ECE 661 Homework 9

Andrea Goh (goh8@purdue.edu)
November 2024

1 Theory Question

£ i'|°°10“ Pﬁ“ﬁ

X for world pt-X

P S BT i -,
C é‘ base‘(i‘v\g C
Le
i ¢
Qﬁe/”ém ()\‘«3\\ S’W\

\’Tgl"t LA G,’Nj’)ol,a_i’
line £ Piiel X

5: !eﬂ‘ mrage ertrﬂla
| &'; right wage epipele (bt image

Figure 1: Caption
Each camera is modeled using the pinhole camera model, where a point world point X can be projected
to image points Z in the left image and &’ in the right image by applying the projection matrix:
7= PX = K[l X (1)
¥ =PX=K'[R|t]X (2)
For stereo images, the camera center of the left camera C is a world coordinate that can be projected

onto a pixel in the the right camera image plane €, and vice versa. This statement can be represented
as follows:

oL
Il

Q

P/
P

3)
' (4)

If we back project the pixel #, the world point PTZ is guaranteed to exist on the ray from C to .
Projecting the wold point P# to the image plane in the right camera gives us P’ PTZ, that gives us a
pixel that lies o the epipolar line 7. Thus, the projection of the left camera center to the right image
plane and the projection of the world point PTZ to the right image plane gives us two points in the right
image plane, allowing us to form a line ¢': ¢/ = & x P'P1z.

Q

€

2 Task 1: Projective Stereo Reconstruction

The first part of this assignment is to create a 3D reconstruction from stereo images, taken from an
uncalibrated camera. There are three main components to accomplishing this task: Image Rectification,
Interest Point Detection, and Projective Reconstruction.

2.1 Image Rectification

The goal of image rectification is to find the homographies H and H' for the stereo images such that
in the transformed image pair, the same world point appears on the same row. This can be done using
the following steps:

1. Estimate initial fundamental matrix using point correspondence:

The fundamental matrix can be estimated using a minimum of 8 point correspondence. These point
correspondence will first be normalized by doing: #; = Tx; and &, = T'z}. The transformation
matrix can be calculated as follows:
I _s7
T— [s 9 sx} (5)

o 1

In equation 5, Z is the mean of the given points as s = %
n i=1 1

can be estimated with the normalized correspondence points. Each (&, Z’) correspondence gives us

Then, the fundamental matrix

-T
the equation /" FZ = 0, which expands out to

drfii+2'yfie+ 2 fis +yafo + Y yfor+ v fos +xfs1 +yfsa+ f33 =0 (6)

Equation 6 can be expressed as

Af=0 (7)

In equation 7. A=[2'z 2’y 2 vz vy v 2« y 1] and

fz (fir fiz fiz for foo fas fa1 fa2 fdd)T For N number of correspondences, equation
7 can be stacked together to form A f = 0, where A is N x 9, which can be solved using least-
squares. The solution to A must be conditioned to enforce the requirement rank(F) = 2. This can
be done by doing its SVD to obtain UDV™, and zeroing out the smallest singular value in D.

2. Estimate the left and right epipoles:
The right and left epipoles, e and e’ respectively, are the left and right null vector of F.

3. Obtain initial estimates of projection matrices in canonical form: The left and right
projection matrices, P and P’ respectively, can be calculated using the following equations:

—

P = [I3><3|0] (8)
P' = [sF|€

4. Refine the right projection matrix using nonlinear optimization: Given a P and P’ for

two cameras, use the current estimate for F to triangulate each corresponding pair (Z;, ;) into the

world point X;. Then, use the camera matrices P and P’ to project X; back into the two images,

=

to obtain (%l, Z%). This can be done by solving the following equation using linear least squares:

P — P
Y — P
AX =0, where A = /15'/3T ﬁllT (9)
x/ N 3T N 2T
y P — P
Then, the geometric error can be defined as:
oo = (175 = &P+ — %) (10)

(3

Using the geometric error in equation 10 as the cost function, we can then use Levenberg Marquardt
optimization to obtain the refined P’.

5. Obtain the refined fundamental matrix F using the refined P’: With the refined P’, the
refined epipole € is simply the last column of P’. Then, the refined fundamental matrix can be
calculated as follows:

F = [¢]P'PT (11)

6. Estimate the right homography H’ using refined epipoles: The homography matrix for the
right image is calculated using the following equation:

H' = T,GRT, (12)

T2,G,R, and T from equation 12 are the following matrices:

10 —w2/2
T, = [0 1 —h2/2 (13)
0 0 1
1 00
G=| 0 10 (14)
~1/f 0 1
cos(—sin(d) O
R = |sin(@ cos(f) 0O (15)
0 0 1
10 w2/2
To= [0 1 h2/2 (16)
00 1

7. Estimate the left homography matrix H: The left homography can be estimates with the
following steps:

(a) M = P'Pt

(b) Ho = H'M

(¢) Transform points in the left and right images, Z and ', respectively to obtain: # = HyZ and
#' = H'Z, where H' was obtained in step 6.

a b c
(d) Then, we want to solve for Hy = |0 1 0| by minimizing min y,;(ad; + bj; + ¢ — &})*
0 0 1

(e) The right homography can then be calculated as: H = H 4 Hy

8. Apply H and H' to the stereo pair to rectify the images:

2.2 Interest Point Detection

Before obtaining the projective 3-D reconstruction, interest points are obtained using OpenCV’s
Canny edge detection function. Then, correspondences between interest points are obtained using the
SSD metric. Since the pictures used has a noisy background, cv2.medianBlur is first used to blur the
image, followed by cv2.Canny to obtain edges. Then, for each edge coordinate of the left image, the SSD
metric used for every edge pixel in the right image within 10 rows of the base pixel. Once these interest
points and their correspondences has been found on the rectified image, the inverse homographies have
to be applied to them to obtain the respective pixel coordinates of the original image.

