
Homework 8

Alexandre Olivé Pellicer
aolivepe@purdue.edu

1 Theory Questions

1.1 Question 1

Why is the following theoretical observation fundamental to Zhang’s algorithm for camera
calibration?

The observation that the calibration pattern samples the Absolute Conic Ω∞ at two Circular Points
is fundamental to Zhang’s algorithm because it allows the extraction of intrinsic camera parameters.
The images of these two points fall on the conic ω (the camera image of the Absolute Conic Ω∞)
in the camera image plane. Each of these two points must obey the conic constraint xTωx = 0.
When plugging the coordinates of the two image points in the conic constraint equations, we get
hT
1 ωh1 = hT

2 ωh2 and hT
1 ωh2 = 0. Therefore, given h1 and h2 for several positions of the camera,

we can estimate ω and from there estimating K, the intrinsic camera parameters. Furthermore, the
Absolute Conic Ω∞ exists independently of the camera’s orientation or position. Its Circular Points
are invariant under Euclidean transformations, making them essential for calibration.

To sum up, in Zhang’s algorithm, this property is used to compute the homography between the
camera image plane and the calibration plane. By leveraging the relationship between Ω∞ and the
homography, intrinsic parameters of the camera, such as focal length and principal point, can be
derived without knowing the exact 3D coordinates of the pattern, only requiring its 2D structure.

1.2 Question 2

How would you derive the algebraic form of ω from Ω∞?

The image of the Absolute Conic Ω∞ on the camera plane is denoted as ω. We can derive its algebraic
form doing:

ω = K−TΩ∞K−1 = K−TK−1

where:

• Ω∞ is the 3× 3 identity matrix

• ω is the projection of the Absolute Conic in 3D space (Ω∞) onto the camera image plane.

• K is the camera’s intrinsic matrix that maps points from the world coordinates to the camera
image plane. (More explanation about this matrix is added later in the report)

This would be a long version of the answer following the notes from Lecture 20:
The Absolute Conic Ω∞ is defined by the direction vectors xd that obey xT

d I3×3xd = 0. We know
that under a homography Hd, a conic C transforms as C ′ = H−TCH−1. Since the image formation
from the direction vectors xd to the pixels x is the homography H = KR, ω is given by:

ω = H−TΩ∞H−1 = H−T I3×3H
−1 = (KR)−T (KR)−1

= ((KR)T)−1(KR)−1 = (RTKT)−1(KR)−1

= K−TR−TR−1K−1 = K−T (RR−T)−1K−1

= K−TK−1 (1)

The actual pixels on the image conic ω would be xTωx = 0.

1

mailto:aolivepe@purdue.edu

Can you prove that ω does not contain any real pixel locations?

Any point x in the conic must satisfy xTωx = 0. Since ω is derived from the expression ω =
K−TΩ∞K−1, ω is positive definite.

For any real point x, the equation xTωx = 0 can only have imaginary solutions because ω is
positive definite, meaning it cannot be zero for any real-valued vector x. Thus, ω does not intersect
with the real image plane and does not correspond to any actual pixel locations. Therefore, ω does
not contain any real pixel locations. This is a critical theoretical result because it shows that while
ω is not directly observable in real images, its properties can still be used to estimate the camera’s
intrinsic parameters through multiple views of the calibration pattern.

2 Implementation Details

2.1 Corner Detection

The steps described in this section are applied in all the images of the dataset. This is the prepocessing
of the input images that we do in order to obtain the corners of each of the squares of the calibration
pattern:

• Canny Edge Detection: First we convert the input image to gray scale and use the cv2.Canny()
function from OpenCV to get the edges of the black squares of the calibration pattern. We exper-
imentally found out that the parameters that performed better where when using as minimum
threshold 300 and maximum threshold 400

• Hough Transform: We use the cv2.HoughLines() function from OpenCV to get the vertical
and horizontal lines that composes the calibration pattern. We set the threshold parameter to
50. Since the Canny edge detector approach is not perfect at pixel level, after using the Hough
Transform to get the lines, we will get multiple lines for each border of the squares. This is
not the desired behavior since there is only one true line per side. Therefore, we implement
an approach to group lines that should correspond to a unique true line and get the final line
from that group as the average. We first separate vertical and horizontal. We classify a line as
horizontal or as vertical depending on the value of θ given by the Hough Transform. The lines
corresponding to the same group will have a similar ρ which is given by the Hough Transform.
Therefore, we group vertical and horizontal lines according to how similar is their ρ. Finally, we
average the grouped lines to get a final true line. We end up getting 10 horizontal true lines and
8 vertical true lines.

• Corner Correspondences: We get the corners of the calibration pattern as the intersection
between horizontal and vertical lines. Therefore, we will get 80 intersections, 4 corners for each
of the 20 squares of the pattern. In order to generate the world coordinates, we consider that
the calibration pattern is in the Z = 0 plane, the first corner is at (0, 0) and that the distance
between corners is 10.

2.2 Zhang’s Algorithm

In this homework we have used Zhang’s algorithm for camera calibration. We have assumed that
we have been using a pin-hole camera (i.e. we will estimate all the 5 intrinsic parameters and the
6 extrincsic parameters that determine the position and orientation of the camera with respect to a
reference world coordinate system). In this section we do an explanation of this algorithm.

