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1 Theory Question

Figure 1: Caption

Each camera is modeled using the pinhole camera model, where a point world pointX can be projected
to image points x⃗ in the left image and x⃗′ in the right image by applying the projection matrix:

x⃗ = PX = K[I3×3|⃗0]X (1)

x⃗′ = P ′X = K ′[R|t]X (2)

For stereo images, the camera center of the left camera C⃗ is a world coordinate that can be projected
onto a pixel in the the right camera image plane e⃗′, and vice versa. This statement can be represented
as follows:

e⃗′ = P ′C⃗ (3)

e⃗ = PC⃗ ′ (4)

If we back project the pixel x⃗, the world point P †x⃗ is guaranteed to exist on the ray from C⃗ to x⃗.
Projecting the wold point P †x⃗ to the image plane in the right camera gives us P ′P †x⃗, that gives us a
pixel that lies o the epipolar line ℓ⃗′. Thus, the projection of the left camera center to the right image
plane and the projection of the world point P †x⃗ to the right image plane gives us two points in the right
image plane, allowing us to form a line ℓ′: ℓ′ = e⃗′ × P ′P †x⃗.
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2 Task 1: Projective Stereo Reconstruction

The first part of this assignment is to create a 3D reconstruction from stereo images, taken from an
uncalibrated camera. There are three main components to accomplishing this task: Image Rectification,
Interest Point Detection, and Projective Reconstruction.

2.1 Image Rectification

The goal of image rectification is to find the homographies H and H ′ for the stereo images such that
in the transformed image pair, the same world point appears on the same row. This can be done using
the following steps:

1. Estimate initial fundamental matrix using point correspondence:

The fundamental matrix can be estimated using a minimum of 8 point correspondence. These point
correspondence will first be normalized by doing: x̂i = Txi and x̂′

i = T ′x′
i. The transformation

matrix can be calculated as follows:

T =

[
sI2 −sx̄
0T 1

]
(5)

In equation 5, x̄ is the mean of the given points as s =
√
2

1
n

∑n
i=1|xi|

. Then, the fundamental matrix

can be estimated with the normalized correspondence points. Each (x⃗, x⃗′) correspondence gives us

the equation x⃗′TFx⃗ = 0, which expands out to

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (6)

Equation 6 can be expressed as
Af⃗ = 0 (7)

In equation 7. A = [x′x x′y x′ y′x y′y y′ x y 1] and

f⃗ = (f11 f12 f13 f21 f22 f23 f31 f32 f33)
T . For N number of correspondences, equation

7 can be stacked together to form Af⃗ = 0⃗, where A is N × 9, which can be solved using least-
squares. The solution to A must be conditioned to enforce the requirement rank(F) = 2. This can
be done by doing its SVD to obtain UDV T , and zeroing out the smallest singular value in D.

2. Estimate the left and right epipoles:

The right and left epipoles, e and e′ respectively, are the left and right null vector of F.

3. Obtain initial estimates of projection matrices in canonical form: The left and right
projection matrices, P and P′ respectively, can be calculated using the following equations:

P = [I3×3 |⃗0]
P ′ = [sF |e⃗′]

(8)

4. Refine the right projection matrix using nonlinear optimization: Given a P and P′ for
two cameras, use the current estimate for F to triangulate each corresponding pair (x⃗i, x⃗

′
i) into the

world point X⃗i. Then, use the camera matrices P and P′ to project X⃗i back into the two images,
to obtain (ˆ⃗xi, ˆ⃗x

′
i). This can be done by solving the following equation using linear least squares:

AX⃗ = 0 , where A =


xP⃗ 3T − P⃗ 1T

yP⃗ 3T − P⃗ 2T

x′P⃗ ′3
T

− P⃗ ′1
T

y′P⃗ ′3
T

− P⃗ ′2
T

 (9)

Then, the geometric error can be defined as:

d2geom =
∑
i

(||x⃗i − ˆ⃗xi||2+||x⃗′
i − ˆ⃗x′

i||2) (10)

Using the geometric error in equation 10 as the cost function, we can then use Levenberg Marquardt
optimization to obtain the refined P′.
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5. Obtain the refined fundamental matrix F using the refined P′: With the refined P′, the
refined epipole e⃗′ is simply the last column of P′. Then, the refined fundamental matrix can be
calculated as follows:

F = [e⃗′]×P
′P† (11)

6. Estimate the right homography H′ using refined epipoles: The homography matrix for the
right image is calculated using the following equation:

H′ = T2GRT1 (12)

T2,G,R, and T1 from equation 12 are the following matrices:

T1 =

1 0 −w2/2
0 1 −h2/2
0 0 1

 (13)

G =

 1 0 0
0 1 0

−1/f 0 1

 (14)

R =

cos(θ −sin(θ) 0
sin(θ cos(θ) 0
0 0 1

 (15)

T2 =

1 0 w2/2
0 1 h2/2
0 0 1

 (16)

7. Estimate the left homography matrix H: The left homography can be estimates with the
following steps:

(a) M = P′P†

(b) H0 = H′M

(c) Transform points in the left and right images, x⃗ and x⃗′, respectively to obtain: ˆ⃗x = H0x⃗ and
ˆ⃗x′ = H ′x⃗′, where H ′ was obtained in step 6.