2.3 Projective Reconstruction

From the interest points in the previous section, the world coordinates can be found using triangula-
tion, using equation 9

3 Task 1 Results

Correspondence Point from left image Points from right image

1 (211, 133) (274, 122)
2 (164, 122) (236, 100)
3 (354, 253) (357, 272)
4 (183, 168) (238, 145)
5 (179, 185) (228, 161)
6 (444, 166) (480, 216)
7 (241, 90) (316, 90)
8 (186, 158) (243, 138)
9 (415, 160) (454, 202)
10 (234, 88) (311, 86)
11 (423, 171) (459, 214)
12 (173, 244) (213, 213)
13 (249, 156) (299, 152)
14 (418, 107) (476, 153)
15 (446, 137) (495, 189)
16 (378, 218) (396, 246)
17 (181, 248) (217, 217)
18 (205, 188) (248, 169)
19 (259, 134) (317, 136)
20 (303, 70) (379, 86)

Table 1: First 20 of 40 correspondences used

(a) Left Image (b) Right Image

Figure 2: Images used for Task 1 and 2

Figure 3: Rectified Image

(a) Left Image (b) Right Image

Figure 4: Edges obtained when cv2.Canny is directly applied to the rectified images.

(a) Left Image (b) Right Image

Figure 5: Edges obtained when the rectified images were preprocessed using cv2.medianBlur and when
the boarders were constrained.

Figure 6: All interest points and correspondence using SSD metric.

Figure 7: Downsampled version of figure 6

72.5

70.0
o 67.5
65.0

62.5

20 60.0

57.5

55.0

Figure 8: 3D Reconstruction using all correspondences from SSD, View 1

Figure 9: 3D Reconstruction using all correspondences from SSD with stereo images, view1

0.26

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

Figure 10: 3D Reconstruction using all correspondences from SSD, View 2

Figure 11: 3D Reconstruction using all correspondences from SSD with stereo images, view2

4 Task 2: The Loop and Zhang Algorithm

The Loop and Zhang algorithm decomposes the rectifying homographies as follows:

H=HgHynH, (17)

H' = H{, H,,, H), (18)

In equation 18, H, and H,, are the purely projective homographies whose purpose is to send the

epipoles e and ¢’ to infinity. Hg;y, and H.,, are similarity homographies, which can only rotate, translate,

and uniformly scale an image. It purpose is to rotate the epiposes, which are at infinity, to the world-X

axis. Hgp, and H, are shearing homographies, which introduces additional degrees of freedom to remove
distortion that can’t be removed by affine homographies.

5 Task 2 Results

Figure 12: Caption

5.1 Comments

The Loop and Zhang algorithm was able to rectify the image pair by warping the two images to a
lesser extent than my algorithm did. In addition, the rectified images from Loop and Zhang outperformed
as the rows are visibly more aligned compared to my results. The correspondences are also of higher
quality. In my pipeline, I used the SSD metric, which compares grayscale values in neighborhoods. This
lead to a quite a bit of of mismatched correspondences. However, the loop and Zhang algorithm seems
to have resulted in much fewer mismatched correspondences.

10

6 Task 3: Dense Stereo Matching

In this task, we are trying to estimate the left disparity map. The steps for doing so are as follows:

1. For each pixel in the left image, (x,y), the bitvector of size M? is calculated, by setting a bit one
wherever the pixel value is strictly greater than the center pixel value.

2. For a range of corresponding pixels on the right (x-d,y), where d € {0...d;nqz }, bitvectors are formed
in the same manner as described in step 1.

3. After the bitwise XOR operation between the two bitvectors, the cost is computed as the number
of ones in the output bitvector.

4. The disparity value d that minimizes the cost is chosen for the pixel on the left image (x,y).

7 Task 3 Results

(a) Disparity Map (b) Error Mask for 6 =2

Figure 13: Accuracy = 20.56% when m=3

ey i i

(a) Disparity Map (b) Error Mask for 6 = 2

Figure 14: Accuracy = 40.37% when m=5

11

(a) Disparity Map (b) Error Mask for 6 = 2

Figure 15: Accuracy = 48.30% when m=7

(a) Disparity Map (b) Error Mask for 6 = 2

Figure 16: Accuracy = 50.85% when m=11

7.1 Observations

In figure 18, we can see that as the window size increases from a small initial value, the accuracy
improves significantly. However, this improvement diminishes as the window size grows larger. Notably,
at a window size of 17 x 17, further increases in the window size result in a decline in accuracy.