We use the calibration pattern provided in the instructions. It is assumed to be in the Z = 0 plane
of the world frame. The homogeneous representation of a pixel coordinates x = (x, y, w)T and the
homogeneous representation of the corresponding world coordinates xM = (x, y, z, w) are related by
the following equation

x = K
[
R|t

] 
x
y
0
w

 = HxM (2)

where:

2

• K is the camera intrinsic parameter

• R is the world-to-camera rotation matrix

• t is the world-to-camera translation vector

• H is the homography

• xM = [x, y, w]T

Note that the homography H is estimated using the corners estimated from the corner detec-
tion approach that we have used in this homework explained in the previous section. We can write
homography H as H = [h1,h2,h3]

The image of the Absolute Conic Ω∞ is given by ω = K−TK−1. And the two circular points on
the image conic ω give us two equations

hT
1 ωh1 = hT

2 ωh2 (3)

hT
1 ωh2 = 0 (4)

ω is a 3× 3 symmetric matrix which can be written as:

ω =

ω11 ω12 ω13

ω12 ω22 ω23

ω13 ω23 ω33

 , (5)

See that there are only 6 unknowns in ω.
Given N images of the calibration pattern from different angles, we can calculate the set of homo-

graphies that relates the world coordinates with the coordinates of the calibration pattern of each of
the images taken from different angles and positions. We end up getting N homographies that they
are obtained using Singular Value Decomposition taking the right column vector of V.

Given an homography H:

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (6)

we can rewrite Equations 3 and 4 as:
h2
11 − h2

12

2h11h21 − 2h12h22

2h11h31 − 2h12h32

h2
21 − h2

22

2h21h31 − 2h22h32

h2
31 − h2

32



T 
w11

w12

w13

w22

w23

w33

 = 0 (7)


h11h12

h11h22 + h12h21

h11h32 + h12h31

h21h22

h21h32 + h22h31

h31h32



T 
w11

w12

w13

w22

w23

w33

 = 0 (8)

Using SVD, we can solve this set of homogeneous equations and end up getting ω.

2.3 Estimating the intrinsic parameters of the camera

The intrinsic parameters of the camera are contained in the matrix K which can be written as:

K =

αx s x0

0 αy y0
0 0 1

 (9)

3

Each of these intrinsic parameters can be calculated as:

y0 =
−w11w23 + w12w13

w11w22 − w2
12

(10)

λ = w33 −
w2

13 + y0(−w11w23 + w12w13)

w11
(11)

ax =

√
λ

w11
(12)

ay =

√
λw11

w11w22 − w2
12

(13)

s =
a2xayw12

λ
(14)

x0 =
−a2xw13

λ
+

sy0
ay

(15)

2.4 Estimating the extrinsic parameters of the camera

R and t are the extrinsic parameters.
Given an homography H = [h1,h2,h3] we can estimate R = [r1, r2, r3] and t as follows (ξ is a scale

factor):

ξ =
1

∥K−1h1∥
(16)

r1 = ξK−1h1 (17)

r2 = ξK−1h2 (18)

r3 = r1 × r2 (19)

t = ξK−1h3 (20)

To ensure that R is orthogonal, we perform SVD such that R = UDV T , and then redefine R as
R = UV T .

2.5 Refining the Calibration Parameters

The estimations K, R and t will give us some good result. Nevertheless, this result can be improved
by refining K, R and t using a non-linear least squares optimization approach.

We project the points from world coordinated to image coordinates using the actual K, R and t
for different images. We compute the Euclidean distance between the projected points and the actual
points. We sum all the distances. This is the cost function that we use for the non-linear least squares
optimization approach. We can write the cost function as:

d2 =
∑
i

∑
j

∥xij − x̂ij∥2 =
∑
i

∑
j

∥xij −K
[
ri1 ri2 ti

]
xij∥2 (21)

where:

• xij is each of the actual points

• x̂ij is each of the projected points

4

Before applying the LM optimization algorithm, it is important to modify the representation of the
rotation matrix R. Following the theory from Lecture 21, in any optimization algorithm, the number
of variables used to represent an entity must equal the DoF of the entity. The rotation matrix has 9
elements but only 3 degrees of freedom (DoF). We need a 3-parameter representation of the rotation
matrix. We use the Rodrigues Representation in which a rotation in 3D is expressed as a vector w̃,
which is computed as:

w̃ =
φ

2 sinφ

r32 − r23
r13 − r31
r21 − r12

 (22)

where

φ = cos−1

(
trace(R)− 1

2

)
(23)

In order to go from w̃ back to R we can do the following operations:

W =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (24)

R = eW = I3×3 +
sinφ

φ
W +

1− cosφ

φ2
W 2 (25)

where φ = ∥w∥.

2.6 Radial Distortion (Extra Credit)

In practical applications, real-world cameras often exhibit a phenomenon known as radial distortion,
where straight lines in the scene appear curved in the captured image. This effect arises due to the
inherent imperfections in the lens design, which cause light rays to deviate from their ideal pinhole
model trajectory as they pass through the lens. This distortion can be corrected using:

x̂rad = x̂+ (x̂− x0)
(
k1r

2 + k2r
4
)

(26)

ŷrad = ŷ + (ŷ − y0)
(
k1r

2 + k2r
4
)

(27)

where:

• (x̂, ŷ) are the projected pixel coordinates before radial distortion correction

• (x̂rad, ŷrad) are the projected pixel coordinates after radial distortion correction

Note that the values of k1 and k2 are calculated using the LM algorithm.
The parameters k1 and k2, which characterize the radial distortion, are refined together with K,

R and t also following the approach explained in Section 2.5.

2.7 Creating Our Dataset

We have built a dataset with a total of 21 images of the calibration pattern provided in the instructions
which was printed. We have used an iPhone 12. The focal length was set to 26 mm. The distance
between the camera and the ”Fixed Image” was 32.4 cm approximately. With a ruler we measure that
the side of the squares is 2.2 cm. We have set this distance to be 10 in digital. Therefore, the digital
distance from the center of projection to the ”Fixed Image” in digital would be:

(2.6 + 32.4)10

2.2
= 159.1 (28)

5

3 Obtained results

3.1 Given Dataset

Figure 1 and 2 show the 4 images resulting from the preprocessing of the images in the dataset. It
contains the edges after using the Canny edge detector, the multiple lines resulting from the Hough
Transform, the final selected lines and the final intersection points.