(d) Then, we want to solve for HA =

a b c
0 1 0
0 0 1

 by minimizing min
∑

i(ax̂i + bŷi + c− x̂′
i)

2

(e) The right homography can then be calculated as: H = HAH0

8. Apply H and H′ to the stereo pair to rectify the images:

2.2 Interest Point Detection

Before obtaining the projective 3-D reconstruction, interest points are obtained using OpenCV’s
Canny edge detection function. Then, correspondences between interest points are obtained using the
SSD metric. Since the pictures used has a noisy background, cv2.medianBlur is first used to blur the
image, followed by cv2.Canny to obtain edges. Then, for each edge coordinate of the left image, the SSD
metric used for every edge pixel in the right image within 10 rows of the base pixel. Once these interest
points and their correspondences has been found on the rectified image, the inverse homographies have
to be applied to them to obtain the respective pixel coordinates of the original image.

2.3 Projective Reconstruction

From the interest points in the previous section, the world coordinates can be found using triangula-
tion, using equation 9

3 Task 1 Results
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Correspondence Point from left image Points from right image

1 (211, 133) (274, 122)
2 (164, 122) (236, 100)
3 (354, 253) (357, 272)
4 (183, 168) (238, 145)
5 (179, 185) (228, 161)
6 (444, 166) (480, 216)
7 (241, 90) (316, 90)
8 (186, 158) (243, 138)
9 (415, 160) (454, 202)
10 (234, 88) (311, 86)
11 (423, 171) (459, 214)
12 (173, 244) (213, 213)
13 (249, 156) (299, 152)
14 (418, 107) (476, 153)
15 (446, 137) (495, 189)
16 (378, 218) (396, 246)
17 (181, 248) (217, 217)
18 (205, 188) (248, 169)
19 (259, 134) (317, 136)
20 (303, 70) (379, 86)

Table 1: First 20 of 40 correspondences used

(a) Left Image (b) Right Image

Figure 2: Images used for Task 1 and 2
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Figure 3: Rectified Image

(a) Left Image (b) Right Image

Figure 4: Edges obtained when cv2.Canny is directly applied to the rectified images.

(a) Left Image (b) Right Image

Figure 5: Edges obtained when the rectified images were preprocessed using cv2.medianBlur and when
the boarders were constrained.

5



Figure 6: All interest points and correspondence using SSD metric.

Figure 7: Downsampled version of figure 6
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Figure 8: 3D Reconstruction using all correspondences from SSD, View 1
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Figure 9: 3D Reconstruction using all correspondences from SSD with stereo images, view1

Figure 10: 3D Reconstruction using all correspondences from SSD, View 2
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Figure 11: 3D Reconstruction using all correspondences from SSD with stereo images, view2
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4 Task 2: The Loop and Zhang Algorithm

The Loop and Zhang algorithm decomposes the rectifying homographies as follows:

H = HshHsimHp (17)

H ′ = H ′
shH

′
simH ′

p (18)

In equation 18, Hp and H ′
p are the purely projective homographies whose purpose is to send the

epipoles e and e′ to infinity. Hsim andH ′
sim are similarity homographies, which can only rotate, translate,

and uniformly scale an image. It purpose is to rotate the epiposes, which are at infinity, to the world-X
axis. Hsh and H ′

sh are shearing homographies, which introduces additional degrees of freedom to remove
distortion that can’t be removed by affine homographies.

5 Task 2 Results

Figure 12: Caption

5.1 Comments

The Loop and Zhang algorithm was able to rectify the image pair by warping the two images to a
lesser extent than my algorithm did. In addition, the rectified images from Loop and Zhang outperformed
as the rows are visibly more aligned compared to my results. The correspondences are also of higher
quality. In my pipeline, I used the SSD metric, which compares grayscale values in neighborhoods. This
lead to a quite a bit of of mismatched correspondences. However, the loop and Zhang algorithm seems
to have resulted in much fewer mismatched correspondences.
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6 Task 3: Dense Stereo Matching

In this task, we are trying to estimate the left disparity map. The steps for doing so are as follows:

1. For each pixel in the left image, (x,y), the bitvector of size M2 is calculated, by setting a bit one
wherever the pixel value is strictly greater than the center pixel value.

2. For a range of corresponding pixels on the right (x-d,y), where d ∈ {0...dmax}, bitvectors are formed
in the same manner as described in step 1.

3. After the bitwise XOR operation between the two bitvectors, the cost is computed as the number
of ones in the output bitvector.

4. The disparity value d that minimizes the cost is chosen for the pixel on the left image (x,y).

7 Task 3 Results

(a) Disparity Map (b) Error Mask for δ = 2

Figure 13: Accuracy = 20.56% when m=3

(a) Disparity Map (b) Error Mask for δ = 2

Figure 14: Accuracy = 40.37% when m=5
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(a) Disparity Map (b) Error Mask for δ = 2

Figure 15: Accuracy = 48.30% when m=7

(a) Disparity Map (b) Error Mask for δ = 2

Figure 16: Accuracy = 50.85% when m=11

7.1 Observations

In figure 18, we can see that as the window size increases from a small initial value, the accuracy
improves significantly. However, this improvement diminishes as the window size grows larger. Notably,
at a window size of 17× 17, further increases in the window size result in a decline in accuracy.

12



(a) Disparity Map (b) Error Mask for δ = 2

Figure 17: Accuracy = 51.70% when m=13

Figure 18: Accuracies at different window sizes
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8 Task 4: Depth Map and Automatic Extraction of Dense Cor-
respondences

Automatic Extraction of Dense Correspondences has many useful applications such as stereo match-
ing, image registration, and 3D reconstruction. It is also. It is used in deep learning applications as
dense correspondences are essential for training models like SuperPoint, LoFTR, and CAPS, which rely
on accurate keypoint matching.