12

(a) Disparity Map

Figure 17: Accuracy = 51.70% when m=13

Accuracy over Different Window Sizes

(b) Error Mask for 6 = 2

0.50 A

0.45 A

0.40 A

Accuracy

o

w

w
|

0.30 A

0.25 1

0.20 A

6 8 10 12 14
Window Size

Figure 18: Accuracies at different window sizes

13

16

18

8 Task 4: Depth Map and Automatic Extraction of Dense Cor-
respondences

Automatic Extraction of Dense Correspondences has many useful applications such as stereo match-
ing, image registration, and 3D reconstruction. It is also. It is used in deep learning applications as
dense correspondences are essential for training models like SuperPoint, LoFTR, and CAPS, which rely
on accurate keypoint matching.

The correspondences ({z* <+ x}) between a pair of images (14,) can be automatically extracted
using the given depth maps of the images (D4, Dp). The general idea is to use the depth map to estimate
the 3D coordinates of each pixel in the image, and project these 3D coordinates back into the image
plane of the other image to array out a ”Depth Check”, to find correspondences. The ”Depth-Check”
process is outlines in the following steps:

1. Calculate the inverse of the camera matrix K 4. K4 can be calculated using the following equation:

K= 0 Qy Yo (19)

2. Calculate the 3D coordinate (X2) of any point on the ray corresponding to the pixel in the

camera coordinate system using the following equation:

X.am =K 1z, (20)

3. Get the 3D coordinate of the world point with the depth value D4 (z#') by multiplying equation
20 by the depth value, which will give us the 3D coordinate of the point in terms of the camera
coordinate from of image I4

Xcam = [R|t]Xworld (21)

4. Convert the 3D coordinate to the world coordinate frame using camera extrinsic parameters:
([Ralta]): X
Xworld,hc =T~ Xcam,hc (22)

5 where T4><4 = |:R I':|

0 1
5. Calculate the Z.,,, coordinate of X ¢ with respect to the camera coordinate frame of Iz using

the camera extrinsic of Iz, which can be done using X2, = [Rp|t5|Xworig- This Zeqm coordinate
is the estimated depth value.

6. Project the 3D world coordinate to Iz to get the correspondig pixel location z7 and use the depth
map Dp to obtain the true depth Dp(z?).

7. Calcualte the absolute difference between the true and projected depth values and if it is less than
a certain threshold, the two points z#* <+ 27 are matching correspondences.

14

8.1 Task 4 Results

Matching points in Image 0 and Image 1

Matching peints in Image 0 and Image 1

P I I R R

Matc

Ma

tc

hing

Matching

hing points in Image 0 and Image 1

points in Image 0 and Image 1

Figure 19: Depth Check Pair

15

Image 0 Depth 0 Image 1 Depth 1

image 0 Depth 0 image 1 Depth 1

Image 0 Depth 0 Image 1

Depth 0 Image 1 Depth 1

Depth 0 Image 1 Depth 1

Figure 20: Image and Depth Check Pair

16

Image 0 Depth 0 Image 1 Depth 1

Image 0 Depth 0 Image 1) Depth 1

; ; % 5
Image 0 Depth 0 Depth 1

image 0 Depth 0

P b g a2
Depth 0 Image 1 Depth 1

Figure 21: Image and Depth Check Pair

17

World frame Points

World frame Points

Lo |, e /
R rq/ w ,J.N L |
NN N e,
|,I/,»|,.q.,|ﬂ$,/

A

World frame Points

World frame Points

Y

=5.0
—-5.5

0.5

1.0

World frame Points

World frame Points

Figure 22: World Frame Points

18

World frame Points

World frame Points

World frame Points

Figure 23: World Frame Points

19

9 Code

9.1 Task 1

Listing 1: listing copy pasted

import numpy as np

import cv2

from scipy.optimize import least_squares

from scipy import ndimage as nd

import random

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib.patches import ConnectionPatch

def normalize_pts (points):
input: 3XN array of homogeneous points
output: array of poits
mean = np.mean(points,axis=1).reshape(3,1) # mean of x and y values

D_m = np.mean(np.linalg.norm(points-mean,axis=0)) # mean of distances

s = np.sqrt(2)/D_m # scale factor

T = np.array([[s,0,-s*mean[0,0]],[0,s,-s*mean[1,0]],[0,0,11]1)
pts_normalized = (points-mean)*s

return pts_normalized,T

def get_linear_F(x1,x2):
x1_N,T1l = normalize_pts(xl) # Normalize points
x2_N,T2 = normalize_pts (x2)
A = np.zeros((x1_N.shape[1],9))
for i in range(x1_N.shape[1]):

Ali,:] = np.array([x2_N[0,i]l*x1_N[O0,i],
x2_N[0,il*x1_N[1,i],
x2_N[0,i],
x2 N[1,il*x1_N[0,il,
x2_N[1,i]*x1_NT[1,1i],
x2_N[1,1i],
x1_N[0,i],
x1_N[1,i],

1)
,,vh = np.linalg.svd(4A)
F_temp = vh[-1].reshape(3,3) # last row
u,s,Vh = np.linalg.svd(F_temp)
s[-1] = 0 # Condition F_temp
d = np.diag(s)
F_conditioned = u@d@Vh
F_denomalized = T2.T@F_conditioned@T1 # Denormalize F_conditioned
return (F_denomalized/F_denomalized[-1,-1]).reshape(3,3)

def get_epipoles(F):
u,_,vh = np.linalg.svd(F)
el (vh[-1].T).reshape(3,1) # last row
e2 = (ul:,-1]).reshape(3,1) # last colun
return el/el1[-1], e2/e2[-1]

def get_cross_mat (vec):
mat_X = np.array([[0,-vec[2,0],vec[1,0]],
[vec[2,0],0,-vec[0,0]],