(a) Edges after using the Canny edge detector (b) Lines resulting from the Hough Transform

(c) Final selected lines (d) Final intersection points

Figure 1: Preprocessing of image 4 from the given dataset.

6

(a) Edges after using the Canny edge detector (b) Lines resulting from the Hough Transform

(c) Final selected lines (d) Final intersection points

Figure 2: Preprocessing of image 10 from the given dataset.

7

Figures 3 and 4 show the projection results at the beginning and after the refinements. See that
reprojected corners are printed in green color. Red corners correspond to ground truth corners. Repro-
jected corners are drawn above ground truth corners. Therefore, not seeing the ground truth corner
means almost perfect reprojection.

(a) Original corners (b) Initial projection

(c) Projection after LM (d) Projection after LM with radial distortion

Figure 3: Comparison of the projection of the world coordinates onto the pattern from image 4 in the
given dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after
the refinements:

Kinit =

717.46 0.58 317.77
0 714.16 237.40
0 0 1

KLM =

722.42 1.73 321.43
0 719.71 238.28
0 0 1

Kradial =

728.05 1.72 319.50
0 725.66 238.89
0 0 1


(29)

Rinit =

 0.999 0.006 0.041
−0.004 0.999 −0.035
−0.041 0.035 0.998

RLM =

 0.999 0.005 0.037
−0.003 0.999 −0.038
−0.037 0.038 0.998

Rradial =

 0.999 0.005 0.037
−0.004 0.999 −0.034
−0.037 0.034 0.998


(30)

tinit =
[
−35.57 −40.76 166.52

]
tLM =

[
−36.36 −41.12 167.82

]
tradial =

[
−35.91 −41.27 168.08

]
(31)

k1 = −2.939e− 7 k2 = 1.912e− 12 (32)

8

(a) Original corners (b) Initial projection

(c) Projection after LM (d) Projection after LM with radial distortion

Figure 4: Comparison of the projection of the world coordinates onto the pattern from image 10 in
the given dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after
the refinements (matrices Ks are the same as stated for image 4):

Rinit =

 0.868 0.106 0.484
−0.069 0.993 −0.094
−0.491 0.048 0.869

RLM =

 0.874 0.105 0.474
−0.069 0.993 −0.091
−0.480 0.047 0.875

Rradial =

 0.872 0.105 0.476
−0.069 0.993 −0.093
−0.482 0.048 0.874


(33)

tinit =
[
−43.432 −41.090 182.717

]
tLM =

[
−44.486 −41.589 184.471

]
tradial =

[
−44.004 −41.746 184.640

]
(34)

k1 = −2.939e− 7 k2 = 1.912e− 12 (35)

9

Table 1 shows the quantitative evaluation of the projection error

Metric Image 4 Image 10
Initial error mean 1.01774 1.5646

Initial error variance 0.3092 0.7657
Error mean after LM 0.8693 1.0625

Error variance after LM 0.1785 0.2874
Error mean after LM + radial 0.7890 0.9558

Error variance after LM + radial 0.1652 0.2662

Table 1: Error mean and variance for images 4 and 10 of the given dataset

Figure 5 shows the camera poses that has been used in order to create the given dataset in the
instructions. The black box simulates the position of the calibration pattern.

Figure 5: Camera poses to create the images of the calibration pattern in the given dataset

10

3.2 My own Dataset

Figure 6 and 7 show the 4 images resulting from the preprocessing of the images in the dataset. It
contains the edges after using the Canny edge detector, the multiple lines resulting from the Hough
Transform, the final selected lines and the final intersection points.

(a) Edges after using the Canny edge detector (b) Lines resulting from the Hough Transform

(c) Final selected lines (d) Final intersection points

Figure 6: Preprocessing of image 4 from my dataset.

11

(a) Edges after using the Canny edge detector (b) Lines resulting from the Hough Transform

(c) Final selected lines (d) Final intersection points

Figure 7: Preprocessing of image 10 from my dataset.

12

Figures 8 and 9 show the projection results at the beginning and after the refinements. See that
reprojected corners are printed in green color. Red corners correspond to ground truth corners. Repro-
jected corners are drawn above ground truth corners. Therefore, not seeing the ground truth corner
means almost perfect reprojection.

(a) Original corners (b) Initial projection

(c) Projection after LM (d) Projection after LM with radial distortion

Figure 8: Comparison of the projection of the world coordinates onto the pattern from image 4 in my
dataset

13

These are the camera matrix, rotation matrix and translation matrix at the beginning and after
the refinements:

Kinit =

489.356 −0.433 238.076
0 493.202 316.913
0 0 1

KLM =

492.779 −0.253 239.687
0 496.544 317.690
0 0 1

Kradial =

478.630 −0.240 238.052
0 481.911 318.075
0 0 1


(36)

Rinit =

 0.928 −0.215 0.302
0.292 0.926 −0.237
−0.229 0.309 0.923

RLM =

 0.921 −0.207 0.329
0.297 0.920 −0.253
−0.250 0.331 0.909

Rradial =

 0.920 −0.205 0.332
0.298 0.919 −0.256
−0.253 0.335 0.907


(37)

tinit =
[
−47.68 −29.517 168.201

]
tLM =

[
−47.803 −29.392 167.734

]
tradial =

[
−47.266 −29.508 164.223

]
(38)

k1 = 6.267e− 7 k2 = −6.473e− 12 (39)

14

(a) Original corners (b) Initial projection

(c) Projection after LM (d) Projection after LM with radial distortion

Figure 9: Comparison of the projection of the world coordinates onto the pattern from image 10 in
my dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after
the refinements (matrices Ks and coefficients k1 and k2 are the same as stated for image 4):

15

Rinit =

0.885 −0.156 −0.436
0.088 0.981 −0.170
0.455 0.112 0.883

RLM =

0.886 −0.158 −0.433
0.087 0.980 −0.178
0.453 0.120 0.883

Rradial =

0.889 −0.158 −0.429
0.087 0.979 −0.179
0.449 0.121 0.885


(40)

tinit =
[
−17.015 −43.290 147.223

]
tLM =

[
−17.543 −43.748 148.756

]
tradial =

[
−17.038 −43.870 145.225

]
(41)

k1 = 6.267e− 7 k2 = −6.473e− 12 (42)

16

Finally, we also show the performance with the ”Fixed Image” so that we can validate the obtained
results with the metrics calculated in Section 2.7

Figure 10 shows the 4 images resulting from the preprocessing of the Fixed Image in the dataset.
It contains the edges after using the Canny edge detector, the multiple lines resulting from the Hough
Transform, the final selected lines and the final intersection points.