The correspondences ({xA
i ↔ xB

i }) between a pair of images (IA, IB) can be automatically extracted
using the given depth maps of the images (DA, DB). The general idea is to use the depth map to estimate
the 3D coordinates of each pixel in the image, and project these 3D coordinates back into the image
plane of the other image to array out a ”Depth Check”, to find correspondences. The ”Depth-Check”
process is outlines in the following steps:

1. Calculate the inverse of the camera matrix KA. KA can be calculated using the following equation:

K =

αx s x0

0 αy y0
0 0 1

 (19)

2. Calculate the 3D coordinate (XA
cam) of any point on the ray corresponding to the pixel in the

camera coordinate system using the following equation:

Xcam = K−1xi (20)

3. Get the 3D coordinate of the world point with the depth value DA(x
A
i ) by multiplying equation

20 by the depth value, which will give us the 3D coordinate of the point in terms of the camera
coordinate from of image IA

Xcam = [R|t]Xworld (21)

4. Convert the 3D coordinate to the world coordinate frame using camera extrinsic parameters:
([RA|tA]):

Xworld hc = T−1Xcam hc (22)

, where T4×4 =

[
R r
0 1

]
5. Calculate the Zcam coordinate of Xworld with respect to the camera coordinate frame of IB using

the camera extrinsic of IB , which can be done using XB
cam = [RB |tB ]Xworld. This Zcam coordinate

is the estimated depth value.

6. Project the 3D world coordinate to IB to get the correspondig pixel location xB
i and use the depth

map DB to obtain the true depth DB(x
B
i ).

7. Calcualte the absolute difference between the true and projected depth values and if it is less than
a certain threshold, the two points xA

i ↔ xB
i are matching correspondences.
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8.1 Task 4 Results

Figure 19: Depth Check Pair
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Figure 20: Image and Depth Check Pair
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Figure 21: Image and Depth Check Pair
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Figure 22: World Frame Points
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Figure 23: World Frame Points
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9 Code

9.1 Task 1

Listing 1: listing copy pasted

import numpy as np

import cv2

from scipy.optimize import least_squares

from scipy import ndimage as nd

import random

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

from matplotlib.patches import ConnectionPatch

def normalize_pts(points ):

# input: 3XN array of homogeneous points

# output: array of poits

mean = np.mean(points ,axis =1). reshape (3,1) # mean of x and y values

D_m = np.mean(np.linalg.norm(points -mean ,axis =0)) # mean of distances for each point

s = np.sqrt (2)/ D_m # scale factor

T = np.array ([[s,0,-s*mean [0,0]],[0,s,-s*mean [1 ,0]] ,[0 ,0 ,1]])

pts_normalized = (points -mean)*s

return pts_normalized ,T

def get_linear_F(x1 ,x2):

x1_N ,T1 = normalize_pts(x1) # Normalize points

x2_N ,T2 = normalize_pts(x2)

A = np.zeros ((x1_N.shape [1] ,9))

for i in range(x1_N.shape [1]):

A[i,:] = np.array([x2_N[0,i]*x1_N[0,i],

x2_N[0,i]*x1_N[1,i],

x2_N[0,i],

x2_N[1,i]*x1_N[0,i],

x2_N[1,i]*x1_N[1,i],

x2_N[1,i],

x1_N[0,i],

x1_N[1,i],

1])

_,_,vh = np.linalg.svd(A)

F_temp = vh[-1]. reshape (3,3) # last row

u,s,Vh = np.linalg.svd(F_temp)

s[-1] = 0 # Condition F_temp

d = np.diag(s)

F_conditioned = u@d@Vh

F_denomalized = T2.T@F_conditioned@T1 # Denormalize F_conditioned

return (F_denomalized/F_denomalized [-1,-1]). reshape (3,3)

def get_epipoles(F):

u,_,vh = np.linalg.svd(F)

e1 = (vh[-1].T). reshape (3,1) # last row

e2 = (u[:,-1]). reshape (3,1) # last colun

return e1/e1[-1], e2/e2[-1]

def get_cross_mat(vec):

mat_X = np.array([[0,-vec[2,0],vec[1,0]],

[vec[2,0],0,-vec[0,0]],

[-vec[1,0],vec [0 ,0] ,0]])
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return mat_X

def get_P(F,e2):

P1 = np.hstack ((np.eye(3),np.zeros ((3 ,1))))

e2_X = get_cross_mat(e2)

P2 = np.hstack ((e2_X@F ,e2))

return P1 ,P2

def img_to_world(x1 ,x2 ,P1 ,P2):

P11 = P1[0,:]

P12 = P1[1,:]

P13 = P1[2,:]

P21 = P2[0,:]

P22 = P2[1,:]

P23 = P2[2,:]

X_all = np.zeros((4,x1.shape [1]))

for i in range(x1.shape [1]):

x1i = x1[:,i]

x2i = x2[:,i]

A = np.array ([[x1i [0]*P13 -P11],

[x1i [1]*P13 -P12],

[x2i [0]*P23 -P21],

[x2i [1]*P23 -P22]])

_,_,vh = np.linalg.svd(A.squeeze ())

X = vh[-1] # last row

X_all[:,i] = X/X[-1]

return X_all

def world_to_img(P1 ,P2 ,X_all):

x1_hat = P1@X_all

x2_hat = P2@X_all

return x1_hat/x1_hat [2,:], x2_hat/x2_hat [2,:]

def get_LM_P(x1 ,x2 ,P1 ,P2_init ,X_all_init ):

init_params = np.hstack (( P2_init.flatten(), X_all_init [0:3 ,:]. flatten ()))

def cost(params ):