P

[-vec[1,0],vec[0,0]1,011)

20

for each

]

def

def

def

def

def

return mat_X

get_P(F,e2):

P1 = np.hstack((np.eye(3),np.zeros((3,1))))
e2_X = get_cross_mat (e2)
P2 = np.hstack((e2_XQF ,e2))

return P1,P2

img_to_world(x1l,x2,P1,P2):

P11 = P10,]
P12 = P1[1,:]
P13 = P1[2,:]
P21 = P2[0,:]
P22 = P2[1,:]

P23 = P2[2,]
X_all = np.zeros((4,x1.shape[1]))
for i in range(xl.shape[1]):
x1i = x1[:,i]
x21i x2[:,1i]
A = np.array([[x1i[0]*P13-P11],
[x1i[1]1*P13-P12],
[x2i [0]*P23-P21],
[x21i [1]1*P23-P221]11])
,,vh = np.linalg.svd(A.squeeze ())
X = vh[-1] # last row
X_alll[:,i] = X/X[-1]
return X_all

world_to_img(P1,P2,X_all):

x1_hat = P1@X_all

x2_hat = P2@X_all

return x1_hat/x1_hat[2,:], x2_hat/x2_hat[2,:]

get _LM_P(x1,x2,P1,P2_init,X_all_init):

init_params = np.hstack((P2_init.flatten(),X_all_init[0:3,:].flatten

def cost(params):
P2 = params[0:12].reshape(3,4)
X_all = params[12:].reshape(3,-1) # world points

X_all_homogeneous = np.vstack((X_all, np.ones((1, X_all.shapel[1]

x1_hat ,x2_hat = world_to_img(Pl,P2,X_a11_homogeneous)

costl = (x1_hat[0:2,:].T-x1[0:2,:].T).ravel() # ravel flattens tI

cost2 = (x2_hat[0:2,:].T-x2[0:2,:].T).ravel ()

return np.hstack((costl,cost2))
res = least_squares(cost, init_params, method='lm', verbose=1)
refined_params = res.x # refined parameters
Pl1_refined = refined_params [0:12].reshape(3,4)
X_all_refined = np.vstack((refined_params[12:].reshape(3, -1),
return P1l_refined/P1_refined[-1,-1],X_all_refined

get_H_prime (img,e2):

h,w,_ = img.shape
x0 = w/2
yO = h/2

theta = np.arctan(-(e2[1]1-y0)/(e2[0]1-%0))

f = np.abs((e2[0]-x0)*np.cos(theta)-(e2[1]-y0)*np.sin(theta))
TL = np.array([[1,0,-x0],[0,1,-y0],[0,0,1]])

T2 = np.array([[1,0,x0],[0,1,y0],[0,0,111)

R = np.array([[np.cos(theta),-np.sin(theta),0],

21

np . ong

)))

)))

s ((1,

ne array

X_

al:

def

def

def

def

[np.sin(theta) ,np.cos(theta) ,0],
[0,0,111)

G = np.array([[1,0,0],[0,1,0],[-1/£,0,111)

H2 = T2@GORQT1

return H2/H2[-1,-1]

get _H(P1,P2,H2,x1,x2):

P1_pinv = P1.T@(np.linalg.inv(P1@P1.T))
M = P2@P1_pinv

H_O0O = H2@M

x1_hat = H_0@x1

x1_hat_homogeneous = x1_hat/x1l_hat[2,:]
x2_hat = H20x2

x2_hat_homogeneous = x2_hat/x2_hat[2,:]
A x1_hat_homogeneous.T

b x2_hat_homogeneous [0,:].T

H_a = np.eye(3)

H_a[0,:] = (np.linalg.inv(A.T@A)@A.T)@Db
H1 = H_a@H_O

return H1/H1[-1,-1]

apply_homography (img,H):
h,w,_ = img.shape
x = np.arange(w) # [W]

y np.arange (h) # [H]

X, Y = np.meshgrid(x, y) # X: [H,w], Y:[H,W]

X = X.flatten() #[H*W]

Y = Y.flatten () #[H*W]

X_hc = np.stack((X, Y, np.ones_like(X))) # coordinates of domain imag
X_hc_p = H @ X_hc # coordinates of range image

X_hc_p /= (X_hc_pl[2, :]1) # normalize

return X_hc, X_hc_p

interpolate (sparse: np.ndarray):

height, width, _ = sparse.shape

mask = np.zeros((height, width), dtype=bool)

collapse = np.sum(sparse, axis=2)

for i, r in enumerate(collapse):
nz = np.where(r != 0)[0] # find nearest neighbors
if nz.size > O:

fi, la = nz[0], nz[-1]

mask[i, fi:la] = True
targets = mask & (collapse == 0)
ind = nd.distance_transform_edt (targets ,return_distances=False,retul
sparse = sparse[tuple(ind)]

return sparse

get_rectified_img (imgl,img2 ,H1,H2):

X1_hc, X1_hc_p = apply_homography(imgl , H1)

