

Homework 8

Alexandre Olivé Pellicer
aolivepe@purdue.edu

1 Theory Questions

1.1 Question 1

Why is the following theoretical observation fundamental to Zhang's algorithm for camera calibration?

The observation that the calibration pattern samples the Absolute Conic Ω_∞ at two Circular Points is fundamental to Zhang's algorithm because it allows the extraction of intrinsic camera parameters. The images of these two points fall on the conic ω (the camera image of the Absolute Conic Ω_∞) in the camera image plane. Each of these two points must obey the conic constraint $\mathbf{x}^T \omega \mathbf{x} = 0$. When plugging the coordinates of the two image points in the conic constraint equations, we get $\mathbf{h}_1^T \omega \mathbf{h}_1 = \mathbf{h}_2^T \omega \mathbf{h}_2$ and $\mathbf{h}_1^T \omega \mathbf{h}_2 = 0$. Therefore, given \mathbf{h}_1 and \mathbf{h}_2 for several positions of the camera, we can estimate ω and from there estimating \mathbf{K} , the intrinsic camera parameters. Furthermore, the Absolute Conic Ω_∞ exists independently of the camera's orientation or position. Its Circular Points are invariant under Euclidean transformations, making them essential for calibration.

To sum up, in Zhang's algorithm, this property is used to compute the homography between the camera image plane and the calibration plane. By leveraging the relationship between Ω_∞ and the homography, intrinsic parameters of the camera, such as focal length and principal point, can be derived without knowing the exact 3D coordinates of the pattern, only requiring its 2D structure.

1.2 Question 2

How would you derive the algebraic form of ω from Ω_∞ ?

The image of the Absolute Conic Ω_∞ on the camera plane is denoted as ω . We can derive its algebraic form doing:

$$\omega = \mathbf{K}^{-T} \Omega_\infty \mathbf{K}^{-1} = \mathbf{K}^{-T} \mathbf{K}^{-1}$$

where:

- Ω_∞ is the 3×3 identity matrix
- ω is the projection of the Absolute Conic in 3D space (Ω_∞) onto the camera image plane.
- \mathbf{K} is the camera's intrinsic matrix that maps points from the world coordinates to the camera image plane. (More explanation about this matrix is added later in the report)

This would be a long version of the answer following the notes from Lecture 20:

The Absolute Conic Ω_∞ is defined by the direction vectors \mathbf{x}_d that obey $\mathbf{x}_d^T I_{3 \times 3} \mathbf{x}_d = 0$. We know that under a homography H^d , a conic C transforms as $C' = H^{-T} C H^{-1}$. Since the image formation from the direction vectors \mathbf{x}_d to the pixels \mathbf{x} is the homography $H = KR$, ω is given by:

$$\begin{aligned} \omega &= H^{-T} \Omega_\infty H^{-1} = H^{-T} I_{3 \times 3} H^{-1} = (KR)^{-T} (KR)^{-1} \\ &= ((KR)^T)^{-1} (KR)^{-1} = (R^T K^T)^{-1} (KR)^{-1} \\ &= K^{-T} R^{-T} R^{-1} K^{-1} = K^{-T} (R R^{-T})^{-1} K^{-1} \\ &= K^{-T} K^{-1} \end{aligned} \tag{1}$$

The actual pixels on the image conic ω would be $\mathbf{x}^T \omega \mathbf{x} = 0$.

Can you prove that ω does not contain any real pixel locations?

Any point \mathbf{x} in the conic must satisfy $\mathbf{x}^T \omega \mathbf{x} = 0$. Since ω is derived from the expression $\omega = \mathbf{K}^{-T} \Omega_\infty \mathbf{K}^{-1}$, ω is positive definite.

For any real point \mathbf{x} , the equation $\mathbf{x}^T \omega \mathbf{x} = 0$ can only have imaginary solutions because ω is positive definite, meaning it cannot be zero for any real-valued vector \mathbf{x} . Thus, ω does not intersect with the real image plane and does not correspond to any actual pixel locations. Therefore, ω does not contain any real pixel locations. This is a critical theoretical result because it shows that while ω is not directly observable in real images, its properties can still be used to estimate the camera's intrinsic parameters through multiple views of the calibration pattern.

2 Implementation Details

2.1 Corner Detection

The steps described in this section are applied in all the images of the dataset. This is the preprocessing of the input images that we do in order to obtain the corners of each of the squares of the calibration pattern:

- **Canny Edge Detection:** First we convert the input image to gray scale and use the cv2.Canny() function from OpenCV to get the edges of the black squares of the calibration pattern. We experimentally found out that the parameters that performed better were when using as minimum threshold 300 and maximum threshold 400
- **Hough Transform:** We use the cv2.HoughLines() function from OpenCV to get the vertical and horizontal lines that compose the calibration pattern. We set the threshold parameter to 50. Since the Canny edge detector approach is not perfect at pixel level, after using the Hough Transform to get the lines, we will get multiple lines for each border of the squares. This is not the desired behavior since there is only one true line per side. Therefore, we implement an approach to group lines that should correspond to a unique true line and get the final line from that group as the average. We first separate vertical and horizontal. We classify a line as horizontal or as vertical depending on the value of θ given by the Hough Transform. The lines corresponding to the same group will have a similar ρ which is given by the Hough Transform. Therefore, we group vertical and horizontal lines according to how similar is their ρ . Finally, we average the grouped lines to get a final true line. We end up getting 10 horizontal true lines and 8 vertical true lines.
- **Corner Correspondences:** We get the corners of the calibration pattern as the intersection between horizontal and vertical lines. Therefore, we will get 80 intersections, 4 corners for each of the 20 squares of the pattern. In order to generate the world coordinates, we consider that the calibration pattern is in the $Z = 0$ plane, the first corner is at $(0, 0)$ and that the distance between corners is 10.

2.2 Zhang's Algorithm

In this homework we have used Zhang's algorithm for camera calibration. We have assumed that we have been using a pin-hole camera (i.e. we will estimate all the 5 intrinsic parameters and the 6 extrinsic parameters that determine the position and orientation of the camera with respect to a reference world coordinate system). In this section we do an explanation of this algorithm.

We use the calibration pattern provided in the instructions. It is assumed to be in the $Z = 0$ plane of the world frame. The homogeneous representation of a pixel coordinates $\mathbf{x} = (x, y, w)^T$ and the homogeneous representation of the corresponding world coordinates $\mathbf{x}_M = (x, y, z, w)$ are related by the following equation

$$\mathbf{x} = K [R|t] \begin{bmatrix} x \\ y \\ 0 \\ w \end{bmatrix} = H \mathbf{x}_M \quad (2)$$

where:

- K is the camera intrinsic parameter
- R is the world-to-camera rotation matrix
- t is the world-to-camera translation vector
- H is the homography
- $\mathbf{x}_M = [x, y, w]^T$

Note that the homography H is estimated using the corners estimated from the corner detection approach that we have used in this homework explained in the previous section. We can write homography H as $H = [\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3]$

The image of the Absolute Conic Ω_∞ is given by $\omega = K^{-T}K^{-1}$. And the two circular points on the image conic ω give us two equations

$$\mathbf{h}_1^T \omega \mathbf{h}_1 = \mathbf{h}_2^T \omega \mathbf{h}_2 \quad (3)$$

$$\mathbf{h}_1^T \omega \mathbf{h}_2 = 0 \quad (4)$$

ω is a 3×3 symmetric matrix which can be written as:

$$\omega = \begin{bmatrix} \omega_{11} & \omega_{12} & \omega_{13} \\ \omega_{12} & \omega_{22} & \omega_{23} \\ \omega_{13} & \omega_{23} & \omega_{33} \end{bmatrix}, \quad (5)$$

See that there are only 6 unknowns in ω .

Given N images of the calibration pattern from different angles, we can calculate the set of homographies that relates the world coordinates with the coordinates of the calibration pattern of each of the images taken from different angles and positions. We end up getting N homographies that they are obtained using Singular Value Decomposition taking the right column vector of V .

Given an homography H :

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \quad (6)$$

we can rewrite Equations 3 and 4 as:

$$\begin{bmatrix} h_{11}^2 - h_{12}^2 \\ 2h_{11}h_{21} - 2h_{12}h_{22} \\ 2h_{11}h_{31} - 2h_{12}h_{32} \\ h_{21}^2 - h_{22}^2 \\ 2h_{21}h_{31} - 2h_{22}h_{32} \\ h_{31}^2 - h_{32}^2 \end{bmatrix}^T \begin{bmatrix} w_{11} \\ w_{12} \\ w_{13} \\ w_{22} \\ w_{23} \\ w_{33} \end{bmatrix} = 0 \quad (7)$$

$$\begin{bmatrix} h_{11}h_{12} \\ h_{11}h_{22} + h_{12}h_{21} \\ h_{11}h_{32} + h_{12}h_{31} \\ h_{21}h_{22} \\ h_{21}h_{32} + h_{22}h_{31} \\ h_{31}h_{32} \end{bmatrix}^T \begin{bmatrix} w_{11} \\ w_{12} \\ w_{13} \\ w_{22} \\ w_{23} \\ w_{33} \end{bmatrix} = 0 \quad (8)$$

Using SVD, we can solve this set of homogeneous equations and end up getting ω .

2.3 Estimating the intrinsic parameters of the camera

The intrinsic parameters of the camera are contained in the matrix K which can be written as:

$$K = \begin{bmatrix} \alpha_x & s & x_0 \\ 0 & \alpha_y & y_0 \\ 0 & 0 & 1 \end{bmatrix} \quad (9)$$

Each of these intrinsic parameters can be calculated as:

$$y_0 = \frac{-w_{11}w_{23} + w_{12}w_{13}}{w_{11}w_{22} - w_{12}^2} \quad (10)$$

$$\lambda = w_{33} - \frac{w_{13}^2 + y_0(-w_{11}w_{23} + w_{12}w_{13})}{w_{11}} \quad (11)$$

$$a_x = \sqrt{\frac{\lambda}{w_{11}}} \quad (12)$$

$$a_y = \sqrt{\frac{\lambda w_{11}}{w_{11}w_{22} - w_{12}^2}} \quad (13)$$

$$s = \frac{a_x^2 a_y w_{12}}{\lambda} \quad (14)$$

$$x_0 = \frac{-a_x^2 w_{13}}{\lambda} + \frac{s y_0}{a_y} \quad (15)$$

2.4 Estimating the extrinsic parameters of the camera

R and t are the extrinsic parameters.