P2 = params [0:12]. reshape (3,4)

X_all = params [12:]. reshape (3,-1) # world points

X_all_homogeneous = np.vstack ((X_all , np.ones((1, X_all.shape [1]))))

x1_hat ,x2_hat = world_to_img(P1 ,P2 ,X_all_homogeneous)

cost1 = (x1_hat [0:2 ,:].T-x1[0:2 ,:].T).ravel () # ravel flattens the array

cost2 = (x2_hat [0:2 ,:].T-x2[0:2 ,:].T).ravel ()

return np.hstack ((cost1 ,cost2))

res = least_squares(cost , init_params , method='lm', verbose =1)

refined_params = res.x # refined parameters

P1_refined = refined_params [0:12]. reshape (3,4)

X_all_refined = np.vstack (( refined_params [12:]. reshape(3, -1), np.ones((1, X_all_init.shape [1]))))

return P1_refined/P1_refined [-1,-1], X_all_refined

def get_H_prime(img ,e2):

h,w,_ = img.shape

x0 = w/2

y0 = h/2

theta = np.arctan(-(e2[1]-y0)/(e2[0]-x0))

f = np.abs((e2[0]-x0)*np.cos(theta)-(e2[1]-y0)*np.sin(theta ))

T1 = np.array([[1,0,-x0],[0,1,-y0],[0,0,1]])

T2 = np.array ([[1,0,x0],[0,1,y0],[0,0,1]])

R = np.array ([[np.cos(theta),-np.sin(theta),0],
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[np.sin(theta),np.cos(theta),0],

[0,0,1]])

G = np.array ([[1,0,0],[0,1,0],[-1/f,0 ,1]])

H2 = T2@G@R@T1

return H2/H2[-1,-1]

def get_H(P1 ,P2 ,H2 ,x1 ,x2):

P1_pinv = P1.T@(np.linalg.inv(P1@P1.T))

M = P2@P1_pinv

H_0 = H2@M

x1_hat = H_0@x1

x1_hat_homogeneous = x1_hat/x1_hat [2,:]

x2_hat = H2@x2

x2_hat_homogeneous = x2_hat/x2_hat [2,:]

A = x1_hat_homogeneous.T

b = x2_hat_homogeneous [0 ,:].T

H_a = np.eye(3)

H_a[0,:] = (np.linalg.inv(A.T@A)@A.T)@b

H1 = H_a@H_0

return H1/H1[-1,-1]

def apply_homography(img ,H):

h,w,_ = img.shape

x = np.arange(w) # [W]

y = np.arange(h) # [H]

X, Y = np.meshgrid(x, y) # X: [H,W], Y:[H,W]

X = X.flatten () #[H*W]

Y = Y.flatten () #[H*W]

X_hc = np.stack ((X, Y, np.ones_like(X))) # coordinates of domain image

X_hc_p = H @ X_hc # coordinates of range image

X_hc_p /= (X_hc_p[2, :]) # normalize

return X_hc , X_hc_p

def interpolate(sparse: np.ndarray ):

height , width , _ = sparse.shape

mask = np.zeros ((height , width), dtype=bool)

collapse = np.sum(sparse , axis =2)

for i, r in enumerate(collapse ):

nz = np.where(r != 0)[0] # find nearest neighbors

if nz.size > 0:

fi, la = nz[0], nz[-1]

mask[i, fi:la] = True

targets = mask & (collapse == 0)

ind = nd.distance_transform_edt(targets ,return_distances=False ,return_indices=True)

sparse = sparse[tuple(ind)]

return sparse

def get_rectified_img(img1 ,img2 ,H1 ,H2):

X1_hc , X1_hc_p = apply_homography(img1 ,H1)

X2_hc , X2_hc_p = apply_homography(img2 ,H2)

min_x ,min_y ,_ = np.min(np.hstack ((X1_hc_p ,X2_hc_p)),axis =1)

max_x ,max_y ,_ = np.max(np.hstack ((X1_hc_p ,X2_hc_p)),axis =1)

h = int(max_y -min_y) # height and width of rectified image

w = int(max_x -min_x)

X1_hc_p [0,:]-= min_x # shift so no negative values for either images

X2_hc_p [0,:]-= min_x

X1_hc_p [1,:]-= min_y

X2_hc_p [1,:]-= min_y
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rectified_img_1_sparce = np.zeros ((h,w,3),dtype='uint8 ')
rectified_img_2_sparce = np.zeros ((h,w,3),dtype='uint8 ')

num1_x , num1_y , _ = rectified_img_1_sparce.shape

for i in range(X1_hc_p.shape [1]):

X = X1_hc[:,i]

X_p = X1_hc_p[:,i]

if 0<=int(X_p [1]) <num1_x and 0<=int(X_p [0]) < num1_y:

rectified_img_1_sparce[int(X_p[1]), int(X_p [0])] = img1[int(X[1]), int(X[0])]

for i in range(X2_hc_p.shape [1]):

X = X2_hc[:,i]