X2_hc, X2_hc_p = apply_homography(img2,H2)

min_x ,min_y,_ = np.min(np.hstack ((X1_hc_p,X2_hc_p)),axis=1)

max_x ,max_y,_ = np.max(np.hstack((X1_hc_p,X2_hc_p)),axis=1)

h = int(max_y-min_y) # height and width of rectified image

w = int(max_x-min_x)

X1_hc_p[0,:]-=min_x # shift so no negative values for either images
X2_hc_p[0,:]-=min_x

X1_hc_p[1,:]-=min_y

D

rn_indices=’

X2_hc_p[1l,:]-=min_y

22

def

def

def

rectified_img_1_sparce = np.zeros ((h,w,3),dtype="'uint8"')
rectified_img_2_sparce = np.zeros((h,w,3),dtype='uint8"')

numl_x , numl_y, _ = rectified_img_1_sparce.shape
for i in range(X1l_hc_p.shape[1]):
X = X1_hcl[:,1]
X_p = X1_hc_pl[:,1i]
if 0<=int(X_p[1]) <numi_x and 0<=int (X_p[0]) < numi_y:

rectified_img_1_sparce[int (X_p[1]), int(X_p[0]1)] = imgl[int(X[1]), int (.

for i in range(X2_hc_p.shape[1]):
X = X2_hc[:,1i]
X_p = X2_hc_pl[:,1i]
if 0<=int(X_p[1]) <numi_x and 0<=int (X_p[0]) < numil_y:

rectified_img_2_sparce[int (X_p[1]), int(X_p[0]1)] = img2[int(X[1]), int(:

rectified_img_1 = interpolate(rectified_img_1_sparce) # fill in the
rectified_img_2 = interpolate(rectified_img_2_sparce)

both = np.hstack((rectified_img_1 ,rectified_img_2))

cv2.imwrite ("Rectified Image 3. jpg", both)

return rectified_img_1 ,rectified_img_2 ,both

canny_interest_points (img,name):

gray_img = cv2.cvtColor (img, cv2.COLOR_BGR2GRAY) # convert to gray
gray_img_blur = cv2.medianBlur(gray_img,7) # median blue to remove n
edges = cv2.Canny(gray_img_blur ,100,300)

cv2.imwrite (name, edges)

return edges

bound_edge_coords (edges_imgl ,edges_img2):
edge_coordsl = []
edge_coords2 = []
for i in range(180,530): # hard coded for now
for j in range (100,550): # bounds for the edges
if not(i>450 and j<200):
if not(i>450 and j>400):
if edges_imgl[i,j] != O:
edge_coordsl.append ((i,j))
for i in range (192,530):
for j in range (105,550):
if not(i<210 and j<140):
if edges_img2[i,j] != O:
edge_coords2.append ((i,j))
return edge_coordsl ,edge_coords2

distance_metric(edge_coordsl ,edge_coords2,imgl ,img2 ,N,dist_type):
gray_imgl = cv2.cvtColor (imgl, cv2.COLOR_BGR2GRAY)
gray_img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
M = N//2 # half of window size
edge_coordsl_sorted = []
edge_coords2_sorted = []
for edgel in edge_coordsl:
neighl = gray_imgl[edgel[1]-M:edgel [1]+M,edgel [0]-M:edgel [0]+M]
err = 10 # check within 10 rows
rowl ,coll = edgel
temp_edge2 = []
temp_dist = []
for edge2 in edge_coords2:
row2,col2 = edge2
if abs(rowl-row2) <= err:

23

1

Zaps

bise

window ar

def

def

def

89.
69.

89.
86.
94.

neigh2 = gray_img2[edge2[1]-M:edge2[1]+M,edge2[0] -M: edge]
if neigh2.shape==neighl.shape and neighl.size != 0:
temp_edge2.append (edge?2)
if dist_type == 'NCC':
ml np.mean (neighl)
m2 np.mean (neigh?2)
num = np.sum((neighl-ml)*(neigh2-m2))
den = np.sqrt(np.sum((neighl-m1)**2)*np.sum((neig
temp_dist.append (num/(den+0.0001))
else:
temp_dist.append (np.sum((neighl-neigh2)*%x2))

if temp_edge?2:
edge_coords2_sorted.append(temp_edge2[np.argmin(temp_dist)])
edge_coordsl_sorted.append(edgel)
return edge_coordsl_sorted,edge_coords2_sorted

show_correspondence (imgl ,img2,edge_coordsl ,edge_coords2 ,name ,dist_tyj
h,w,_ = imgl.shape
img_combined = np.hstack((imgl, img2))
for i,edgel in enumerate (edge_coordsl):
edge2 = (edge_coords2[i][1]+w,edge_coords2[i][0])

2 [0]+M]

rh2 -m2) **2)

be) :

color = (random.randint (0, 255), random.randint (0, 255), random.randint (O,
cv2.circle(img_combined, (edgel[1],edgel1[0]), 3, color=color,thickness=-1)

cv2.circle(img_combined, edge2, 3, color=color,thickness=-1)

cv2.line(img_combined, (edgel[1],edgel1[0]),edge2, color=color,thickness=1)

cv2.imwrite(dist_type+name, img_combined)
return

reconstruction_auto (P1,P2,x1,x2):