Given an homography $H = [\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3]$ we can estimate $R = [\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3]$ and t as follows (ξ is a scale factor):

$$\xi = \frac{1}{\|K^{-1}h_1\|} \quad (16)$$

$$\mathbf{r}_1 = \xi K^{-1}h_1 \quad (17)$$

$$\mathbf{r}_2 = \xi K^{-1}h_2 \quad (18)$$

$$\mathbf{r}_3 = \mathbf{r}_1 \times \mathbf{r}_2 \quad (19)$$

$$t = \xi K^{-1}h_3 \quad (20)$$

To ensure that R is orthogonal, we perform SVD such that $R = UDV^T$, and then redefine R as $R = UV^T$.

2.5 Refining the Calibration Parameters

The estimations K , R and t will give us some good result. Nevertheless, this result can be improved by refining K , R and t using a non-linear least squares optimization approach.

We project the points from world coordinates to image coordinates using the actual K , R and t for different images. We compute the Euclidean distance between the projected points and the actual points. We sum all the distances. This is the cost function that we use for the non-linear least squares optimization approach. We can write the cost function as:

$$d^2 = \sum_i \sum_j \|x_{ij} - \hat{x}_{ij}\|^2 = \sum_i \sum_j \|x_{ij} - K [r_{i1} \ r_{i2} \ t_i] x_{ij}\|^2 \quad (21)$$

where:

- x_{ij} is each of the actual points
- \hat{x}_{ij} is each of the projected points

Before applying the LM optimization algorithm, it is important to modify the representation of the rotation matrix R . Following the theory from Lecture 21, in any optimization algorithm, the number of variables used to represent an entity must equal the DoF of the entity. The rotation matrix has 9 elements but only 3 degrees of freedom (DoF). We need a 3-parameter representation of the rotation matrix. We use the Rodrigues Representation in which a rotation in 3D is expressed as a vector $\tilde{\mathbf{w}}$, which is computed as:

$$\tilde{\mathbf{w}} = \frac{\varphi}{2 \sin \varphi} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix} \quad (22)$$

where

$$\varphi = \cos^{-1} \left(\frac{\text{trace}(R) - 1}{2} \right) \quad (23)$$

In order to go from $\tilde{\mathbf{w}}$ back to R we can do the following operations:

$$W = \begin{bmatrix} 0 & -w_3 & w_2 \\ w_3 & 0 & -w_1 \\ -w_2 & w_1 & 0 \end{bmatrix} \quad (24)$$

$$R = e^W = I_{3 \times 3} + \frac{\sin \varphi}{\varphi} W + \frac{1 - \cos \varphi}{\varphi^2} W^2 \quad (25)$$

where $\varphi = \|\mathbf{w}\|$.

2.6 Radial Distortion (Extra Credit)

In practical applications, real-world cameras often exhibit a phenomenon known as radial distortion, where straight lines in the scene appear curved in the captured image. This effect arises due to the inherent imperfections in the lens design, which cause light rays to deviate from their ideal pinhole model trajectory as they pass through the lens. This distortion can be corrected using:

$$\hat{x}_{\text{rad}} = \hat{x} + (\hat{x} - x_0) (k_1 r^2 + k_2 r^4) \quad (26)$$

$$\hat{y}_{\text{rad}} = \hat{y} + (\hat{y} - y_0) (k_1 r^2 + k_2 r^4) \quad (27)$$

where:

- (\hat{x}, \hat{y}) are the projected pixel coordinates before radial distortion correction
- $(\hat{x}_{\text{rad}}, \hat{y}_{\text{rad}})$ are the projected pixel coordinates after radial distortion correction

Note that the values of k_1 and k_2 are calculated using the LM algorithm.

The parameters k_1 and k_2 , which characterize the radial distortion, are refined together with K , R and t also following the approach explained in Section 2.5.

2.7 Creating Our Dataset

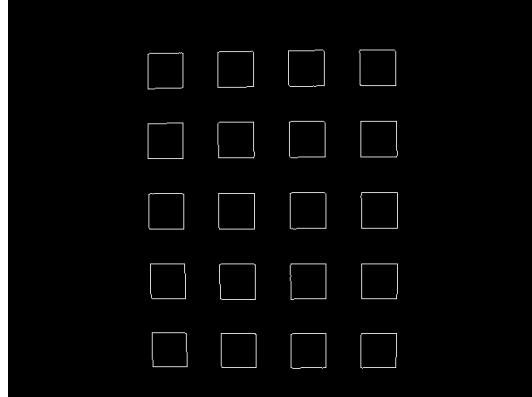
We have built a dataset with a total of 21 images of the calibration pattern provided in the instructions which was printed. We have used an iPhone 12. The focal length was set to 26 mm. The distance between the camera and the "Fixed Image" was 32.4 cm approximately. With a ruler we measure that the side of the squares is 2.2 cm. We have set this distance to be 10 in digital. Therefore, the digital distance from the center of projection to the "Fixed Image" in digital would be:

$$\frac{(2.6 + 32.4)10}{2.2} = 159.1 \quad (28)$$

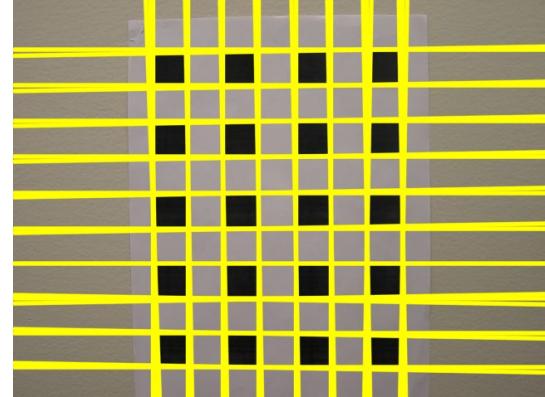
3 Obtained results

3.1 Given Dataset

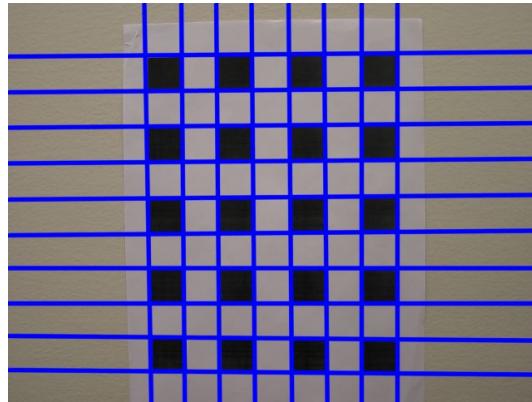
Figure 1 and 2 show the 4 images resulting from the preprocessing of the images in the dataset. It contains the edges after using the Canny edge detector, the multiple lines resulting from the Hough Transform, the final selected lines and the final intersection points.



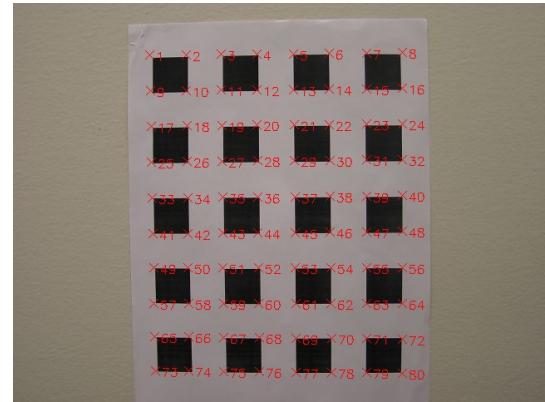
(a) Edges after using the Canny edge detector



(b) Lines resulting from the Hough Transform

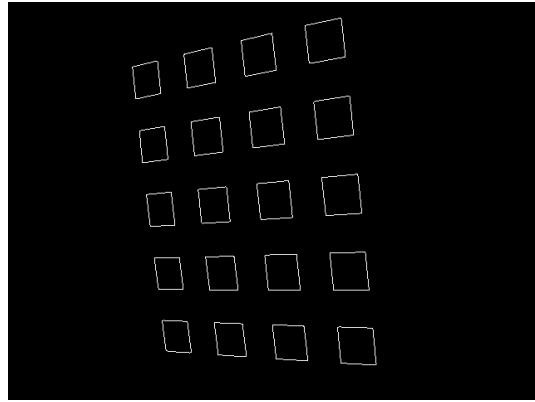


(c) Final selected lines

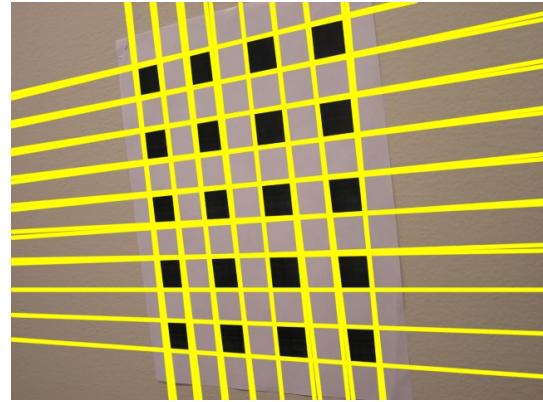


(d) Final intersection points

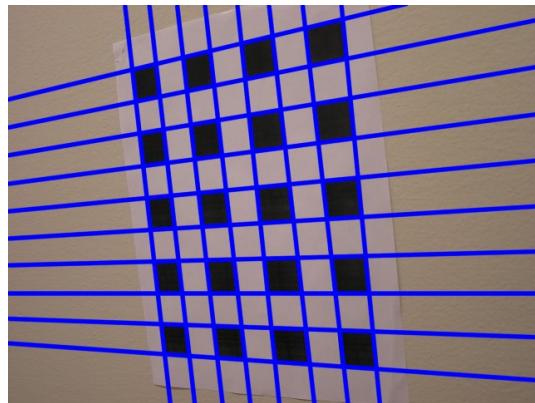
Figure 1: Preprocessing of image 4 from the given dataset.