(a) Edges after using the Canny edge detector (b) Lines resulting from the Hough Transform

(c) Final selected lines (d) Final intersection points

Figure 10: Preprocessing of Fixed Image from my dataset.

17

Figure 11 shows the projection results at the beginning and after the refinements. See that repro-
jected corners are printed in green color. Red corners correspond to ground truth corners. Reprojected
corners are drawn above ground truth corners. Therefore, not seeing the ground truth corner means
almost perfect reprojection.

(a) Original corners (b) Initial projection

(c) Projection after LM (d) Projection after LM with radial distortion

Figure 11: Comparison of the projection of the world coordinates onto Fixed Image in my dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after

18

the refinements (matrices Ks and coefficients k1 and k2 are the same as stated for image 4):

Rinit =

 0.999 0.020 0.003
−0.019 0.997 −0.065
−0.004 0.065 0.997

RLM =

 0.999 0.020 0.004
−0.019 0.997 −0.069
−0.005 0.069 0.997

Rradial =

 0.999 0.019 −0.0009
−0.019 0.997 −0.072
−0.0005 0.072 0.997


(43)

tinit =
[
−31.899 −38.917 159.520

]
tLM =

[
−32.392 −39.276 160.829

]
tradial =

[
−31.819 −39.389 157.063

]
(44)

k1 = 6.267e− 7 k2 = −6.473e− 12 (45)

Table 2 shows the quantitative evaluation of the projection error

Metric Image 4 Image 10 Fixed Image
Initial error mean 2.1072 1.2747 0.8405

Initial error variance 0.8061 0.3647 0.2528
Error mean after LM 0.7849 0.7801 0.7452

Error variance after LM 0.1935 0.1366 0.1353
Error mean after LM + radial 0.6531 0.7128 0.6620

Error variance after LM + radial 0.1417 0.1251 0.1281

Table 2: Error mean and variance for images 4 and 10 and Fixed Image of my dataset

Figure 12 shows the camera poses that have been used in order to create my dataset. The black
box simulates the position of the calibration pattern.

Figure 12: Camera poses to create the images of the calibration pattern in the given dataset

19

4 Observations

For both, the given dataset and the dataset that we have created we see the same behavior. When
reprojecting the corners from the world coordinated onto the selected images we can qualitatively
see that the error is reduced after refining the parameters using the LM optimization algorithm and
it is even more reduced after incorporating the radial distortion parameters from the ”Extra Credit”
section of the instructions. This is the desired behavior. Since it is difficult to perceive this improvement
visually, we have also shown in tables how the mean and variance error of the reprojection is reduced
after refining and even more reduced when refining using the radial distortion parameters. Thus, these
quantitative metrics support our qualitative evaluation.

Finally, for the ”Fixed Image” in the dataset that we have created, we can also see how the 3rd
component of the translation vector t is vary close to the digital distance that we computed in Section
2.7: 159.1. This can serve as a confirmation that our implementation of the tasks asked in this
assignment were correctly accomplished.

20

5 Code

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import math

4 import cv2

5 from scipy.optimize import least_squares

6 import os

7 from scipy.stats import gmean

8

9 # function to find the intersection of 2 lines given 2 points to define each

line

10 def find_intersection(hline , vline):

11 x1, y1 = hline [0][0] , hline [0][1]

12 x2, y2 = hline [1][0] , hline [1][1]

13 x3, y3 = vline [0][0] , vline [0][1]

14 x4, y4 = vline [1][0] , vline [1][1]

15

16 # Create first line

17 A1 = y2 - y1

18 B1 = x1 - x2

19 C1 = A1 * x1 + B1 * y1

20

21 # Create second line

22 A2 = y4 - y3

23 B2 = x3 - x4

24 C2 = A2 * x3 + B2 * y3

25

26 # Find intersections

27 D = A1 * B2 - A2 * B1

28 x = (C1 * B2 - C2 * B1) / D

29 y = (A1 * C2 - A2 * C1) / D

30

31 return (int(x), int(y))

32

33 # Group lines that correspond to the same true line

34 def group_lines(lines , part):

35 clusters = []

36 temp_cluster = [lines [0]]

37

38 # Store rho distances between lines and set threshold in those places

where distance between lines is higher (should correspond to

different groups)

39 dist = []

40 for k in range(len(lines) - 1):

41 dist.append(lines[k + 1][0] - lines[k][0])

42 threshold = np.partition(dist , -part)[-part]

43

44 # Group lines depending on the threshold and distance

45 for line in lines [1:]:

46 rho = line [0]

47 prevrho = temp_cluster [-1][0]

48 if rho - prevrho < threshold:

49 temp_cluster.append(line)

50 else:

51 clusters.append(temp_cluster)

52 temp_cluster = [line]

53 if temp_cluster:

54 clusters.append(temp_cluster)

55

56 #return found groups

21

57 return clusters

58

59 # Function to given a group of lines find the true line

60 def get_line(line_form , img , tipo):

61 final_lines = []

62 for lines in line_form:

63 if tipo == "h":

64 for i, line in enumerate(lines):