X_all = img_to_world(xl,x2,P1,P2)

fig = plt.figure()

ax = fig.add_subplot (111, projection='3d"')

ax.scatter(X_all[O, :], X_all[1, :1, X_all[2, :1, c='r', marker='.")
plt.show ()

return

taskl ():

ptsl =[(211.3, 132.7),(163.7, 122.4),(354, 252.7),(182.7, 168),(179,
8),(185.9, 158.1),(414.5, 160.3),(234.0, 87.8),(422.5, 170.6),(173.3
5),(308.0, 67.9),(350.1, 255.8),(204.1, 241.8),(199.2, 234.8),(213.4

pts2 =[(273.9, 122),(236, 100.3),(357, 271.8),(237.7, 145.3),(227.9,

185) , (444 .:
243.9) , (2
116.0) , (2

161) , (480.:

9),(243.0, 138.1),(454.3, 202.4),(310.9, 86.4),(458.5, 214.3),(213. | 213.), (2
),(386.2, 86.2),(354.5, 272.8),(235.8, 217.9),(232.9, 210.6),(282.0}, 107.), (3
0),(451.6, 162.6),(242.2, 107.1),(235.2, 120.0),(252.7, 234.7),(436.9}, 243.7)]

x1 = np.hstack((np.array(ptsl),np.ones((len(ptsl),1)))).T # Homogeneous

x2 = np.hstack((np.array(pts2),np.ones((len(pts2),1)))).T

F_linear = get_linear_F(x1,x2) # linear solution for F estimate
el,e2 = get_epipoles(F_linear) # epipoles

P1,P2 = get_P(F_linear ,e2) # Projection matrices

X_all = img_to_world(xl,x2,P1,P2) # World points

P2_refined ,X_refined = get_LM_P(x1,x2,P1,P2,X_all) # Levenberg-Marquardt optimi:

e2_refined = P2_refined[:,-1] # Refined epipole
e2_refined_X = get_cross_mat(e2_refined.reshape(3,1))
F_refined = e2_refined_X@P2_refined®@np.linalg.pinv(P1) # Refine F

imgl = cv2.imread('Pic_1.jpg"')

24

img?2
H2 =
H1

rect

edge
edge

edge
dist
edge

show_correspondence (rect_img_1,rect_img_2,edge_coordsl_sorted,edge_c

edge_coordsl_sorted_downsampled = edge_coordsl_sorted[::50]
edge_coords2_sorted_downsampled
show_correspondence (rect_img_1 ,rect_img_2,edge_coordsl_sorted_downsan
np.save ('edge_coordsl_sorted.npy',edge_coordsl_sorted)
np.save ('edge_coords2_sorted.npy',edge_coords2_sorted)

edge_coordsl_rect = np.load('edge_coordsl_sorted.npy')
edge_coords2_rect

edge_coords2_sorted [::50]

np.load('edge_coords2_sorted.npy')

= cv2.imread ('Pic_2.jpg"')

get_H_prime(img2,e2_refined) # Right homography for rectification

get _H(P1,P2_refined ,H2,x1,x2) # Left homography for rectification
_img_1,rect_img_2 ,rect_img_comb = get_rectified_img(imgl,img2 ,H1|H2)

s_imgl = canny_interest_points(rect_img_1,'edges from imgl.jpg')|# Canny ed;
s_img2 = canny_interest_points(rect_img_2,'edges from img2.jpg')

_coordsl ,edge_coords2 = bound_edge_coords (edges_imgl ,edges_img2) |# Extract
_type = 'SSD'

_coordsl_sorted ,edge_coords2_sorted = distance_metric(edge_coordsl ,edge_cooz

bords2_sorte

ppled , edge_¢

pordsl_rect.
pordsl_rect

xl_rect = np.hstack((np.array(edge_coordsl_rect),np.ones((len(edge_c
x2_rect = np.hstack((np.array(edge_coordsl_rect),np.ones((len(edge_c
x1l_original = H1@x1l_rect
x2_original = H2@x2_rect
x1_original = x1_original/x1l_original[2,:]
x2_original = x2_original/x2_original[2,:]
reconstruction_auto(P1,P2_refined,xl_original ,x1_original)
return

task1l ()

9.2 Task 3

Listing 2: listing copy pasted

import numpy as np

import cv2

import matplotlib.pyplot as plt
from tqdm import tqdm

def disparity_map (imgL,imgR,M,d_max):

M_2
h,w

= M//2 # half of window size
= imgL.shape

disparity_map = np.zeros_like(imgL)

for

i in tqdm(range (M_2,h-M_2)):
for j in range(M_2,w-M_2):
windowl = imgL[i-M_2:i+M_2+1,j-M_2:j+M_2+1] # window in left
bit_veclL = (windowL>imgL[i,j]).ravel() # bit vector for left
bit_count = []
for d in range(min(j-M_2,d_max)):
windowR = imgR[i-M_2:i+M_2+1,j-M_2-d:j+M_2+1-d] # window

image
image pixe:

in right i1

bit_vecR = (windowR>imgR[i,j-d]).ravel() # bit vector for right ima

25

bit_count.append (np.sum(bit_vecLl
if bit_count:
disparity_map[i,j] = np.argmin(bit_count)
return disparity_map

def show_disparity_results(disparity_map ,name):