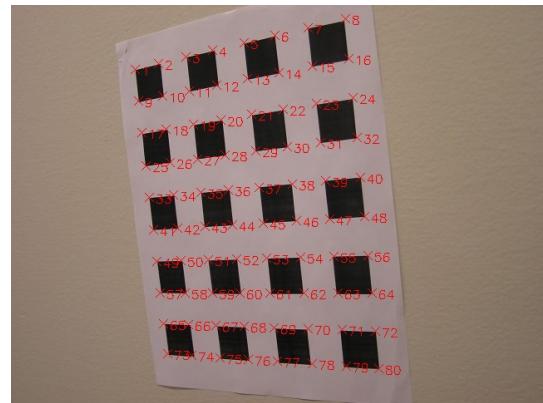
(a) Edges after using the Canny edge detector



(b) Lines resulting from the Hough Transform



(c) Final selected lines



(d) Final intersection points

Figure 2: Preprocessing of image 10 from the given dataset.

Figures 3 and 4 show the projection results at the beginning and after the refinements. See that reprojected corners are printed in green color. Red corners correspond to ground truth corners. Reprojected corners are drawn above ground truth corners. Therefore, not seeing the ground truth corner means almost perfect reprojection.

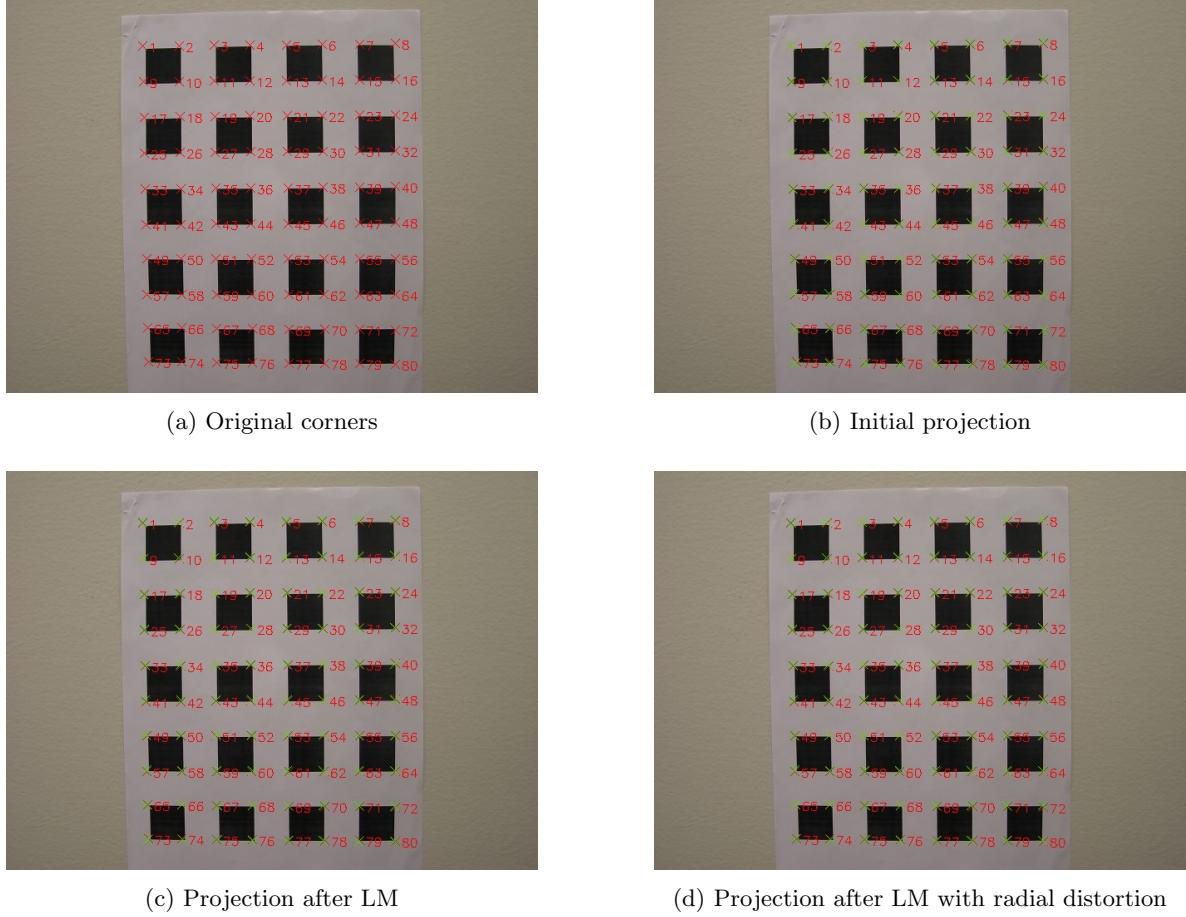


Figure 3: Comparison of the projection of the world coordinates onto the pattern from image 4 in the given dataset

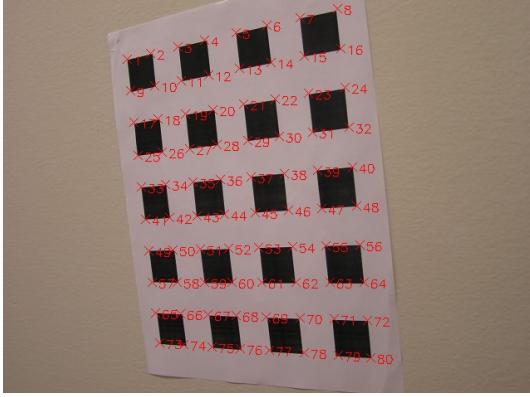
These are the camera matrix, rotation matrix and translation matrix at the beginning and after the refinements:

$$K_{init} = \begin{bmatrix} 717.46 & 0.58 & 317.77 \\ 0 & 714.16 & 237.40 \\ 0 & 0 & 1 \end{bmatrix} \quad K_{LM} = \begin{bmatrix} 722.42 & 1.73 & 321.43 \\ 0 & 719.71 & 238.28 \\ 0 & 0 & 1 \end{bmatrix} \quad K_{radial} = \begin{bmatrix} 728.05 & 1.72 & 319.50 \\ 0 & 725.66 & 238.89 \\ 0 & 0 & 1 \end{bmatrix} \quad (29)$$

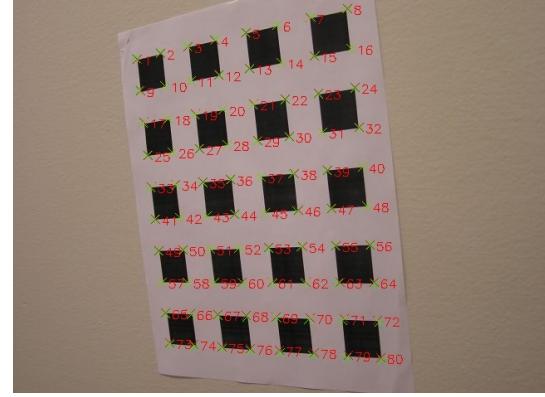
$$R_{init} = \begin{bmatrix} 0.999 & 0.006 & 0.041 \\ -0.004 & 0.999 & -0.035 \\ -0.041 & 0.035 & 0.998 \end{bmatrix} \quad R_{LM} = \begin{bmatrix} 0.999 & 0.005 & 0.037 \\ -0.003 & 0.999 & -0.038 \\ -0.037 & 0.038 & 0.998 \end{bmatrix} \quad R_{radial} = \begin{bmatrix} 0.999 & 0.005 & 0.037 \\ -0.004 & 0.999 & -0.034 \\ -0.037 & 0.034 & 0.998 \end{bmatrix} \quad (30)$$

$$t_{init} = [-35.57 \quad -40.76 \quad 166.52] \quad t_{LM} = [-36.36 \quad -41.12 \quad 167.82] \quad t_{radial} = [-35.91 \quad -41.27 \quad 168.08] \quad (31)$$

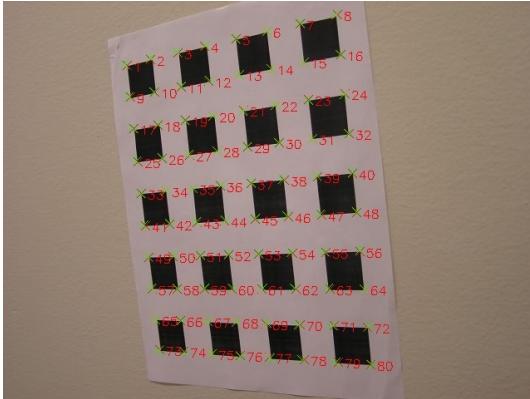
$$k_1 = -2.939e-7 \quad k_2 = 1.912e-12 \quad (32)$$



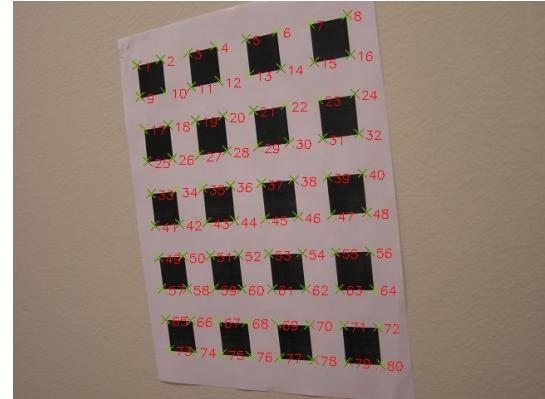
(a) Original corners



(b) Initial projection



(c) Projection after LM



(d) Projection after LM with radial distortion

Figure 4: Comparison of the projection of the world coordinates onto the pattern from image 10 in the given dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after the refinements (matrices K_s are the same as stated for image 4):

$$R_{init} = \begin{bmatrix} 0.868 & 0.106 & 0.484 \\ -0.069 & 0.993 & -0.094 \\ -0.491 & 0.048 & 0.869 \end{bmatrix} R_{LM} = \begin{bmatrix} 0.874 & 0.105 & 0.474 \\ -0.069 & 0.993 & -0.091 \\ -0.480 & 0.047 & 0.875 \end{bmatrix} R_{radial} = \begin{bmatrix} 0.872 & 0.105 & 0.476 \\ -0.069 & 0.993 & -0.093 \\ -0.482 & 0.048 & 0.874 \end{bmatrix} \quad (33)$$

$$t_{init} = [-43.432 \quad -41.090 \quad 182.717] \quad t_{LM} = [-44.486 \quad -41.589 \quad 184.471] \quad t_{radial} = [-44.004 \quad -41.746 \quad 184.640] \quad (34)$$

$$k_1 = -2.939e - 7 \quad k_2 = 1.912e - 12 \quad (35)$$

Table 1 shows the quantitative evaluation of the projection error

Metric	Image 4	Image 10
Initial error mean	1.01774	1.5646
Initial error variance	0.3092	0.7657
Error mean after LM	0.8693	1.0625
Error variance after LM	0.1785	0.2874
Error mean after LM + radial	0.7890	0.9558
Error variance after LM + radial	0.1652	0.2662

Table 1: Error mean and variance for images 4 and 10 of the given dataset

Figure 5 shows the camera poses that has been used in order to create the given dataset in the instructions. The black box simulates the position of the calibration pattern.