X_p = X2_hc_p[:,i]

if 0<=int(X_p [1]) <num1_x and 0<=int(X_p [0]) < num1_y:

rectified_img_2_sparce[int(X_p[1]), int(X_p [0])] = img2[int(X[1]), int(X[0])]

rectified_img_1 = interpolate(rectified_img_1_sparce) # fill in the gaps

rectified_img_2 = interpolate(rectified_img_2_sparce)

both = np.hstack (( rectified_img_1 ,rectified_img_2 ))

cv2.imwrite (" Rectified Image 3.jpg", both)

return rectified_img_1 ,rectified_img_2 ,both

def canny_interest_points(img ,name):

gray_img = cv2.cvtColor(img , cv2.COLOR_BGR2GRAY) # convert to gray

gray_img_blur = cv2.medianBlur(gray_img ,7) # median blue to remove noise

edges = cv2.Canny(gray_img_blur ,100 ,300)

cv2.imwrite(name , edges)

return edges

def bound_edge_coords(edges_img1 ,edges_img2 ):

edge_coords1 = []

edge_coords2 = []

for i in range (180 ,530): # hard coded for now

for j in range (100 ,550): # bounds for the edges

if not(i>450 and j <200):

if not(i>450 and j >400):

if edges_img1[i,j] != 0:

edge_coords1.append ((i,j))

for i in range (192 ,530):

for j in range (105 ,550):

if not(i<210 and j <140):

if edges_img2[i,j] != 0:

edge_coords2.append ((i,j))

return edge_coords1 ,edge_coords2

def distance_metric(edge_coords1 ,edge_coords2 ,img1 ,img2 ,N,dist_type ):

gray_img1 = cv2.cvtColor(img1 , cv2.COLOR_BGR2GRAY)

gray_img2 = cv2.cvtColor(img2 , cv2.COLOR_BGR2GRAY)

M = N//2 # half of window size

edge_coords1_sorted = []

edge_coords2_sorted = []

for edge1 in edge_coords1:

neigh1 = gray_img1[edge1[1]-M:edge1 [1]+M,edge1[0]-M:edge1 [0]+M] # window around edge1

err = 10 # check within 10 rows

row1 ,col1 = edge1

temp_edge2 = []

temp_dist = []

for edge2 in edge_coords2:

row2 ,col2 = edge2

if abs(row1 -row2) <= err:
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neigh2 = gray_img2[edge2[1]-M:edge2 [1]+M,edge2[0]-M:edge2 [0]+M]

if neigh2.shape == neigh1.shape and neigh1.size != 0:

temp_edge2.append(edge2)

if dist_type == 'NCC ':
m1 = np.mean(neigh1)

m2 = np.mean(neigh2)

num = np.sum((neigh1 -m1)*(neigh2 -m2))

den = np.sqrt(np.sum((neigh1 -m1 )**2)* np.sum((neigh2 -m2 )**2))

temp_dist.append(num/(den +0.0001))

else:

temp_dist.append(np.sum((neigh1 -neigh2 )**2))

if temp_edge2:

edge_coords2_sorted.append(temp_edge2[np.argmin(temp_dist )])

edge_coords1_sorted.append(edge1)

return edge_coords1_sorted ,edge_coords2_sorted

def show_correspondence(img1 ,img2 ,edge_coords1 ,edge_coords2 ,name ,dist_type ):

h,w,_ = img1.shape

img_combined = np.hstack ((img1 ,img2))

for i,edge1 in enumerate(edge_coords1 ):

edge2 = (edge_coords2[i][1]+w,edge_coords2[i][0])

color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))

cv2.circle(img_combined , (edge1[1], edge1 [0]), 3, color=color ,thickness =-1)

cv2.circle(img_combined , edge2 , 3, color=color ,thickness =-1)

cv2.line(img_combined , (edge1[1], edge1 [0]),edge2 , color=color ,thickness =1)

cv2.imwrite(dist_type+name , img_combined)

return

def reconstruction_auto(P1 ,P2 ,x1 ,x2):

X_all = img_to_world(x1,x2,P1,P2)

fig = plt.figure ()

ax = fig.add_subplot (111, projection ='3d')
ax.scatter(X_all[0, :], X_all[1, :], X_all[2, :], c='r', marker='.')
plt.show()

return

def task1 ():

pts1 =[(211.3 , 132.7) ,(163.7 , 122.4) ,(354 , 252.7) ,(182.7 , 168) ,(179 , 185) ,(444.2 , 165.8) ,(240.9 ,

89.8) ,(185.9 , 158.1) ,(414.5 , 160.3) ,(234.0 , 87.8) ,(422.5 , 170.6) ,(173.3 , 243.9) ,(248.9 , 156.0) ,(417.7 , 107.2) ,(446.0 , 137.1) ,(378.3 , 217.8) ,(180.8 , 247.9) ,(204.6 , 187.6) ,(259.1 , 134.1) ,(302.7 ,

69.5) ,(308.0 , 67.9) ,(350.1 , 255.8) ,(204.1 , 241.8) ,(199.2 , 234.8) ,(213.4 , 116.0) ,(249.9 , 145.0) ,(188.2 , 231.2) ,(198.7 , 186.7) ,(231.9 , 196.7) ,(256.5 , 110.2) ,(441.0 , 125.7) ,(409.3 , 105.0) ,(246.0 , 102.8) ,(459.8 , 131.4) ,(207.0 , 103.5) ,(398 , 124.2) ,(173.9 , 127.9) ,(170.5 , 142.4) ,(228 , 253) ,(415 , 203.8)]

pts2 =[(273.9 , 122) ,(236 , 100.3) ,(357 , 271.8) ,(237.7 , 145.3) ,(227.9 , 161) ,(480.2 , 216.1) ,(316 ,