dis_map_normalized = cv2.normalize(disparity_map, None, alpha=0, bets
dis_map_uint8 = dis_map_normalized.astype(np.uint8)

cv2.imwrite (name, dis_map_uint8)

return

def get_binary_error (ground_truth,disparity_map ,name):
h,w = ground_truth.shape

error_map = np.zeros_like(ground_truth)
count = 0
N = cv2.countNonZero (ground_truth)

for i in range(h):
for j in range(w):
err = abs(ground_truth[i,j]l-disparity_mapli,j])
if err <= 2:
error_map[i,j] = 255
count +=1
accuracy = count/N
cv2.imwrite (name, error_map)
return error_map,accuracy

def plot_accuracies(window_sizes, accuracies):
plt.figure(figsize=(10, 6))
plt.plot(window_sizes, accuracies, marker='o', linestyle='-', color=
plt.xlabel ('Window Size')
plt.ylabel ('Accuracy ')
plt.title('Accuracy over Different Window Sizes')
plt.grid(True)
plt.show ()

imgL = cv2.cvtColor(cv2.imread ('Task3Images/im2.png'),cv2.COLOR_BGR2GRAY
imgR = cv2.cvtColor(cv2.imread('Task3Images/im6.png'),cv2.COLOR_BGR2GRAY
ground_truth_32 = cv2.cvtColor(cv2.imread('Task3Images/disp2.png'),cv2.C
ground_truth = (ground_truth_32/4).astype(np.uint8)

d_max = np.max(ground_truth)

window_sizes = [3,5,7,9,11,13,15,17,19]

for size in window_sizes:
disparity_map = disparity_map(imgL,imgR,size,d_max)
np.save (f 'Disparity map M={size}.npy',disparity_map)
disparity_map = np.load(f'Disparity map M={sizel}.npy')
show_disparity_results(disparity_map ,f'Disparity map M={sizel}.png')
error_map,accuracy=get_binary_error (ground_truth,disparity_map,f'err
print (f 'Accuracy for M={size} = {accuracyl}')

Accuracies extracted from previous results
accuracies = [0.20563185383386093,0.40367129762859644,0.4829813679808475
plot_accuracies(window_sizes, accuracies)

bit_vecR)) # xor operation summec

n=255, norm.

b')

DLOR_BGR2GR/

br_map M={s

0.50850778¢

9.3 Task 4

Listing 3: listing copy pasted

26

import numpy as np

import pickle as pkl

import matplotlib.pyplot as plt
import hbpy # for reading depth maps

A

few notes on the scene_info dictionary:

depth maps are stored as hb5 files. Depth is the distance of the object

The intrinsics are stored as a 3x3 matrix.

The poses [R,t] are stored as a 4x4 matrix to allow for easy transform

T = [[R, t]

[0, 1]] where R is a 3x3 rotation matrix and t is a 3x1 translatj

DEPTH_THR = 0.1

def plot_image_and_depth(img0, depthO, imgl, depthl, plot_name):

if

Enable constrained layout for uniform subplot sizes

fig, ax = plt.subplots(l, 4, figsize=(20, 5), constrained_layout=Trug

Image O

ax [0] . imshow (img0, aspect='auto')
ax [0] .set_title('Image 0')

ax [0].axis ('off ')

Depth O
iml = ax[1].imshow(depthO, cmap='jet', aspect='auto')
ax[1].set_title('Depth 0")

ax[1].axis('off ')

cbarl = fig.colorbar(iml, ax=ax[1], shrink=0.8, aspect=20)
cbarl.ax.yaxis.set_ticks_position('left"')
cbarl.ax.yaxis.set_label_position('left"')
cbarl.ax.tick_params (labelsize=15)

Image 1

ax[2] . imshow (imgl, aspect='auto')
ax[2] .set_title('Image 1')

ax [2] .axis ('off ")

Depth 1

im2 = ax[3].imshow(depthl, cmap='jet', aspect='auto')
ax[3].set_title('Depth 1')

ax [3].axis('off ")

cbar2 = fig.colorbar(im2, ax=ax[3], shrink=0.8, aspect=20)
cbar2.ax.yaxis.set_ticks_position('left')
cbar2.ax.yaxis.set_label_position('left"')
cbar2.ax.tick_params (labelsize=15)

plt.savefig(plot_name, bbox_inches='tight', pad_inches=0)
plt.close ()
n.

= "__main

name

scene_info = pkl.load(open('./data/scene_info/1589_subset.pkl'
for i_pair in range(len(scene_info)):

print(scene_info[i_pair].keys())
['imageO','imagel', 'depthO', 'depthl', 'KO', 'K1', 'TO0',

27

lrbl

lTll,

D

from the c:

ation of po:

jon vector.