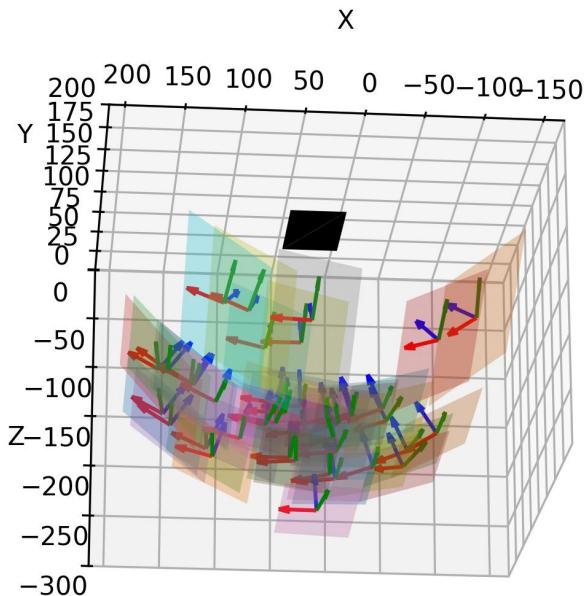
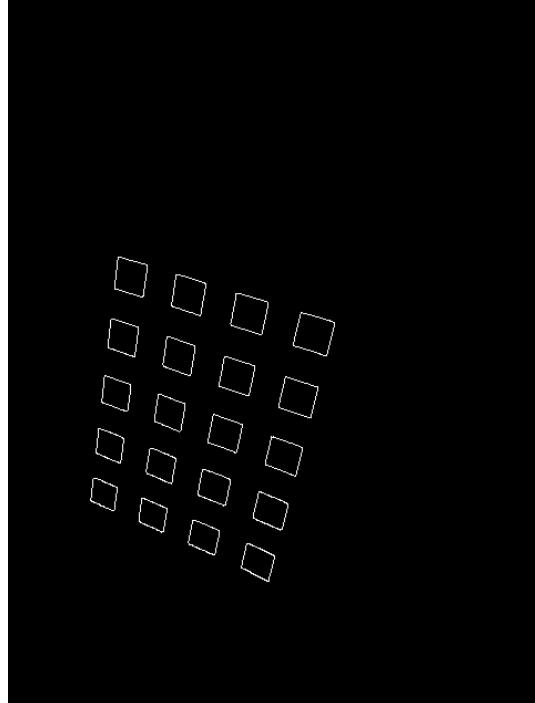


Figure 5: Camera poses to create the images of the calibration pattern in the given dataset

3.2 My own Dataset

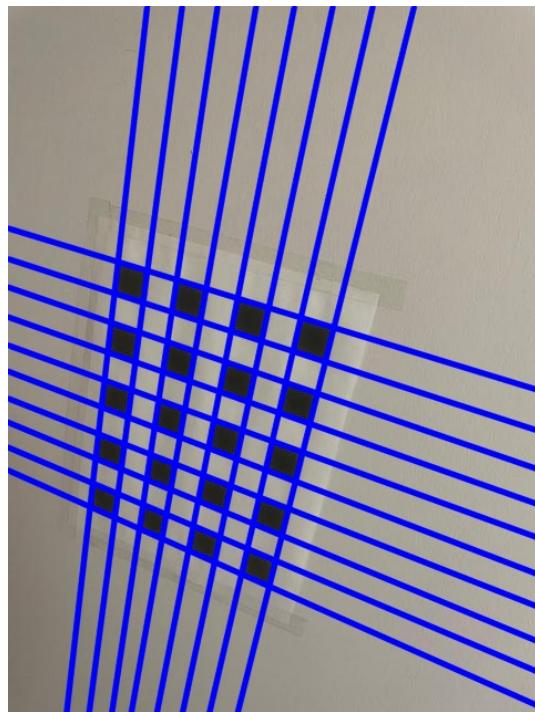
Figure 6 and 7 show the 4 images resulting from the preprocessing of the images in the dataset. It contains the edges after using the Canny edge detector, the multiple lines resulting from the Hough Transform, the final selected lines and the final intersection points.



(a) Edges after using the Canny edge detector



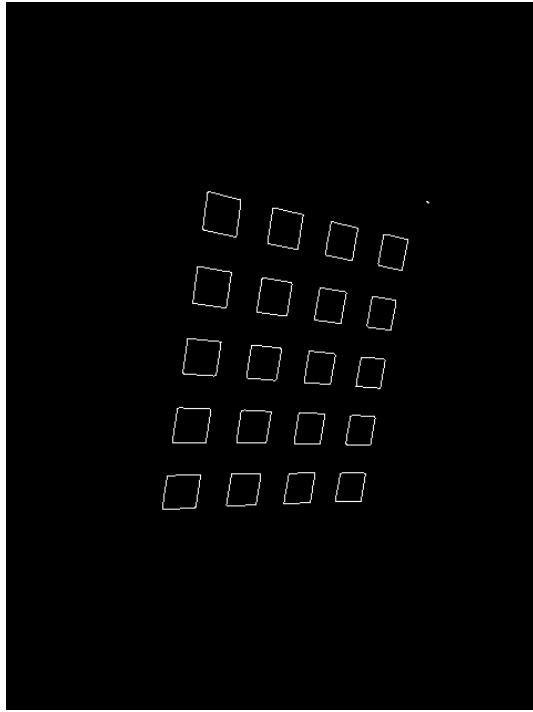
(b) Lines resulting from the Hough Transform



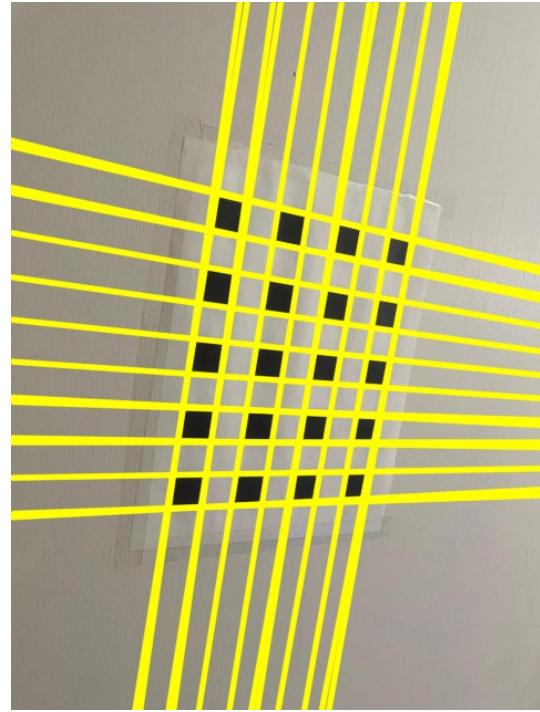
(c) Final selected lines

(d) Final intersection points

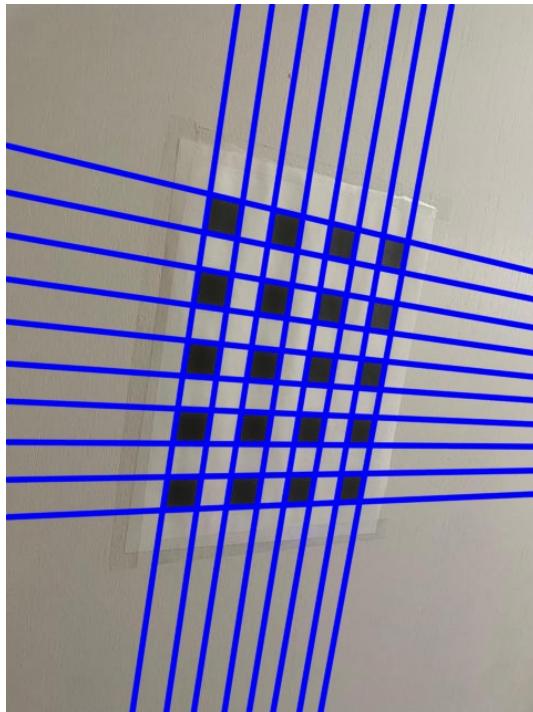
Figure 6: Preprocessing of image 4 from my dataset.



(a) Edges after using the Canny edge detector



(b) Lines resulting from the Hough Transform



(c) Final selected lines

(d) Final intersection points

Figure 7: Preprocessing of image 10 from my dataset.

Figures 8 and 9 show the projection results at the beginning and after the refinements. See that reprojected corners are printed in green color. Red corners correspond to ground truth corners. Reprojected corners are drawn above ground truth corners. Therefore, not seeing the ground truth corner means almost perfect reprojection.

