inches=0.1)
plt.close ()

depth_to_world(depth_map, K, T, img):
valid_coords = np.column_stack(np.where(depth_map > 0))
depth_values = depth_map[valid_coords[:, 0],
valid_coords[:, 1]].reshape((-1, 1))
¢ = (img[valid_coords[:, 0], valid_coords[:, 1]] / 255) .reshape((-1, 3))
K_inv = np.linalg.inv (K)

pixel_coords = np.hstack(

(valid_coords[:, ::-1], np.ones((valid_coords.shape[0], 1))))
cam_coords = (depth_values.T) * (K_inv @ pixel_coords.T)
cam_coords_hc = np.vstack((cam_coords, np.ones((1l, cam_coords.shape[1]))))
X_world_hc = np.linalg.inv(T) @ cam_coords_hc

46

89
90
91
92

93

95
96
97
98
99
100
101

135

if

return X_world_hc([:3, :].T, c

plot_3D_world_points(X_world_ A, X_world B, c_A, c_B, save_fn=Nomne):
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot (111, projection=’3d’)

ax.scatter (-X_world_A[:, 0], -X_world_A[:, 1],
X_world_A[:, 2], c=c_A, s=0.1, marker=’,’)

ax.scatter (-X_world_B[:, 0], -X_world_B[:, 1],
X_world_B[:, 2], c=c_B, s=0.1, marker=’,’)

ax.set_title(’3D World Points’)
ax.set_xlabel (’X?)
ax.set_ylabel (’Y?)
ax.set_zlabel (’Z’)
ax.view_init (elev=20, azim=180, vertical_axis=’y’)
ax.dist = 8
if save_fn is not None:
plt.savefig(save_fn, bbox_inches=’tight’, dpi=600, pad_inches=0.4)
plt.show()
plt.close()

" main LK

name =
scene_info = pkl.load(open(’./data/scene_info/1589_subset.pkl’, ’rb’))

for i_pair in range(len(scene_info)) [:]:

print(scene_info[i_pair].keys())
[’image0’,’imagel’,’depth0’, ’depthl’, °KO’, ’Ki’, ’TO0’, ’T1’, ’overlap_score’]
print (scene_info[i_pair][’image0’]) # path to imageO
print (scene_info[i_pair][’imagel’]) # path to imagel
print (scene_info[i_pair][’depth0’]) # path to depthO
print (scene_info[i_pair][’depthl1’]) # path to depthl
print (scene_info[i_pair][’K0’]) # intrinsic matrix of camera 0 [3,3]
print (scene_info[i_pair][’K1’]) # intrinsic matrix of camera 1 [3,3]
print (scene_info[i_pair][’T0’]) # pose matrix of camera 0 [4,4]
print (scene_info[i_pair][’T1’]) # pose matrix of camera 1 [4,4]
pEing (? cosssosssososossoos ?2)

H H HE R HEHHEHHEH

read images
img0 = plt.imread(scene_infol[i_pair][’image0’])
imgl = plt.imread(scene_info[i_pair][’imagel’])

read depth

with h5py.File(scene_info[i_pair]l[’depth0’], ’r’) as f:
depth0 = f[’depth’][:]

with hbpy.File(scene_info[i_pair]l[’depthl’], ’r’) as f:
depthl = f[’depth’][:]

check shapes
hO, wO = imgO.shapel[:-1]

hi, wi = imgl.shapel[:-1]
assert imgO.shapel[:-
1] == depthO.shape, f"depth and image shapes do not match: {imgO},
depthO}"
assert imgl.shapel[:-
1] == depthl.shape, f"depth and image shapes do not match: {imgl},
depthi1}"

plot image and depth
plot_name = f’./pics/image_and_depth_pair_{i_pair}.png’
plot_image_and_depth(img0O, depthO, imgl, depthl, plot_name)

(1) make meshgrid of points in image O
x = np.linspace (10, imgO.shape[1]-10, 11) # ignore a border of 10 pxls
y = np.linspace (10, img0O.shape[0]-10, 11) # ignore a border of 10 pxls

XX, yy = np.meshgrid(x, y)
make homogeneous coordinates for pointsO #[3, NJ]

47

{

{

136
137
138
139
140
141
142
143
144
145

146

158
159
160
161
162
163
164
165
166
167
168
169
170

171

173
174
175
176
177
178
179
180
181

182

pointsO = np.vstack ((xx.ravel(), yy.ravel(

pointsO = np.vstack ((pointsO, np.ones(points0O.shapel[1])))