'overlap_sc«

print(scene_info[i_pair]['image0O']) # path to imageO
print(scene_info[i_pair]['imagel']) # path to imagel
print(scene_info[i_pair]['depth0O']) # path to depthO
print(scene_info[i_pair]['depthl']) # path to depthl
print(scene_info[i_pair]['KO']) # intrinsic matrix of camera 0
print(scene_info[i_pair]['K1']) # intrinsic matrix of camera 1
print(scene_info[i_pair]J['T0']) # pose matrix of camera 0 [4,/4
print(scene_info[i_pair]['T1']) # pose matrix of camera 1 [4,4
print('----------"---"----—-—- ")
read images
img0 = plt.imread(scene_info[i_pair]['imageO'])
imgl = plt.imread(scene_info[i_pair]['imagel'])
read depth
with hbpy.File(scene_info[i_pair]['depth0'], 'r') as f:
depth0 = f['depth'][:]
with hbpy.File(scene_info[i_pair]['depthl'], 'r') as f:
depthl = f['depth'][:]
check shapes
hO, wO = imgO.shapel[:-1]
hi, wi = imgl.shapel[:-1]
assert imgO.shape[:-1] == depthO.shape, f"depth and image shapes

assert imgl.shape[:-1] == depthl.shape, f"depth and image shapes

plot image and depth
plot_name = f'./pics/image_and_depth_pair_{i_pairl}.png'

plot_image_and_depth(img0, depthO, imgl, depthl, plot_name)

#(1) make meshgrid of points in image O
density = 20
x = np.linspace (10, imgO.shape[1]-10, density)

#<Student code>

meshgrid of x and y coordinates

y = np.linspace (10, imgO.shape[0] - 10, density)
XX, yy = np.meshgrid(x, y)

make homogeneous coordinates for pointsO #[3, NJ]

<Student code>
xxF, yyF = xx.flatten(), yy.flatten()
pointsO = np.vstack((xxF, yyF, np.ones ((xxF.shapel[0],))))

#(2) get depth values at pointsO
<Student code>
depth_valuesO

depth_valuesO = depthO[yyF.astype(int), xxF.astype(int)]
remove points with depth 0 (invalid points)
valid_points = np.where(depth_valuesO != 0)[0]

points0O = pointsO[:, valid_points]

depth_valuesO = depth_valuesO[valid_points]

<Student code>

28

4]
1]

[3,3]
[3,3]

do not mas
do not ma-

valid_points =
mask pointsO and depth_valuesO

(3) Find the 3D coordinates of these points in camera 0 frame
KO = scene_info[i_pair]['KO'] # [3,3]
TO = scene_infol[i_pair]['TO0'] # [4,4]

inverse of KO

KO_inv = np.linalg.inv (KO0)

convert pointsO to camera coordinates

xyz_cam0 = KO_inv @ pointsO

normalize xyz_cam0 to set z = 1 (sanity check)
xyz_cam0 /= xyz_camO [2]

get the point at depth

xyz_cam0 = xyz_camO * depth_valuesO

make homogeneous coordinates [4,N]

xyz_camO_hc = np.vstack((xyz_cam0O, np.ones_like(xyz_cam0[0])))
convert to world frame [4,N]

xyz_world_hc = np.linalg.inv(TO0) @ xyz_camO_hc

(4) Transform these points to camera 1 frame
Tl = scene_info[i_pair]['T1']

<Student code>

transform points to camera 1 frame
xyz_caml_hc = Tl @ xyz_world_hc

convert to camera 1 coordinates

xyz_caml = xyz_caml_hc[:3] / xyz_caml_hc [3]

get z coordinates for depth check
estimated_depth_valuesl = xyz_caml [2]

project to image 1

<Student code>

pointsl = scene_info[i_pair]['K1l'] @ xyz_caml

normalize by dividing by last row

pointsl = pointsl / pointsi[2]

check if pointsl are within image bounds

mask = ((points1[0] > 0) & (points1[0] < w1)) & ((pointsi[1] > O
pointsl = pointsl[:, mask]

get the depth values at these points using the depth map
true_depth_valuesl = estimated_depth_valuesl [mask]
true_depth_valuesl = depthl[pointsl[1].astype(int), pointsl1[0].a
(5) plot matching points in image O and image 1 with depth che
fig, ax = plt.subplots(l, 1, figsize=(10, 5))

Horizontally stack the images

combined_img = np.ones((max(imgO.shape[0], imgl.shape[0]), imgO.
combined_img[:img0.shape[0], :imgO.shape[1]] = img0
combined_img[:imgl.shape [0], imgO.shape[1]:] = imgl

ax.imshow(combined_img, aspect='auto')
ax.scatter (xx, yy, c='r', s=5)
ax.set_title('Matching points in Image O and Image 1')

ax.axis ('off ')

draw lines between matching points

29

& (points:

stype (int)]
ck such tha

shape [1] +

for i in range(pointsl.shape[1]):
if depth values match

if np.abs(estimated_depth_values1[i] - true_depth_valuesi[i]
ax.plot ([points0[0,i], points1[0, i] + imgO.shape[1l]],

plt.savefig(f'./pics/depth_check_pair_{i_pair}.png',
plt.close ()
print (f"Done with pair {i_pair}")

(6) Plot all 3D points for the pair

<Student code>

plt.figure)
ax = plt.axes(projection='3d"')

ax.scatter (xyz_world_hc[0], xyz_world_hc[1], xyz_world_hc[2], c=

ax.set_xlabel ('X')

ax.set_ylabel ('Y"')

ax.set_zlabel('Z"')

ax.set_title('World frame Points')
plt.savefig(f'./pics/world_frame_points{i_pair}.png',

bbox_inchess'tight',

bbox_inches

r', s=5)

30

s='tight ',

< DEPTH_TI
[pointsO[1,

il

P

1