65 if line [0] > 0:

66 lines[i] = [line[0], line [1]]

67 else:

68 lines[i] = [-line[0], line [1] - np.pi]

69

70 if tipo == "v":

71 for i, line in enumerate(lines):

72 if line [2] == 1:

73 lines[i] = [line[0], line [1]]

74 else:

75 lines[i] = [line[0], line [1] - np.pi]

76

77 rho_val = np.array([line [0] for line in lines])

78 theta_val = np.array([line [1] for line in lines])

79 # Compute the new rho and theta as the average of the given lines

80 new_rho = gmean(rho_val)

81 new_theta = np.mean(theta_val)

82 new_rho , new_theta = (-new_rho , new_theta + np.pi) if new_theta < 0

else (new_rho , new_theta)

83

84 pt1 = (int(math.cos(new_theta) * new_rho + 5000 *

(-math.sin(new_theta))), int(math.sin(new_theta) * new_rho + 5000

* (math.cos(new_theta))))

85 pt2 = (int(math.cos(new_theta) * new_rho - 5000 *

(-math.sin(new_theta))), int(math.sin(new_theta) * new_rho - 5000

* (math.cos(new_theta))))

86

87 # Get the points for that line and store it

88 final_lines.append ([pt1 , pt2])

89 # Draw line

90 cv2.line(img , pt1 , pt2 , (255, 0, 0), 3, cv2.LINE_AA)

91

92 return final_lines

93

94 # Main function to find the corners of the calibration pattern for each image

of the dataset

95 def get_corners(path , name):

96 img = cv2.imread(path)

97 # Apply canny to gray image

98 edges = cv2.Canny(cv2.cvtColor(img , cv2.COLOR_RGB2GRAY), 400, 300)

99 cv2.imwrite(f’/home/aolivepe/Computer -Vision/HW8/output /{name}_edges.jpg’,

edges)

100

101 # Use Hough transform to get the lines given the edge image. Classify

images in vertical or horizontal depending on the value of rho and

theta

102 lines = cv2.HoughLines(edges , 1, np.pi / 180, 50, None , 0, 0)

103 vlines = []

104 hlines = []

105 img_lines = np.copy(img)

106 if lines is not None:

107 for i in range(len(lines)):

108 rho = lines[i][0][0]

109 theta = lines[i][0][1]

22

110 if (rho < 0 and theta > 3 * np.pi / 4) or (rho > 0 and theta <

np.pi / 4):

111 vlines.append ((np.abs(lines[i][0][0]) , lines[i][0][1] ,

np.sign(rho)))

112 else:

113 hlines.append ((lines[i][0][0] , lines[i][0][1]))

114

115 pt1 = (int(math.cos(theta) * rho + 5000 * (-math.sin(theta))),

int(math.sin(theta) * rho + 5000 * (math.cos(theta))))

116 pt2 = (int(math.cos(theta) * rho - 5000 * (-math.sin(theta))),

int(math.sin(theta) * rho - 5000 * (math.cos(theta))))

117 cv2.line(img_lines , pt1 , pt2 , (0, 255, 255), 4, cv2.LINE_AA)

118

119 cv2.imwrite(f’/home/aolivepe/Computer -Vision/HW8/output /{name}_lines.jpg’,

img_lines)

120

121 hlines = np.sort(np.array(hlines , dtype =[(’’, np.float32), (’’,

np.float32)]), axis =0)

122 vlines = np.sort(np.array(vlines , dtype =[(’’, np.float32), (’’,

np.float32), (’’, int)]), axis =0)

123

124 # Create clusters of the found lines

125 real_hlines = group_lines(hlines , part = 9)

126 real_vlines = group_lines(vlines , part = 7)

127

128 # Get the true line for each cluster of lines

129 img_final_lines = np.copy(img)

130 assert len(real_hlines) == 10

131 assert len(real_vlines) == 8

132 hoz_lines = get_line(real_hlines , img_final_lines , "h")

133 ver_lines = get_line(real_vlines , img_final_lines , "v")

134 cv2.imwrite(f’/home/aolivepe/Computer -Vision/HW8/output /{name}_all_lines.jpg’,

img_final_lines)

135

136 # Find the intersection of lines and plot it in the original image

137 intersect = []

138 img_intersec = np.copy(img)

139 for hoz_line in hoz_lines:

140 for ver_line in ver_lines:

141 pt = find_intersection(hoz_line , ver_line)

142 intersect.append(pt)

143 x, y = pt

144 color = (0, 0, 255)

145 thickness = 1

146 cv2.line(img_intersec , (x - 5, y - 5), (x + 5, y + 5), color ,

thickness)

147 cv2.line(img_intersec , (x - 5, y + 5), (x + 5, y - 5), color ,

thickness)

148 number = str(len(intersect))

149 font = cv2.FONT_HERSHEY_SIMPLEX

150 font_scale = 0.5

151 text_thickness = 1

152 text_position = (x + 7, y + 7)

153 cv2.putText(img_intersec , number , text_position , font ,

font_scale , color , text_thickness)

154

155 cv2.imwrite(f’/home/aolivepe/Computer -Vision/HW8/output /{name}_final_intersec.jpg’,

img_intersec)

156 return intersect

157

158 # Find homography from domain and range points

159 def get_homography(d_pts , r_pts):

23

160 mat_A = []

161 for i in range(len(r_pts)):

162 mat_A.append ([0, 0, 0, -d_pts[i][0], -d_pts[i][1], -1, r_pts[i][1] *

d_pts[i][0], r_pts[i][1] * d_pts[i][1], r_pts[i][1]])

163 mat_A.append ([d_pts[i][0], d_pts[i][1], 1, 0, 0, 0, -r_pts[i][0] *

d_pts[i][0], -r_pts[i][0] * d_pts[i][1], -r_pts[i][0]])