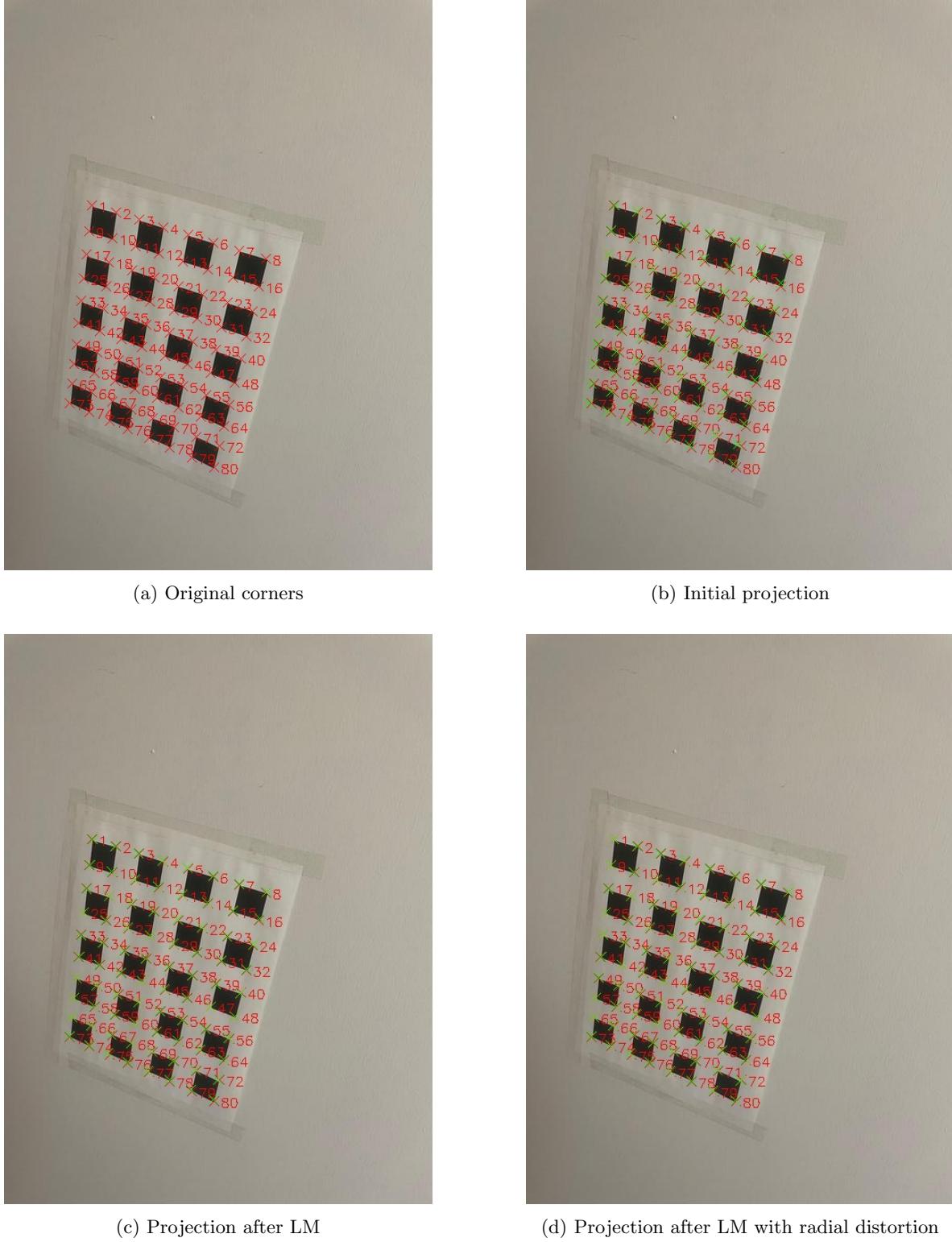


Figure 8: Comparison of the projection of the world coordinates onto the pattern from image 4 in my dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after the refinements:

$$K_{init} = \begin{bmatrix} 489.356 & -0.433 & 238.076 \\ 0 & 493.202 & 316.913 \\ 0 & 0 & 1 \end{bmatrix} K_{LM} = \begin{bmatrix} 492.779 & -0.253 & 239.687 \\ 0 & 496.544 & 317.690 \\ 0 & 0 & 1 \end{bmatrix} K_{radial} = \begin{bmatrix} 478.630 & -0.240 & 238.052 \\ 0 & 481.911 & 318.075 \\ 0 & 0 & 1 \end{bmatrix} \quad (36)$$

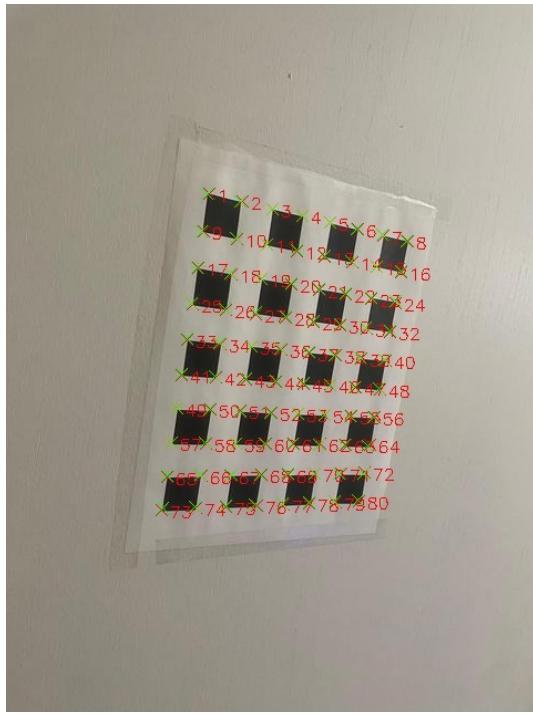
$$R_{init} = \begin{bmatrix} 0.928 & -0.215 & 0.302 \\ 0.292 & 0.926 & -0.237 \\ -0.229 & 0.309 & 0.923 \end{bmatrix} R_{LM} = \begin{bmatrix} 0.921 & -0.207 & 0.329 \\ 0.297 & 0.920 & -0.253 \\ -0.250 & 0.331 & 0.909 \end{bmatrix} R_{radial} = \begin{bmatrix} 0.920 & -0.205 & 0.332 \\ 0.298 & 0.919 & -0.256 \\ -0.253 & 0.335 & 0.907 \end{bmatrix} \quad (37)$$

$$t_{init} = [-47.68 \quad -29.517 \quad 168.201] \quad t_{LM} = [-47.803 \quad -29.392 \quad 167.734] \quad t_{radial} = [-47.266 \quad -29.508 \quad 164.223] \quad (38)$$

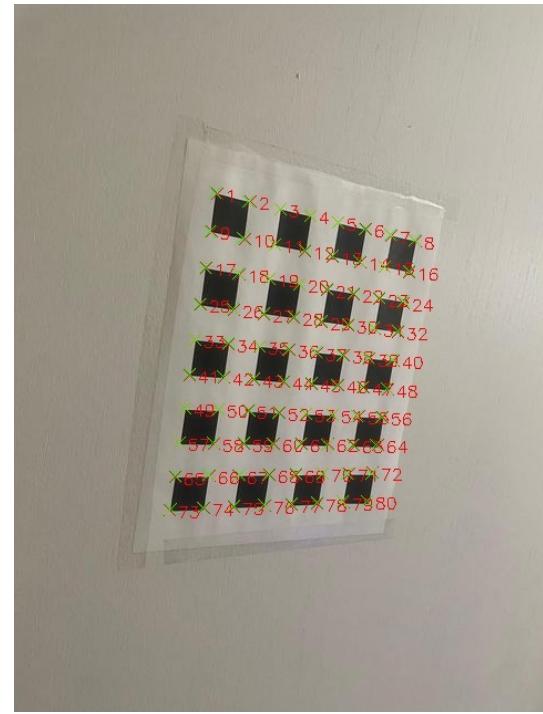
$$k_1 = 6.267e-7 \quad k_2 = -6.473e-12 \quad (39)$$

(a) Original corners

(b) Initial projection



(c) Projection after LM



(d) Projection after LM with radial distortion

Figure 9: Comparison of the projection of the world coordinates onto the pattern from image 10 in my dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after the refinements (matrices K_s and coefficients k_1 and k_2 are the same as stated for image 4):

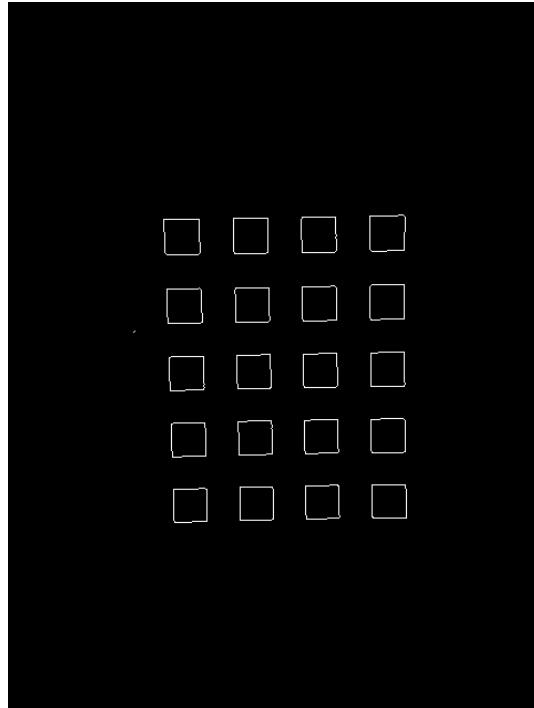
$$R_{init} = \begin{bmatrix} 0.885 & -0.156 & -0.436 \\ 0.088 & 0.981 & -0.170 \\ 0.455 & 0.112 & 0.883 \end{bmatrix} R_{LM} = \begin{bmatrix} 0.886 & -0.158 & -0.433 \\ 0.087 & 0.980 & -0.178 \\ 0.453 & 0.120 & 0.883 \end{bmatrix} R_{radial} = \begin{bmatrix} 0.889 & -0.158 & -0.429 \\ 0.087 & 0.979 & -0.179 \\ 0.449 & 0.121 & 0.885 \end{bmatrix} \quad (40)$$

$$t_{init} = [-17.015 \quad -43.290 \quad 147.223] \quad t_{LM} = [-17.543 \quad -43.748 \quad 148.756] \quad t_{radial} = [-17.038 \quad -43.870 \quad 145.225] \quad (41)$$