89.9) ,(243.0 , 138.1) ,(454.3 , 202.4) ,(310.9 , 86.4) ,(458.5 , 214.3) ,(213. , 213. ),(298.9, 152.2) ,(476.4 , 152.9) ,(494.6 , 188.8) ,(396.2 , 245.6) ,(217.0 , 217.0) ,(247.8 , 168.9) ,(316.5 , 135.5) ,(379. ,

86. ),(386.2, 86.2) ,(354.5 , 272.8) ,(235.8 , 217.9) ,(232.9 , 210.6) ,(282.0 , 107. ) ,(304. , 143. ) ,(226.2 , 204.7) ,(244.5 , 166.3) ,(269.2 , 184.5) ,(322.2 , 112.9) ,(494.0 , 176.5) ,(474.1 , 148.5) ,(316.0 , 103.1) ,(510.2 , 187.8) ,(280.9 ,

94.0) ,(451.6 , 162.6) ,(242.2 , 107.1) ,(235.2 , 120.0) ,(252.7 , 234.7) ,(436.9 , 243.7)]

x1 = np.hstack ((np.array(pts1),np.ones((len(pts1 ) ,1)))).T # Homogeneous

x2 = np.hstack ((np.array(pts2),np.ones((len(pts2 ) ,1)))).T

F_linear = get_linear_F(x1,x2) # linear solution for F estimate

e1 ,e2 = get_epipoles(F_linear) # epipoles

P1 ,P2 = get_P(F_linear ,e2) # Projection matrices

X_all = img_to_world(x1,x2,P1,P2) # World points

P2_refined ,X_refined = get_LM_P(x1,x2,P1,P2,X_all) # Levenberg -Marquardt optimization

e2_refined = P2_refined [:,-1] # Refined epipole

e2_refined_X = get_cross_mat(e2_refined.reshape (3,1))

F_refined = e2_refined_X@P2_refined@np.linalg.pinv(P1) # Refine F

img1 = cv2.imread('Pic_1.jpg ')
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img2 = cv2.imread('Pic_2.jpg ')
H2 = get_H_prime(img2 ,e2_refined) # Right homography for rectification

H1 = get_H(P1 ,P2_refined ,H2 ,x1 ,x2) # Left homography for rectification

rect_img_1 ,rect_img_2 ,rect_img_comb = get_rectified_img(img1 ,img2 ,H1,H2)

edges_img1 = canny_interest_points(rect_img_1 ,'edges from img1.jpg ') # Canny edge detection

edges_img2 = canny_interest_points(rect_img_2 ,'edges from img2.jpg ')

edge_coords1 ,edge_coords2 = bound_edge_coords(edges_img1 ,edges_img2) # Extract relevant edge coordinates

dist_type = 'SSD '
edge_coords1_sorted ,edge_coords2_sorted = distance_metric(edge_coords1 ,edge_coords2 ,img1 ,img2 ,11, dist_type)

show_correspondence(rect_img_1 ,rect_img_2 ,edge_coords1_sorted ,edge_coords2_sorted ,'_All_correspondences.jpg ',dist_type)

edge_coords1_sorted_downsampled = edge_coords1_sorted [::50]

edge_coords2_sorted_downsampled = edge_coords2_sorted [::50]

show_correspondence(rect_img_1 ,rect_img_2 ,edge_coords1_sorted_downsampled ,edge_coords2_sorted_downsampled ,'Every 50 correspondences.jpg ',dist_type)
np.save('edge_coords1_sorted.npy ',edge_coords1_sorted)
np.save('edge_coords2_sorted.npy ',edge_coords2_sorted)

edge_coords1_rect = np.load('edge_coords1_sorted.npy ')
edge_coords2_rect = np.load('edge_coords2_sorted.npy ')

x1_rect = np.hstack ((np.array(edge_coords1_rect),np.ones((len(edge_coords1_rect ) ,1)))).T # Homogeneous

x2_rect = np.hstack ((np.array(edge_coords1_rect),np.ones((len(edge_coords1_rect ) ,1)))).T

x1_original = H1@x1_rect

x2_original = H2@x2_rect

x1_original = x1_original/x1_original [2,:]

x2_original = x2_original/x2_original [2,:]

reconstruction_auto(P1 ,P2_refined ,x1_original ,x1_original)

return

task1()

9.2 Task 3

Listing 2: listing copy pasted

import numpy as np

import cv2

import matplotlib.pyplot as plt

from tqdm import tqdm

def disparity_map(imgL ,imgR ,M,d_max):

M_2 = M//2 # half of window size

h,w = imgL.shape

disparity_map = np.zeros_like(imgL)

for i in tqdm(range(M_2 ,h-M_2)):

for j in range(M_2 ,w-M_2):

windowL = imgL[i-M_2:i+M_2+1,j-M_2:j+M_2 +1] # window in left image

bit_vecL = (windowL >imgL[i,j]). ravel () # bit vector for left image pixel

bit_count = []

for d in range(min(j-M_2 ,d_max )):

windowR = imgR[i-M_2:i+M_2+1,j-M_2 -d:j+M_2+1-d] # window in right image

bit_vecR = (windowR >imgR[i,j-d]). ravel () # bit vector for right image pixel
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bit_count.append(np.sum(bit_vecL ^ bit_vecR )) # xor operation summed

if bit_count:

disparity_map[i,j] = np.argmin(bit_count)

return disparity_map

def show_disparity_results(disparity_map ,name):

dis_map_normalized = cv2.normalize(disparity_map , None , alpha=0, beta =255, norm_type=cv2.NORM_MINMAX)

dis_map_uint8 = dis_map_normalized.astype(np.uint8)