164 mat_A = np.array(mat_A)

165 # Homography given by the last column vector of the matrix V after doing

SVD decomposition

166 _, _, v = np.linalg.svd(mat_A.T @ mat_A)

167 return np.reshape(v[-1], (3, 3))

168

169 # Function to get the homographies and intersection points of all the images

in the given dataset

170 def get_homographies(data_path , world_coord):

171 jpg_files = [f for f in os.listdir(data_path) if

f.lower ().endswith(’.jpg’)]

172 print("Num images in dataset: ", len(jpg_files))

173 jpg_files.sort()

174

175 homographies = []

176 intersecs_total = []

177 for i, file in enumerate(jpg_files , start =1):

178 path = os.path.join(data_path , file)

179 intersec_points = get_corners(path , name=f’Pic_{i}’)

180 intersecs_total.append(intersec_points)

181 homographies.append(get_homography(world_coord , intersec_points))

182 return homographies , intersecs_total

183

184 # Function to define the matrices needed to estimate w

185 def calculate_w_matrix_coefficients(h):

186 h1, h2 = h[:, 0], h[:, 1]

187

188 # Matrices written following the equations explained in the report

189 eq1_coeffs = [

190 h1 [0]**2 - h2[0]**2 ,

191 2 * (h1[0] * h1[1] - h2[0] * h2[1]),

192 2 * (h1[0] * h1[2] - h2[0] * h2[2]),

193 h1 [1]**2 - h2[1]**2 ,

194 2 * (h1[1] * h1[2] - h2[1] * h2[2]),

195 h1 [2]**2 - h2 [2]**2

196]

197

198 eq2_coeffs = [

199 h1[0] * h2[0],

200 h1[0] * h2[1] + h1[1] * h2[0],

201 h1[0] * h2[2] + h1[2] * h2[0],

202 h1[1] * h2[1],

203 h1[1] * h2[2] + h1[2] * h2[1],

204 h1[2] * h2[2]

205]

206

207 return np.array ([eq1_coeffs , eq2_coeffs])

208

209 # Estimate w given all the homographies

210 def estimate_w(homographies):

211 lhs = []

212 for h in homographies:

213 lhs.append(calculate_w_matrix_coefficients(h)[0])

214 lhs.append(calculate_w_matrix_coefficients(h)[1])

215

216 lhs = np.asarray(lhs , dtype=np.float64)

24

217

218 # Use last vector of V in SVD to find w

219 _, _, v = np.linalg.svd(lhs)

220 w_solution = v[-1, :]

221 return w_solution

222

223 # Estimate K given w. First calculate all the coefficients following the

equations from the report and then form matrix K

224 def estimate_k(w):

225 w11 , w12 , w13 , w22 , w23 , w33 = w

226

227 y0 = (w12 * w13 - w11 * w23) / (w11 * w22 - w12 ** 2)

228 lam = w33 - (w13 ** 2 + y0 * (w12 * w13 - w11 * w23)) / w11

229 alphax = np.sqrt(lam / w11)

230 alphay = np.sqrt(lam * w11 / (w11 * w22 - w12 ** 2))

231 s = -(w12 * alphax ** 2 * alphay) / lam

232 x0 = s * y0 / alphay - (w13 * alphax ** 2) / lam

233

234 K = np.array ([[alphax , s, x0],

235 [0, alphay , y0],

236 [0, 0, 1]])

237 return K

238

239 # Estimate the extrinsic parameters for each image given the homography and

K. Compute parameters following equations from the report

240 def estimate_extrinsic_param(homographies , K):

241 rot = []

242 trans = []

243 K_inv = np.linalg.inv(K)

244

245 for H in homographies:

246 h1, h2, h3 = H[:, 0], H[:, 1], H[:, 2]

247 r1 = K_inv @ h1 / np.linalg.norm(K_inv @ h1)

248 r2 = K_inv @ h2 / np.linalg.norm(K_inv @ h1)

249 r3 = np.cross(r1, r2)

250 t = K_inv @ h3 / np.linalg.norm(K_inv @ h1)

251 R = np.stack([r1 ,r2 ,r3], axis =1)

252

253 # Enforce orthogonality

254 u, _, v = np.linalg.svd(R)

255 R = u @ v

256

257 rot.append(R)

258 trans.append(t)

259

260 return rot , trans

261

262 # Create vector with all the parameters for each image in the dataset. This

is needed for the optimization algorithm

263 def param_cam(K, rots , trans):

264 p = [K[0, 0], K[0, 1], K[0, 2], K[1, 1], K[1, 2]]

265 # Use Rodrigues Representation for R

266 for R, t in zip(rots , trans):

267 p.extend(np.hstack (((np.arccos ((np.trace(R) - 1) / 2) / (2 *

np.sin(np.arccos ((np.trace(R) - 1) / 2)))) * np.array ([R[2, 1] -

R[1, 2], R[0, 2] - R[2, 0], R[1, 0] - R[0, 1]]), t)))

268 return p

269

270 # Given the flettened vector p, reconstruct the parameters K, R and t

271 def reconstruct_p(p):

272 K = np.array ([[p[0], p[1], p[2]],

273 [0, p[3], p[4]],

25

274 [0, 0, 1]])

275

276 rotation_matrices , translation_vectors = [], []

277 step_size = 6

278 for idx in range(5, len(p), step_size):

279 rot_vec = p[idx:idx +3]

280 trans_vec = p[idx+3:idx+6]

281

282 # Undo Rodrigues Representation for R

283 rot_angle = np.linalg.norm(rot_vec)

284 skew_matrix = np.array ([

285 [0, -rot_vec [2], rot_vec [1]],

286 [rot_vec [2], 0, -rot_vec [0]],

287 [-rot_vec [1], rot_vec [0], 0]

288])

289 identity_matrix = np.identity (3)