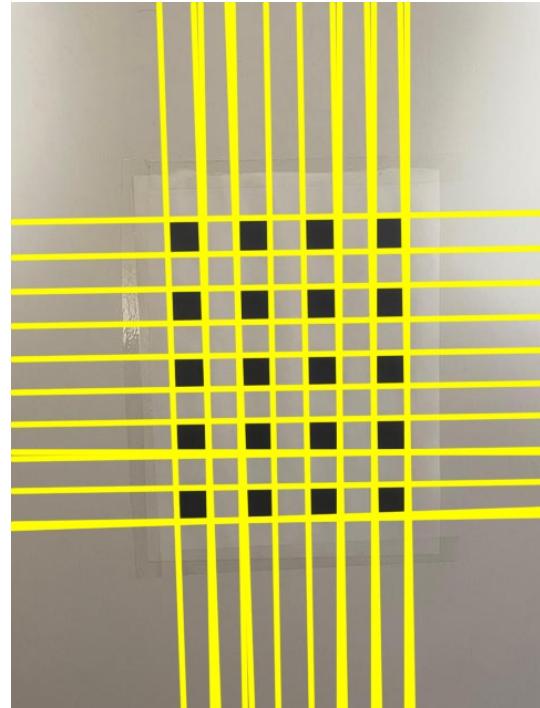
$$k_1 = 6.267e-7 \quad k_2 = -6.473e-12 \quad (42)$$

Finally, we also show the performance with the "Fixed Image" so that we can validate the obtained results with the metrics calculated in Section 2.7

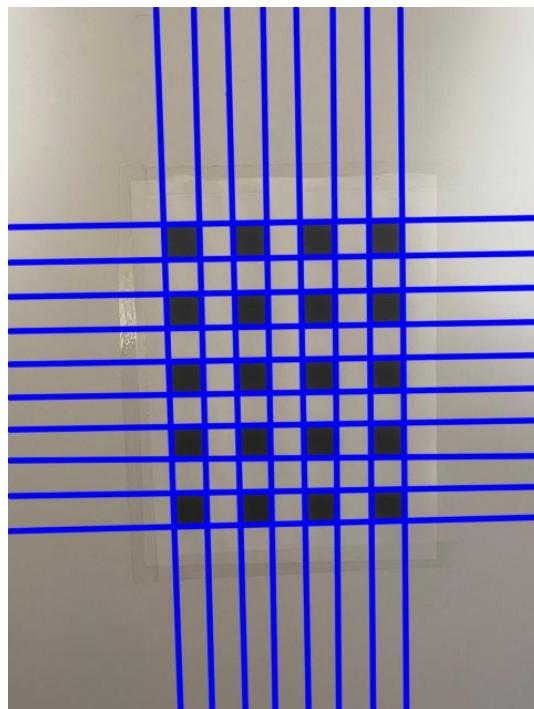
Figure 10 shows the 4 images resulting from the preprocessing of the Fixed Image in the dataset. It contains the edges after using the Canny edge detector, the multiple lines resulting from the Hough Transform, the final selected lines and the final intersection points.



(a) Edges after using the Canny edge detector



(b) Lines resulting from the Hough Transform



(c) Final selected lines

(d) Final intersection points

Figure 10: Preprocessing of Fixed Image from my dataset.

Figure 11 shows the projection results at the beginning and after the refinements. See that reprojected corners are printed in green color. Red corners correspond to ground truth corners. Reprojected corners are drawn above ground truth corners. Therefore, not seeing the ground truth corner means almost perfect reprojection.

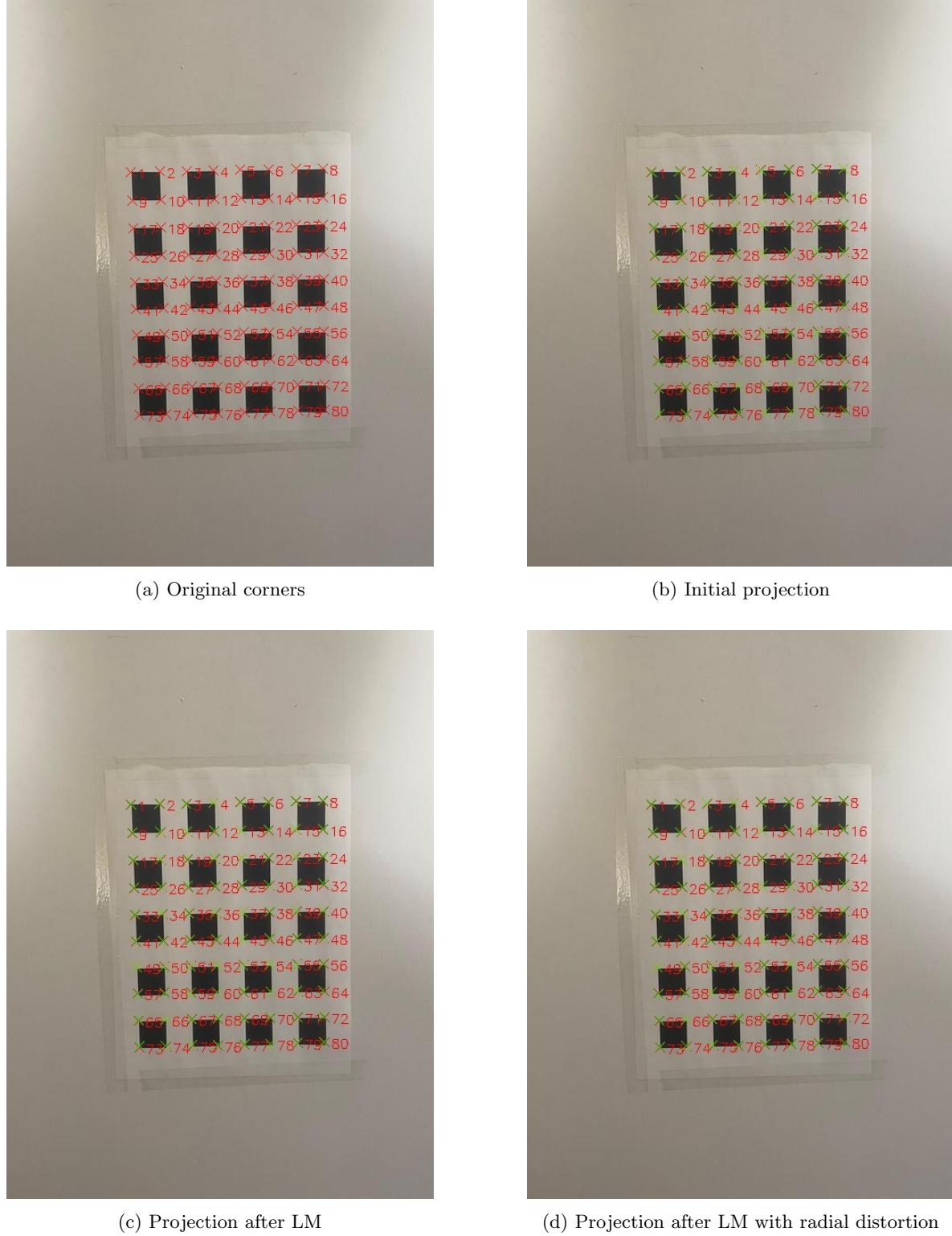


Figure 11: Comparison of the projection of the world coordinates onto Fixed Image in my dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after

the refinements (matrices K_s and coefficients k_1 and k_2 are the same as stated for image 4):

$$R_{init} = \begin{bmatrix} 0.999 & 0.020 & 0.003 \\ -0.019 & 0.997 & -0.065 \\ -0.004 & 0.065 & 0.997 \end{bmatrix} R_{LM} = \begin{bmatrix} 0.999 & 0.020 & 0.004 \\ -0.019 & 0.997 & -0.069 \\ -0.005 & 0.069 & 0.997 \end{bmatrix} R_{radial} = \begin{bmatrix} 0.999 & 0.019 & -0.0009 \\ -0.019 & 0.997 & -0.072 \\ -0.0005 & 0.072 & 0.997 \end{bmatrix} \quad (43)$$

$$t_{init} = [-31.899 \quad -38.917 \quad 159.520] \quad t_{LM} = [-32.392 \quad -39.276 \quad 160.829] \quad t_{radial} = [-31.819 \quad -39.389 \quad 157.063] \quad (44)$$

$$k_1 = 6.267e - 7 \quad k_2 = -6.473e - 12 \quad (45)$$

Table 2 shows the quantitative evaluation of the projection error

Metric	Image 4	Image 10	Fixed Image
Initial error mean	2.1072	1.2747	0.8405
Initial error variance	0.8061	0.3647	0.2528
Error mean after LM	0.7849	0.7801	0.7452
Error variance after LM	0.1935	0.1366	0.1353
Error mean after LM + radial	0.6531	0.7128	0.6620
Error variance after LM + radial	0.1417	0.1251	0.1281

Table 2: Error mean and variance for images 4 and 10 and Fixed Image of my dataset

Figure 12 shows the camera poses that have been used in order to create my dataset. The black box simulates the position of the calibration pattern.

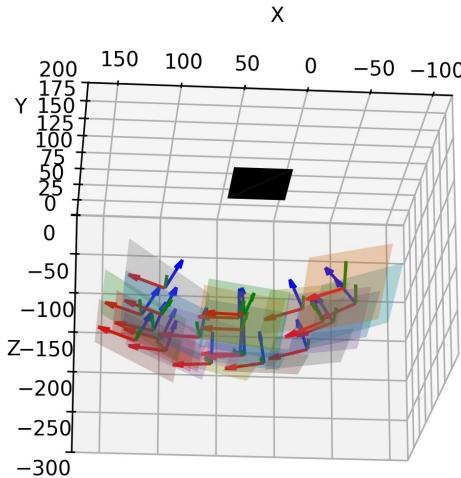


Figure 12: Camera poses to create the images of the calibration pattern in the given dataset

4 Observations

For both, the given dataset and the dataset that we have created we see the same behavior. When reprojecting the corners from the world coordinates onto the selected images we can qualitatively see that the error is reduced after refining the parameters using the LM optimization algorithm and it is even more reduced after incorporating the radial distortion parameters from the "Extra Credit" section of the instructions. This is the desired behavior. Since it is difficult to perceive this improvement visually, we have also shown in tables how the mean and variance error of the reprojection is reduced after refining and even more reduced when refining using the radial distortion parameters. Thus, these quantitative metrics support our qualitative evaluation.