cv2.imwrite(name , dis_map_uint8)

return

def get_binary_error(ground_truth ,disparity_map ,name):

h,w = ground_truth.shape

error_map = np.zeros_like(ground_truth)

count = 0

N = cv2.countNonZero(ground_truth)

for i in range(h):

for j in range(w):

err = abs(ground_truth[i,j]-disparity_map[i,j])

if err <= 2:

error_map[i,j] = 255

count +=1

accuracy = count/N

cv2.imwrite(name , error_map)

return error_map ,accuracy

def plot_accuracies(window_sizes , accuracies ):

plt.figure(figsize =(10, 6))

plt.plot(window_sizes , accuracies , marker='o', linestyle='-', color='b')
plt.xlabel('Window Size ')
plt.ylabel('Accuracy ')
plt.title('Accuracy over Different Window Sizes ')
plt.grid(True)

plt.show()

imgL = cv2.cvtColor(cv2.imread('Task3Images/im2.png '),cv2.COLOR_BGR2GRAY)
imgR = cv2.cvtColor(cv2.imread('Task3Images/im6.png '),cv2.COLOR_BGR2GRAY)
ground_truth_32 = cv2.cvtColor(cv2.imread('Task3Images/disp2.png '),cv2.COLOR_BGR2GRAY ). astype(np.float32)
ground_truth = (ground_truth_32 /4). astype(np.uint8)

d_max = np.max(ground_truth)

window_sizes = [3,5,7,9,11,13,15,17,19]

for size in window_sizes:

disparity_map = disparity_map(imgL ,imgR ,size ,d_max)

np.save(f'Disparity map M={size}.npy ',disparity_map)
disparity_map = np.load(f'Disparity map M={size}.npy ')
show_disparity_results(disparity_map ,f'Disparity map M={size}.png ')
error_map ,accuracy=get_binary_error(ground_truth ,disparity_map ,f'error_map M={size}.png ')
print(f'Accuracy for M={size} = {accuracy}')

# Accuracies extracted from previous results

accuracies = [0.20563185383386093 ,0.40367129762859644 ,0.4829813679808475 ,0.5085077852817458 , 0.5170614923984056 , 0.5176921522645588 , 0.5149245963470711 , 0.5113243244898085 , 0.5077056838985801]

plot_accuracies(window_sizes , accuracies)

9.3 Task 4

Listing 3: listing copy pasted
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import numpy as np

import pickle as pkl

import matplotlib.pyplot as plt

import h5py # for reading depth maps

"""

A few notes on the scene_info dictionary:

- depth maps are stored as h5 files. Depth is the distance of the object from the camera (ie Z coordinate in camera coordinates ). The depth map can contain invalid points (depth = 0) which correspond to points where the depth could not be estimated.

- The intrinsics are stored as a 3x3 matrix.

- The poses [R,t] are stored as a 4x4 matrix to allow for easy transformation of points from one camera to the other. The resulting transformation matrix is a 4x4 matrix is of the form:

T = [[R, t]

[0, 1]] where R is a 3x3 rotation matrix and t is a 3x1 translation vector.

"""

DEPTH_THR = 0.1

def plot_image_and_depth(img0 , depth0 , img1 , depth1 , plot_name ):

# Enable constrained layout for uniform subplot sizes

fig , ax = plt.subplots(1, 4, figsize =(20, 5), constrained_layout=True)

# Image 0

ax[0]. imshow(img0 , aspect='auto ')
ax[0]. set_title('Image 0')
ax[0]. axis('off ')

# Depth 0

im1 = ax[1]. imshow(depth0 , cmap='jet ', aspect='auto ')
ax[1]. set_title('Depth 0')
ax[1]. axis('off ')
cbar1 = fig.colorbar(im1 , ax=ax[1], shrink =0.8, aspect =20)

cbar1.ax.yaxis.set_ticks_position('left ')
cbar1.ax.yaxis.set_label_position('left ')
cbar1.ax.tick_params(labelsize =15)

# Image 1

ax[2]. imshow(img1 , aspect='auto ')
ax[2]. set_title('Image 1')
ax[2]. axis('off ')

# Depth 1

im2 = ax[3]. imshow(depth1 , cmap='jet ', aspect='auto ')
ax[3]. set_title('Depth 1')
ax[3]. axis('off ')
cbar2 = fig.colorbar(im2 , ax=ax[3], shrink =0.8, aspect =20)

cbar2.ax.yaxis.set_ticks_position('left ')
cbar2.ax.yaxis.set_label_position('left ')
cbar2.ax.tick_params(labelsize =15)

plt.savefig(plot_name , bbox_inches='tight ', pad_inches =0)

plt.close()

if __name__ == "__main__ ":

scene_info = pkl.load(open('./data/scene_info /1589 _subset.pkl ', 'rb '))

for i_pair in range(len(scene_info )):

# print(scene_info[i_pair ].keys ())

# ['image0 ','image1 ','depth0 ', 'depth1 ', 'K0 ', 'K1', 'T0', 'T1 ', 'overlap_score ']
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# print(scene_info[i_pair]['image0 ']) # path to image0

# print(scene_info[i_pair]['image1 ']) # path to image1

# print(scene_info[i_pair]['depth0 ']) # path to depth0

# print(scene_info[i_pair]['depth1 ']) # path to depth1

# print(scene_info[i_pair]['K0 ']) # intrinsic matrix of camera 0 [3,3]

# print(scene_info[i_pair]['K1 ']) # intrinsic matrix of camera 1 [3,3]

# print(scene_info[i_pair]['T0 ']) # pose matrix of camera 0 [4,4]

# print(scene_info[i_pair]['T1 ']) # pose matrix of camera 1 [4,4]

# print('-------------------')

# read images

img0 = plt.imread(scene_info[i_pair]['image0 '])
img1 = plt.imread(scene_info[i_pair]['image1 '])