290 R_matrix = identity_matrix + (np.sin(rot_angle) / rot_angle) *

skew_matrix + ((1 - np.cos(rot_angle)) / (rot_angle ** 2)) *

(skew_matrix @ skew_matrix)

291

292 rotation_matrices.append(R_matrix)

293 translation_vectors.append(trans_vec)

294

295 return K, rotation_matrices , translation_vectors

296

297 # Get the error mean and variance of the projected corners for a specific

image

298 def error(diff , idx):

299 diff = diff.reshape ((-1 , 2))

300 start = idx * 80

301 end = start + 80

302 diff_norm = np.linalg.norm(diff[start:end], axis =1)

303 return np.average(diff_norm), np.var(diff_norm)

304

305 # Cost function for the optimization algorithm. Also used to get quantitative

evaluation of the refinements done

306 def cost(p, full_corners , world_coord , radial=False , img_idx=-1, name=None):

307 K, Rs , ts = reconstruct_p(p[:-2] if radial else p)

308

309 all_projected_points = []

310 for k, (R, t) in enumerate(zip(Rs , ts)):

311 # Project points

312 H = np.matmul(K, np.column_stack ((R[:, 0], R[:, 1], t)))

313 pts_h = np.hstack ([world_coord , np.ones((len(world_coord), 1))]) #

Convert to homogeneous coordinates

314 transf_pts = H @ pts_h.T # Apply homography

315 transf_pts = transf_pts.T

316 projected_points = transf_pts [:, :2] / transf_pts [:, 2, np.newaxis]

Normalize by the last row

317

318 # Use radial distortion parameters if desired

319 if radial:

320 x, y = projected_points [:, 0], projected_points [:, 1]

321 k1, k2, x0, y0 = p[-2], p[-1], p[2], p[4]

322 r_squared = (x - x0)**2 + (y - y0)**2

323 x_corrected = x + (x - x0) * (k1 * r_squared + k2 * r_squared **2)

324 y_corrected = y + (y - y0) * (k1 * r_squared + k2 * r_squared **2)

325 projected_points = np.vstack ((x_corrected , y_corrected)).T

326

327 all_projected_points.append(projected_points)

328 # Draw reprojected corners

329 if k == img_idx:

26

330 reproject(all_projected_points , img_idx , name)

331

332 # Calculated the distance between projected corners and ground truth

corners

333 all_projected_points = np.concatenate(all_projected_points , axis =0)

334 full_corners = np.concatenate(full_corners , axis =0)

335 diff = full_corners - all_projected_points

336 return diff.flatten ()

337

338 # Function to draw the projected images onto an image in whic ground truth

corners are already drawn

339 def reproject(all_projected_points , img_idx , name):

340 path = f"/home/aolivepe/Computer -Vision/HW8/output/Pic_{img_idx +

1} _final_intersec.jpg"

341 img = cv2.imread(path)

342 for point in all_projected_points[img_idx]:

343 x, y = int(point [0]), int(point [1])

344 color = (0, 255, 0)

345 thickness = 1

346 cv2.line(img , (x - 5, y - 5), (x + 5, y + 5), color , thickness)

347 cv2.line(img , (x - 5, y + 5), (x + 5, y - 5), color , thickness)

348 cv2.imwrite(f’/home/aolivepe/Computer -Vision/HW8/output/Pic_{img_idx +

1}{ name}reproject.jpg’, img)

349

350 # Function to plot the camera poses for each image of the dataset

351 def camera_poses(Rs , ts):

352 # Calculate the camera centers based on rotations and translations

353 camera_centers = [-R.T @ t for R, t in zip(Rs, ts)]

354

355 # Define the axes for each camera

356 axis_x = [R.T @ np.array ([1, 0, 0]) + center for R, center in zip(Rs,

camera_centers)]

357 axis_y = [R.T @ np.array ([0, 1, 0]) + center for R, center in zip(Rs,

camera_centers)]

358 axis_z = [R.T @ np.array ([0, 0, 1]) + center for R, center in zip(Rs,

camera_centers)]

359

360 # Set up the 3D plot

361 vector_length = 35

362 fig = plt.figure ()

363 ax = fig.add_subplot (111, projection=’3d’)

364

365 # Plot each camera ’s x, y, z axes with color -coded quivers

366 for center , x, y, z in zip(camera_centers , axis_x , axis_y , axis_z):

367 ax.quiver(center [0], center [1], center [2], x[0]- center [0],

x[1]- center [1], x[2]- center [2], color="r", length=vector_length ,

normalize=True)

368 ax.quiver(center [0], center [1], center [2], y[0]- center [0],

y[1]- center [1], y[2]- center [2], color="g", length=vector_length ,

normalize=True)

369 ax.quiver(center [0], center [1], center [2], z[0]- center [0],

z[1]- center [1], z[2]- center [2], color="b", length=vector_length ,

normalize=True)

370

371 # Plot planes based on camera orientation

372 for center , z_axis in zip(camera_centers , axis_z):

373 x_vals , y_vals = np.meshgrid(range(int(center [0] - vector_length),

int(center [0] + vector_length)), range(int(center [1] -

vector_length), int(center [1] + vector_length)))

374 z_vals = -((x_vals - center [0]) * z_axis [0] + (y_vals - center [1]) *

z_axis [1]) / z_axis [2] + center [2]

375 ax.plot_surface(x_vals , y_vals , z_vals , alpha =0.3)

27

376

377 # Plot calibration pattern as a black square

378 center_x , center_y = 20, 60

379 size = 50

380 x_square = [center_x - size / 2, center_x + size / 2, center_x + size /

2, center_x - size / 2]

381 y_square = [center_y - size / 2, center_y - size / 2, center_y + size /

2, center_y + size / 2]

382 z_square = [0, 0, 0, 0]

383 ax.plot_trisurf(x_square , y_square , z_square , color=’black ’)