(2) get depth values at pointsO

depth_valuesO = depthO[(yy).astype(np.int32),

D))

remove points with depth 0 (invalid points)
valid_points = depth_valuesO > 0
mask pointsO and depth_valuesO

valid_depth_valuesO = depth_valuesO[valid_points]
pointsO = pointsO[:, valid_points.ravel ()]

(3) Find the 3D coordinates

KO
TO

scene_info[i_pair][’KO’
scene_info[i_pair][’TO’

inverse of KO

KO_inv = np.linalg.inv (KO)
convert pointsO to camera coordinates
xyz_cam0 = KO_inv @ pointsO
normalize xyz_camO to set z =
xyz_cam0 /= xyz_camO0 [2]
get the point at depth
xyz_cam0 = valid_depth_valuesO * xyz_camO
make homogeneous coordinates

xyz_camO_hc = np.vstack((xyz_camO, np.ones(xyz_camO.shape[1])))

1
]

convert to world frame [4,N]
xyz_world_hc = np.linalg.inv(TO) @ xyz_camO_hc

[3,3]
[4,4]

1 (sanity check)

[4,N]

(4) Transform these points to camera 1 frame

K1
T1

scene_info[i_pair][’K1’
scene_info[i_pair][’T1’

]
]

transform points to camera 1 frame
xyz_caml_hc = T1[:3, :] @ xyz_world_hc

get z coordinates for depth check
estimated_depth_valuesl = xyz_caml_hc[2]

project to image 1

pointsl = K1 @ xyz_caml_hc
normalize by dividing by last row
pointsl /= points1[2] # [3,
check if pointsl are within image bounds

valid_pointsl = (points1[0] >= 0) & (points1[0] < wl) & (

pointsl = (points1[:2, valid_pointsl.ravel()]).astype(np.int32)
get the depth values at these points using the depth map

[

N]

3, NI

pointsi[1] >= 0) & (pointsi[1] < hil)
mask pointsl and estimated_depth_valuesl

true_depth_valuesl = depthl[pointsi[1l, :],

points1 [0,

(xx) .astype(np.int32)]

of these points in camera O frame

:1]

(5) plot matching points in image O and image 1 with depth check such that the depth
values match

fig, ax = plt.subplots(l, 1, figsize=(10, 5))
Horizontally stack the images
combined_img = np.ones/(

(max (img0 .shape [0], imgl.shape[0]), imgO.

* 255

combined_img[:img0.shape [0], :imgO.shape[1]] = imgO
combined_img[:imgl.shape[0], imgO.shape[1]:] = imgl
ax.imshow (combined_img, aspect=’auto’)
ax.scatter(xx, yy, c=’r’, s=5)
ax.set_title(’Matching points in Image O and Image 17)
ax.axis (’off’)

draw lines between matching points
for i in range(pointsl.shape[1]):

if depth values match

shape [1] + imgl.shape[1],

3))

if (true_depth_values1[i] > 0) and (np.abs(estimated_depth_valuesi[i]
true_depth_values1[i]) < DEPTH_THR):

ax.plot ([points0 [0,
[pointsO[1,

i],
il,

pointsi1 [0,
points1[1,

48

il + imgO.shape[1]],

ill,

)g;)

dtype=np.uint8)

Usage:

plt.savefig(

f’./pics/depth_check_pair_{i_pairl}.png’, bbox_inches=’tight’, pad_inches=0.1)

plt.close ()

(6) Plot all 3D points for the pair

<Student code>

nwun

X_world_A, c_A = depth_to_world(depthO, KO, TO, imgO)
X_world_B, c_B = depth_to_world(depthl, K1, T1, imgl)

save_fn = None

save_fn = f"./pics/reconstruct_pair_{i_pairl}.png"
plot_3D_world_points(X_world_A, X_world B, c_A, c_B, save_fn)
print (f"Done with pair {i_pairl}")

python ./plot_depth_check_v1l.py

49

	Theory Question
	Task - 1: Projective Stereo Reconstruction
	Methodology
	Image Rectification
	Interest Point Detection
	Projective Reconstruction

	Results

	Task - 2: Loop And Zhang
	Methodology
	Discussion
	Results

	Task - 3: Dense Stereo Matching
	Methodology
	Discussion
	Results

	Task - 4: Depth Maps and Automatic Extraction of Dense Correspondences
	Methodology
	Results

	Source Code
	Task 1 and 3
	stereo_cameras.py
	dense_matching.py
	plotting.py
	main.py

	Task 4