# read depth

with h5py.File(scene_info[i_pair]['depth0 '], 'r') as f:

depth0 = f['depth '][:]
with h5py.File(scene_info[i_pair]['depth1 '], 'r') as f:

depth1 = f['depth '][:]

# check shapes

h0 , w0 = img0.shape [:-1]

h1 , w1 = img1.shape [:-1]

assert img0.shape [:-1] == depth0.shape , f"depth and image shapes do not match: {img0}, {depth0 }"

assert img1.shape [:-1] == depth1.shape , f"depth and image shapes do not match: {img1}, {depth1 }"

# plot image and depth

plot_name = f'./ pics/image_and_depth_pair_{i_pair }.png '
plot_image_and_depth(img0 , depth0 , img1 , depth1 , plot_name)

#(1) make meshgrid of points in image 0

density = 20

x = np.linspace (10, img0.shape [1]-10, density)

#<Student code >

# meshgrid of x and y coordinates

y = np.linspace (10, img0.shape [0] - 10, density)

xx , yy = np.meshgrid(x, y)

# make homogeneous coordinates for points0 #[3, N]

# <Student code >

xxF , yyF = xx.flatten(), yy.flatten ()

points0 = np.vstack ((xxF , yyF , np.ones((xxF.shape [0] ,))))

#(2) get depth values at points0

"""

<Student code >

depth_values0 = ...

"""

depth_values0 = depth0[yyF.astype(int), xxF.astype(int)]

# remove points with depth 0 (invalid points)

valid_points = np.where(depth_values0 != 0)[0]

points0 = points0[:, valid_points]

depth_values0 = depth_values0[valid_points]

"""

<Student code >
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valid_points = ...

# mask points0 and depth_values0

"""

# (3) Find the 3D coordinates of these points in camera 0 frame

K0 = scene_info[i_pair]['K0 '] # [3,3]

T0 = scene_info[i_pair]['T0 '] # [4,4]

# inverse of K0

K0_inv = np.linalg.inv(K0)

# convert points0 to camera coordinates

xyz_cam0 = K0_inv @ points0

# normalize xyz_cam0 to set z = 1 (sanity check)

xyz_cam0 /= xyz_cam0 [2]

# get the point at depth

xyz_cam0 = xyz_cam0 * depth_values0

# make homogeneous coordinates [4,N]

xyz_cam0_hc = np.vstack ((xyz_cam0 , np.ones_like(xyz_cam0 [0])))

# convert to world frame [4,N]

xyz_world_hc = np.linalg.inv(T0) @ xyz_cam0_hc

# (4) Transform these points to camera 1 frame

T1 = scene_info[i_pair]['T1 ']
# <Student code >

# transform points to camera 1 frame

xyz_cam1_hc = T1 @ xyz_world_hc

# convert to camera 1 coordinates

xyz_cam1 = xyz_cam1_hc [:3] / xyz_cam1_hc [3]

# get z coordinates for depth check

estimated_depth_values1 = xyz_cam1 [2]

# project to image 1

# <Student code >

points1 = scene_info[i_pair]['K1 '] @ xyz_cam1

# normalize by dividing by last row

points1 = points1 / points1 [2]

# check if points1 are within image bounds

mask = (( points1 [0] > 0) & (points1 [0] < w1)) & (( points1 [1] > 0) & (points1 [1] < h1))

points1 = points1[:, mask]

# get the depth values at these points using the depth map

true_depth_values1 = estimated_depth_values1[mask]

true_depth_values1 = depth1[points1 [1]. astype(int), points1 [0]. astype(int)]

# (5) plot matching points in image 0 and image 1 with depth check such that the depth values match

fig , ax = plt.subplots(1, 1, figsize =(10, 5))

# Horizontally stack the images

combined_img = np.ones((max(img0.shape[0], img1.shape [0]), img0.shape [1] + img1.shape[1], 3), dtype=np.uint8) * 255

combined_img [:img0.shape[0], :img0.shape [1]] = img0

combined_img [:img1.shape[0], img0.shape [1]:] = img1

ax.imshow(combined_img , aspect='auto ')
ax.scatter(xx , yy , c='r', s=5)

ax.set_title('Matching points in Image 0 and Image 1')
ax.axis('off ')

# draw lines between matching points
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for i in range(points1.shape [1]):

# if depth values match

if np.abs(estimated_depth_values1[i] - true_depth_values1[i]) < DEPTH_THR and true_depth_values1[i] != 0:

ax.plot([ points0[0,i], points1[0, i] + img0.shape [1]], [points0[1,i], points1[1, i]], 'g')

plt.savefig(f'./ pics/depth_check_pair_{i_pair }.png ', bbox_inches='tight ', pad_inches =0)

plt.close()

print(f"Done with pair {i_pair }")

# (6) Plot all 3D points for the pair

"""

<Student code >

...

"""

plt.figure ()

ax = plt.axes(projection ='3d')
ax.scatter(xyz_world_hc [0], xyz_world_hc [1], xyz_world_hc [2], c='r', s=5)

ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.set_title('World frame Points ')
plt.savefig(f'./ pics/world_frame_points{i_pair }.png ', bbox_inches='tight ', pad_inches =0)
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