384

385 ax.set_ylim ([-1, 200])

386 ax.set_zlim ([-300, 0])

387 ax.set_xlabel("X")

388 ax.set_ylabel("Y")

389 ax.set_zlabel("Z")

390

391 # Set orientation of the plot

392 elev = -20

393 azim = 85

394 ax.view_init(elev=elev , azim=azim)

395

396 plt.savefig("3d_vectors_plot.jpg", format="jpg", dpi =300)

397

398 ##

399 # MAIN #

400 ##

401

402 index_img_1 = 0

403 index_img_2 = 10

404

405 dataset_path = "/home/aolivepe/Computer -Vision/HW8/Dataset2"

406 # dataset_path = "/home/aolivepe/Computer -Vision/HW8/HW8 -Files/Dataset1"

407

408 # Get world coordinates

409 x_coords = 10 * np.arange (8)

410 y_coords = 10 * np.arange (10)

411 y_grid , x_grid = np.meshgrid(y_coords , x_coords , indexing=’ij’)

412 world_coord = np.stack ([x_grid.ravel (), y_grid.ravel ()], axis=-1)

413

414 # Get homogrphies and ground truth corners

415 Hs , full_corners = get_homographies(dataset_path , world_coord)

416

417 # Get parameters

418 w = estimate_w(Hs)

419 K = estimate_k(w)

420 print("K: ", K)

421 Rs , ts = estimate_extrinsic_param(Hs , K)

422 print("Rs[index_img_1]: ", Rs[index_img_1])

423 print("ts[index_img_1]: ", ts[index_img_1])

424 print("Rs[index_img_2]: ", Rs[index_img_2])

425 print("ts[index_img_2]: ", ts[index_img_2])

426

427 # Prepare parameters for refinement

428 p = param_cam(K, Rs , ts)

429 # Quantitative metrics for evaluation

430 mean_init_1 , var_init_1 = error(cost(np.array(p), full_corners , world_coord ,

img_idx=index_img_1 , name="_original"), idx=index_img_1)

431 mean_init_2 , var_init_2 = error(cost(np.array(p), full_corners , world_coord ,

img_idx=index_img_2 , name="_original"), idx=index_img_2)

432

433 # Refine and project and quantitative metrics of projection after refinement

28

434 p_lm = least_squares(cost , np.array(p), method=’lm’, args=[full_corners ,

world_coord])

435 mean_refined_1 , var_refined_1 = error(cost(p_lm.x, full_corners , world_coord ,

img_idx=index_img_1 , name="_lm"), idx=index_img_1)

436 mean_refined_2 , var_refined_2 = error(cost(p_lm.x, full_corners , world_coord ,

img_idx=index_img_2 , name="_lm"), idx=index_img_2)

437

438 K_refined , Rs_refined , ts_refined = reconstruct_p(p_lm.x)

439 print("K_refined: ", K_refined)

440 print("Rs_refined[index_img_1]: ", Rs_refined[index_img_1])

441 print("ts_refined[index_img_1]: ", ts_refined[index_img_1])

442 print("Rs_refined[index_img_2]: ", Rs_refined[index_img_2])

443 print("ts_refined[index_img_2]: ", ts_refined[index_img_2])

444

445 # Incorporate radial distortion parameters , refine and quantitative metrics

of projection after refinement

446 p_rad = param_cam(K, Rs , ts)

447 p_rad.extend ([0, 0])

448 p_lm_rad = least_squares(cost , np.array(p_rad), method=’lm’,

args=[full_corners , world_coord , True])

449 mean_radial_1 , var_radial_1 = error(cost(p_lm_rad.x, full_corners ,

world_coord , radial=True , img_idx=index_img_1 , name="lm_w_rad"),

idx=index_img_1)

450 mean_radial_2 , var_radial_2 = error(cost(p_lm_rad.x, full_corners ,

world_coord , radial=True , img_idx=index_img_2 , name="lm_w_rad"),

idx=index_img_2)

451

452 K_refined_rad , Rs_refined_rad , ts_refined_rad = reconstruct_p(p_lm_rad.x[: -2])

453 print("K_refined_rad: ", K_refined_rad)

454 print("Rs_refined_rad[index_img_1]: ", Rs_refined_rad[index_img_1])

455 print("ts_refined_rad[index_img_1]: ", ts_refined_rad[index_img_1])

456 print("Rs_refined_rad[index_img_2]: ", Rs_refined_rad[index_img_2])

457 print("ts_refined_rad[index_img_2]: ", ts_refined_rad[index_img_2])

458

459 print(f"--------------Image {index_img_1}----------------")

460 print(f"|Init mean: {mean_init_1} Init var: {var_init_1}")

461 print(f"|Refined mean: {mean_refined_1} Refined var: {var_refined_1}")

462 print(f"|Radial mean: {mean_radial_1} Radial var: {var_radial_1}")

463 print("[k1 k2] ", p_lm_rad.x[-2:])

464 print("-------------------------------------")

465

466 print(f"--------------Image {index_img_2}----------------")

467 print(f"|Init mean: {mean_init_2} Init var: {var_init_2}")

468 print(f"|Refined mean: {mean_refined_2} Refined var: {var_refined_2}")

469 print(f"|Radial mean: {mean_radial_2} Radial var: {var_radial_2}")

470 print("[k1 k2] ", p_lm_rad.x[-2:])

471 print("-------------------------------------")

472

473 # Get the camera poses plot

474 camera_poses(Rs , ts)

29

	Theory Questions
	Question 1
	Question 2

	Implementation Details
	Corner Detection
	Zhang's Algorithm
	Estimating the intrinsic parameters of the camera
	Estimating the extrinsic parameters of the camera
	Refining the Calibration Parameters
	Radial Distortion (Extra Credit)
	Creating Our Dataset

	Obtained results
	Given Dataset
	My own Dataset

	Observations
	Code