Finally, for the "Fixed Image" in the dataset that we have created, we can also see how the 3rd component of the translation vector t is very close to the digital distance that we computed in Section 2.7: 159.1. This can serve as a confirmation that our implementation of the tasks asked in this assignment were correctly accomplished.

5 Code

```
1 import matplotlib.pyplot as plt
2 import numpy as np
3 import math
4 import cv2
5 from scipy.optimize import least_squares
6 import os
7 from scipy.stats import gmean
8
9 # function to find the intersection of 2 lines given 2 points to define each
10 # line
11 def find_intersection(hline, vline):
12     x1, y1 = hline[0][0], hline[0][1]
13     x2, y2 = hline[1][0], hline[1][1]
14     x3, y3 = vline[0][0], vline[0][1]
15     x4, y4 = vline[1][0], vline[1][1]
16
17     # Create first line
18     A1 = y2 - y1
19     B1 = x1 - x2
20     C1 = A1 * x1 + B1 * y1
21
22     # Create second line
23     A2 = y4 - y3
24     B2 = x3 - x4
25     C2 = A2 * x3 + B2 * y3
26
27     # Find intersections
28     D = A1 * B2 - A2 * B1
29     x = (C1 * B2 - C2 * B1) / D
30     y = (A1 * C2 - A2 * C1) / D
31
32     return (int(x), int(y))
33
34 # Group lines that correspond to the same true line
35 def group_lines(lines, part):
36     clusters = []
37     temp_cluster = [lines[0]]
38
39     # Store rho distances between lines and set threshold in those places
40     # where distance between lines is higher (should correspond to
41     # different groups)
42     dist = []
43     for k in range(len(lines) - 1):
44         dist.append(lines[k + 1][0] - lines[k][0])
45     threshold = np.partition(dist, -part)[-part]
46
47     # Group lines depending on the threshold and distance
48     for line in lines[1:]:
49         rho = line[0]
50         prevrho = temp_cluster[-1][0]
51         if rho - prevrho < threshold:
52             temp_cluster.append(line)
53         else:
54             clusters.append(temp_cluster)
55             temp_cluster = [line]
56     if temp_cluster:
57         clusters.append(temp_cluster)
58
59 #return found groups
```

```

57     return clusters
58
59 # Function to given a group of lines find the true line
60 def get_line(line_form, img, tipo):
61     final_lines = []
62     for lines in line_form:
63         if tipo == "h":
64             for i, line in enumerate(lines):
65                 if line[0] > 0:
66                     lines[i] = [line[0], line[1]]
67                 else:
68                     lines[i] = [-line[0], line[1] - np.pi]
69
70         if tipo == "v":
71             for i, line in enumerate(lines):
72                 if line[2] == 1:
73                     lines[i] = [line[0], line[1]]
74                 else:
75                     lines[i] = [line[0], line[1] - np.pi]
76
77     rho_val = np.array([line[0] for line in lines])
78     theta_val = np.array([line[1] for line in lines])
79     # Compute the new rho and theta as the average of the given lines
80     new_rho = gmean(rho_val)
81     new_theta = np.mean(theta_val)
82     new_rho, new_theta = (-new_rho, new_theta + np.pi) if new_theta < 0
83         else (new_rho, new_theta)
84
84     pt1 = (int(math.cos(new_theta) * new_rho + 5000 *
85             (-math.sin(new_theta))), int(math.sin(new_theta) * new_rho + 5000
86             * (math.cos(new_theta))))
85     pt2 = (int(math.cos(new_theta) * new_rho - 5000 *
87             (-math.sin(new_theta))), int(math.sin(new_theta) * new_rho - 5000
88             * (math.cos(new_theta))))
89
90     # Get the points for that line and store it
91     final_lines.append([pt1, pt2])
92     # Draw line
93     cv2.line(img, pt1, pt2, (255, 0, 0), 3, cv2.LINE_AA)
94
95     return final_lines
96
97 # Main function to find the corners of the calibration pattern for each image
98 # of the dataset
99 def get_corners(path, name):
100     img = cv2.imread(path)
101     # Apply canny to gray image
102     edges = cv2.Canny(cv2.cvtColor(img, cv2.COLOR_RGB2GRAY), 400, 300)
103     cv2.imwrite(f'/home/aolivepe/Computer-Vision/HW8/output/{name}_edges.jpg',
104                 edges)
105
106     # Use Hough transform to get the lines given the edge image. Classify
107     # images in vertical or horizontal depending on the value of rho and
108     # theta
109     lines = cv2.HoughLines(edges, 1, np.pi / 180, 50, None, 0, 0)
110     vlines = []
111     hlines = []
112     img_lines = np.copy(img)
113     if lines is not None:
114         for i in range(len(lines)):
115             rho = lines[i][0][0]
116             theta = lines[i][0][1]

```

```

110         if (rho < 0 and theta > 3 * np.pi / 4) or (rho > 0 and theta <
111             np.pi / 4):
112             vlines.append((np.abs(lines[i][0][0]), lines[i][0][1],
113                             np.sign(rho)))
114         else:
115             hlines.append((lines[i][0][0], lines[i][0][1]))
116
117             pt1 = (int(math.cos(theta) * rho + 5000 * (-math.sin(theta))),
118                   int(math.sin(theta) * rho + 5000 * (math.cos(theta))))
119             pt2 = (int(math.cos(theta) * rho - 5000 * (-math.sin(theta))),
120                   int(math.sin(theta) * rho - 5000 * (math.cos(theta))))
121             cv2.line(img_lines, pt1, pt2, (0, 255, 255), 4, cv2.LINE_AA)
122
123             cv2.imwrite(f'/home/aolivepe/Computer-Vision/HW8/output/{name}_lines.jpg',
124                         img_lines)
125
126             hlines = np.sort(np.array(hlines, dtype=[('x', np.float32), ('y',
127                                         np.float32)]), axis=0)
128             vlines = np.sort(np.array(vlines, dtype=[('x', np.float32), ('y',
129                                         int)]), axis=0)
130
131             # Create clusters of the found lines
132             real_hlines = group_lines(hlines, part = 9)
133             real_vlines = group_lines(vlines, part = 7)
134
135             # Get the true line for each cluster of lines
136             img_final_lines = np.copy(img)
137             assert len(real_hlines) == 10
138             assert len(real_vlines) == 8
139             hoz_lines = get_line(real_hlines, img_final_lines, "h")
140             ver_lines = get_line(real_vlines, img_final_lines, "v")
141             cv2.imwrite(f'/home/aolivepe/Computer-Vision/HW8/output/{name}_all_lines.jpg',
142                         img_final_lines)
143
144             # Find the intersection of lines and plot it in the original image
145             intersect = []
146             img_intersec = np.copy(img)
147             for hoz_line in hoz_lines:
148                 for ver_line in ver_lines:
149                     pt = find_intersection(hoz_line, ver_line)
150                     intersect.append(pt)
151                     x, y = pt
152                     color = (0, 0, 255)
153                     thickness = 1
154                     cv2.line(img_intersec, (x - 5, y - 5), (x + 5, y + 5), color,
155                             thickness)
156                     cv2.line(img_intersec, (x - 5, y + 5), (x + 5, y - 5), color,
157                             thickness)
158                     number = str(len(intersect))
159                     font = cv2.FONT_HERSHEY_SIMPLEX
160                     font_scale = 0.5
161                     text_thickness = 1
162                     text_position = (x + 7, y + 7)
163                     cv2.putText(img_intersec, number, text_position, font,
164                             font_scale, color, text_thickness)
165
166                     cv2.imwrite(f'/home/aolivepe/Computer-Vision/HW8/output/{name}_final_intersec.jpg',
167                         img_intersec)
168             return intersect
169
170             # Find homography from domain and range points
171             def get_homography(d_pts, r_pts):

```

```

160     mat_A = []
161     for i in range(len(r_pts)):
162         mat_A.append([0, 0, 0, -d_pts[i][0], -d_pts[i][1], -1, r_pts[i][1] *
163                     d_pts[i][0], r_pts[i][1] * d_pts[i][1], r_pts[i][1]])
164         mat_A.append([d_pts[i][0], d_pts[i][1], 1, 0, 0, 0, -r_pts[i][0] *
165                     d_pts[i][0], -r_pts[i][0] * d_pts[i][1], -r_pts[i][0]])
166     mat_A = np.array(mat_A)
167     # Homography given by the last column vector of the matrix V after doing
168     # SVD decomposition
169     _, _, v = np.linalg.svd(mat_A.T @ mat_A)
170     return np.reshape(v[-1], (3, 3))
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

```

```

217 # Use last vector of V in SVD to find w
218 _, _, v = np.linalg.svd(lhs)
219 w_solution = v[-1, :]
220 return w_solution
221
223 # Estimate K given w. First calculate all the coefficients following the
224 # equations from the report and then form matrix K
225 def estimate_k(w):
226     w11, w12, w13, w22, w23, w33 = w
227
228     y0 = (w12 * w13 - w11 * w23) / (w11 * w22 - w12 ** 2)
229     lam = w33 - (w13 ** 2 + y0 * (w12 * w13 - w11 * w23)) / w11
230     alphax = np.sqrt(lam / w11)
231     alphay = np.sqrt(lam * w11 / (w11 * w22 - w12 ** 2))
232     s = -(w12 * alphax ** 2 * alphay) / lam
233     x0 = s * y0 / alphay - (w13 * alphax ** 2) / lam
234
235     K = np.array([[alphax, s, x0],
236                   [0, alphay, y0],
237                   [0, 0, 1]])
238
239 # Estimate the extrinsic parameters for each image given the homography and
240 # K. Compute parameters following equations from the report
241 def estimate_extrinsic_param(homographies, K):
242     rot = []
243     trans = []
244     K_inv = np.linalg.inv(K)
245
246     for H in homographies:
247         h1, h2, h3 = H[:, 0], H[:, 1], H[:, 2]
248         r1 = K_inv @ h1 / np.linalg.norm(K_inv @ h1)
249         r2 = K_inv @ h2 / np.linalg.norm(K_inv @ h1)
250         r3 = np.cross(r1, r2)
251         t = K_inv @ h3 / np.linalg.norm(K_inv @ h1)
252         R = np.stack([r1, r2, r3], axis=1)
253
254         # Enforce orthogonality
255         u, _ = np.linalg.svd(R)
256         R = u @ v
257
258         rot.append(R)
259         trans.append(t)
260
261     return rot, trans
262
263 # Create vector with all the parameters for each image in the dataset. This
264 # is needed for the optimization algorithm
265 def param_cam(K, rots, trans):
266     p = [K[0, 0], K[0, 1], K[0, 2], K[1, 1], K[1, 2]]
267     # Use Rodrigues Representation for R
268     for R, t in zip(rots, trans):
269         p.extend(np.hstack(((np.arccos((np.trace(R) - 1) / 2) / (2 *
270             np.sin(np.arccos((np.trace(R) - 1) / 2)))) * np.array([R[2, 1] -
271             R[1, 2], R[0, 2] - R[2, 0], R[1, 0] - R[0, 1]]), t)))
272
273     return p
274
275 # Given the flattened vector p, reconstruct the parameters K, R and t
276 def reconstruct_p(p):
277     K = np.array([[p[0], p[1], p[2]],
278                  [0, p[3], p[4]],
279                  [0, 0, 1]])
280
281     R = np.array([[p[5], p[6], p[7]],
282                  [p[8], p[9], p[10]],
283                  [p[11], p[12], p[13]]])
284
285     t = np.array([p[14], p[15], p[16]])
286
287     return K, R, t

```



```

330             reproject(all_projected_points, img_idx, name)
331
332     # Calculated the distance between projected corners and ground truth
333     # corners
334     all_projected_points = np.concatenate(all_projected_points, axis=0)
335     full_corners = np.concatenate(full_corners, axis=0)
336     diff = full_corners - all_projected_points
337     return diff.flatten()
338
339 # Function to draw the projected images onto an image in which ground truth
340 # corners are already drawn
341 def reproject(all_projected_points, img_idx, name):
342     path = f"/home/aolivepe/Computer-Vision/HW8/output/Pic_{img_idx} +
343         1}_final_intersec.jpg"
344     img = cv2.imread(path)
345     for point in all_projected_points[img_idx]:
346         x, y = int(point[0]), int(point[1])
347         color = (0, 255, 0)
348         thickness = 1
349         cv2.line(img, (x - 5, y - 5), (x + 5, y + 5), color, thickness)
350         cv2.line(img, (x - 5, y + 5), (x + 5, y - 5), color, thickness)
351     cv2.imwrite(f'/home/aolivepe/Computer-Vision/HW8/output/Pic_{img_idx} +
352     1}{name}reproject.jpg', img)
353
354 # Function to plot the camera poses for each image of the dataset
355 def camera_poses(Rs, ts):
356     # Calculate the camera centers based on rotations and translations
357     camera_centers = [-R.T @ t for R, t in zip(Rs, ts)]
358
359     # Define the axes for each camera
360     axis_x = [R.T @ np.array([1, 0, 0]) + center for R, center in zip(Rs,
361         camera_centers)]
362     axis_y = [R.T @ np.array([0, 1, 0]) + center for R, center in zip(Rs,
363         camera_centers)]
364     axis_z = [R.T @ np.array([0, 0, 1]) + center for R, center in zip(Rs,
365         camera_centers)]
366
366     # Set up the 3D plot
367     vector_length = 35
368     fig = plt.figure()
369     ax = fig.add_subplot(111, projection='3d')
370
371     # Plot each camera's x, y, z axes with color-coded quivers
372     for center, x, y, z in zip(camera_centers, axis_x, axis_y, axis_z):
373         ax.quiver(center[0], center[1], center[2], x[0]-center[0],
374             x[1]-center[1], x[2]-center[2], color="r", length=vector_length,
375             normalize=True)
376         ax.quiver(center[0], center[1], center[2], y[0]-center[0],
377             y[1]-center[1], y[2]-center[2], color="g", length=vector_length,
378             normalize=True)
379         ax.quiver(center[0], center[1], center[2], z[0]-center[0],
380             z[1]-center[1], z[2]-center[2], color="b", length=vector_length,
381             normalize=True)
382
383     # Plot planes based on camera orientation
384     for center, z_axis in zip(camera_centers, axis_z):
385         x_vals, y_vals = np.meshgrid(range(int(center[0] - vector_length),
386             int(center[0] + vector_length)), range(int(center[1] -
387                 vector_length), int(center[1] + vector_length)))
388         z_vals = -((x_vals - center[0]) * z_axis[0] + (y_vals - center[1]) *
389             z_axis[1]) / z_axis[2] + center[2]
390         ax.plot_surface(x_vals, y_vals, z_vals, alpha=0.3)

```

```

376
377     # Plot calibration pattern as a black square
378     center_x, center_y = 20, 60
379     size = 50
380     x_square = [center_x - size / 2, center_x + size / 2, center_x + size /
381                  2, center_x - size / 2]
382     y_square = [center_y - size / 2, center_y - size / 2, center_y + size /
383                  2, center_y + size / 2]
384     z_square = [0, 0, 0, 0]
385     ax.plot_trisurf(x_square, y_square, z_square, color='black')
386
387     ax.set_xlim([-1, 200])
388     ax.set_zlim([-300, 0])
389     ax.set_xlabel("X")
390     ax.set_ylabel("Y")
391     ax.set_zlabel("Z")
392
393     # Set orientation of the plot
394     elev = -20
395     azim = 85
396     ax.view_init(elev=elev, azim=azim)
397
398     #####
399     #           MAIN
400     #####
401
402     index_img_1 = 0
403     index_img_2 = 10
404
405     dataset_path = "/home/aolivepe/Computer-Vision/HW8/Dataset2"
406     # dataset_path = "/home/aolivepe/Computer-Vision/HW8/HW8-Files/Dataset1"
407
408     # Get world coordinates
409     x_coords = 10 * np.arange(8)
410     y_coords = 10 * np.arange(10)
411     y_grid, x_grid = np.meshgrid(y_coords, x_coords, indexing='ij')
412     world_coord = np.stack([x_grid.ravel(), y_grid.ravel()], axis=-1)
413
414     # Get homographies and ground truth corners
415     Hs, full_corners = get_homographies(dataset_path, world_coord)
416
417     # Get parameters
418     w = estimate_w(Hs)
419     K = estimate_k(w)
420     print("K: ", K)
421     Rs, ts = estimate_extrinsic_param(Hs, K)
422     print("Rs[index_img_1]: ", Rs[index_img_1])
423     print("ts[index_img_1]: ", ts[index_img_1])
424     print("Rs[index_img_2]: ", Rs[index_img_2])
425     print("ts[index_img_2]: ", ts[index_img_2])
426
427     # Prepare parameters for refinement
428     p = param_cam(K, Rs, ts)
429     # Quantitative metrics for evaluation
430     mean_init_1, var_init_1 = error(cost(np.array(p), full_corners, world_coord,
431                                         img_idx=index_img_1, name="_original"), idx=index_img_1)
432     mean_init_2, var_init_2 = error(cost(np.array(p), full_corners, world_coord,
433                                         img_idx=index_img_2, name="_original"), idx=index_img_2)
434
435     # Refine and project and quantitative metrics of projection after refinement

```

```

434 p_lm = least_squares(cost, np.array(p), method='lm', args=[full_corners,
435     world_coord])
436 mean_refined_1, var_refined_1 = error(cost(p_lm.x, full_corners, world_coord,
437     img_idx=index_img_1, name="_lm"), idx=index_img_1)
438 mean_refined_2, var_refined_2 = error(cost(p_lm.x, full_corners, world_coord,
439     img_idx=index_img_2, name="_lm"), idx=index_img_2)
440
441 K_refined, Rs_refined, ts_refined = reconstruct_p(p_lm.x)
442 print("K_refined: ", K_refined)
443 print("Rs_refined[index_img_1]: ", Rs_refined[index_img_1])
444 print("ts_refined[index_img_1]: ", ts_refined[index_img_1])
445 print("Rs_refined[index_img_2]: ", Rs_refined[index_img_2])
446 print("ts_refined[index_img_2]: ", ts_refined[index_img_2])
447
448 # Incorporate radial distortion parameters, refine and quantitative metrics
449 # of projection after refinement
450 p_rad = param_cam(K, Rs, ts)
451 p_rad.extend([0, 0])
452 p_lm_rad = least_squares(cost, np.array(p_rad), method='lm',
453     args=[full_corners, world_coord, True])
454 mean_radial_1, var_radial_1 = error(cost(p_lm_rad.x, full_corners,
455     world_coord, radial=True, img_idx=index_img_1, name="lm_w_rad"),
456     idx=index_img_1)
457 mean_radial_2, var_radial_2 = error(cost(p_lm_rad.x, full_corners,
458     world_coord, radial=True, img_idx=index_img_2, name="lm_w_rad"),
459     idx=index_img_2)
460
461 K_refined_rad, Rs_refined_rad, ts_refined_rad = reconstruct_p(p_lm_rad.x[:-2])
462 print("K_refined_rad: ", K_refined_rad)
463 print("Rs_refined_rad[index_img_1]: ", Rs_refined_rad[index_img_1])
464 print("ts_refined_rad[index_img_1]: ", ts_refined_rad[index_img_1])
465 print("Rs_refined_rad[index_img_2]: ", Rs_refined_rad[index_img_2])
466 print("ts_refined_rad[index_img_2]: ", ts_refined_rad[index_img_2])
467
468 print(f"-----Image {index_img_1}-----")
469 print(f"Init mean: {mean_init_1} Init var: {var_init_1}")
470 print(f"Refined mean: {mean_refined_1} Refined var: {var_refined_1}")
471 print(f"Radial mean: {mean_radial_1} Radial var: {var_radial_1}")
472 print("[k1 k2] ", p_lm_rad.x[-2:])
473 print("-----")
474
475 print(f"-----Image {index_img_2}-----")
476 print(f"Init mean: {mean_init_2} Init var: {var_init_2}")
477 print(f"Refined mean: {mean_refined_2} Refined var: {var_refined_2}")
478 print(f"Radial mean: {mean_radial_2} Radial var: {var_radial_2}")
479 print("[k1 k2] ", p_lm_rad.x[-2:])
480 print("-----")
481
482 # Get the camera poses plot
483 camera_poses(Rs, ts)

```
