Homework 8

Alexandre Olivé Pellicer
aolivepe@purdue.edu

1 Theory Questions

1.1 Question 1

Why is the following theoretical observation fundamental to Zhang’s algorithm for camera
calibration?

The observation that the calibration pattern samples the Absolute Conic ., at two Circular Points
is fundamental to Zhang’s algorithm because it allows the extraction of intrinsic camera parameters.
The images of these two points fall on the conic w (the camera image of the Absolute Conic Q)
in the camera image plane. Each of these two points must obey the conic constraint x”wx = 0.
When plugging the coordinates of the two image points in the conic constraint equations, we get
h¥wh; = hfwh, and hfwhy = 0. Therefore, given h; and hy for several positions of the camera,
we can estimate w and from there estimating K, the intrinsic camera parameters. Furthermore, the
Absolute Conic €2, exists independently of the camera’s orientation or position. Its Circular Points
are invariant under Euclidean transformations, making them essential for calibration.

To sum up, in Zhang’s algorithm, this property is used to compute the homography between the
camera image plane and the calibration plane. By leveraging the relationship between)., and the
homography, intrinsic parameters of the camera, such as focal length and principal point, can be
derived without knowing the exact 3D coordinates of the pattern, only requiring its 2D structure.

1.2 Question 2
How would you derive the algebraic form of w from Q.7

The image of the Absolute Conic 2o, on the camera plane is denoted as w. We can derive its algebraic

form doing:
w=KTQ K'=K 'K

where:
o (0 is the 3 x 3 identity matrix
e w is the projection of the Absolute Conic in 3D space () onto the camera image plane.

e K is the camera’s intrinsic matrix that maps points from the world coordinates to the camera
image plane. (More explanation about this matrix is added later in the report)

This would be a long version of the answer following the notes from Lecture 20:

The Absolute Conic ., is defined by the direction vectors x4 that obey xdTI‘o,X 3Xg = 0. We know
that under a homography H<?, a conic C transforms as C' = H-TCH~'. Since the image formation
from the direction vectors x4 to the pixels x is the homography H = KR, w is given by:

w=HTQ H'=H TI33H'=(KR)"T(KR)™*
= (KR)")"YKR)™' = (R"K")"/(KR)™!
K TR TR 1K1 _ K—T(RR—T)—lK—l
=K TK! (1)

The actual pixels on the image conic w would be xwx = 0.

mailto:aolivepe@purdue.edu

Can you prove that w does not contain any real pixel locations?

Any point x in the conic must satisfy x’wx = 0. Since w is derived from the expression w =
K TQ., K1, w is positive definite.

For any real point x, the equation x”wx = 0 can only have imaginary solutions because w is
positive definite, meaning it cannot be zero for any real-valued vector x. Thus, w does not intersect
with the real image plane and does not correspond to any actual pixel locations. Therefore, w does
not contain any real pixel locations. This is a critical theoretical result because it shows that while
w is not directly observable in real images, its properties can still be used to estimate the camera’s
intrinsic parameters through multiple views of the calibration pattern.

2 Implementation Details

2.1 Corner Detection

The steps described in this section are applied in all the images of the dataset. This is the prepocessing
of the input images that we do in order to obtain the corners of each of the squares of the calibration
pattern:

e Canny Edge Detection: First we convert the input image to gray scale and use the cv2.Canny()
function from OpenCV to get the edges of the black squares of the calibration pattern. We exper-
imentally found out that the parameters that performed better where when using as minimum
threshold 300 and maximum threshold 400

e Hough Transform: We use the c¢v2.HoughLines() function from OpenCV to get the vertical
and horizontal lines that composes the calibration pattern. We set the threshold parameter to
50. Since the Canny edge detector approach is not perfect at pixel level, after using the Hough
Transform to get the lines, we will get multiple lines for each border of the squares. This is
not the desired behavior since there is only one true line per side. Therefore, we implement
an approach to group lines that should correspond to a unique true line and get the final line
from that group as the average. We first separate vertical and horizontal. We classify a line as
horizontal or as vertical depending on the value of 8 given by the Hough Transform. The lines
corresponding to the same group will have a similar p which is given by the Hough Transform.
Therefore, we group vertical and horizontal lines according to how similar is their p. Finally, we
average the grouped lines to get a final true line. We end up getting 10 horizontal true lines and
8 vertical true lines.

e Corner Correspondences: We get the corners of the calibration pattern as the intersection
between horizontal and vertical lines. Therefore, we will get 80 intersections, 4 corners for each
of the 20 squares of the pattern. In order to generate the world coordinates, we consider that
the calibration pattern is in the Z = 0 plane, the first corner is at (0, 0) and that the distance
between corners is 10.

2.2 Zhang’s Algorithm

In this homework we have used Zhang’s algorithm for camera calibration. We have assumed that
we have been using a pin-hole camera (i.e. we will estimate all the 5 intrinsic parameters and the
6 extrincsic parameters that determine the position and orientation of the camera with respect to a
reference world coordinate system). In this section we do an explanation of this algorithm.

We use the calibration pattern provided in the instructions. It is assumed to be in the Z = 0 plane
of the world frame. The homogeneous representation of a pixel coordinates x = (x,y,w)? and the
homogeneous representation of the corresponding world coordinates xp; = (x,y, z, w) are related by
the following equation

x = K [R|t] = Hxyy (2)

g ow 8

where:

K is the camera intrinsic parameter

R is the world-to-camera rotation matrix

t is the world-to-camera translation vector

H is the homography

® XN = [ac,y,w]T

Note that the homography H is estimated using the corners estimated from the corner detec-
tion approach that we have used in this homework explained in the previous section. We can write
homography H as H = [hy, hy, hg]

The image of the Absolute Conic Q. is given by w = K~TK~!. And the two circular points on
the image conic w give us two equations

hiwh; = hiwh, (3)

h¥why =0 (4)
w is a 3 X 3 symmetric matrix which can be written as:

w11 Wiz W13
W= |Wi2 W22 W23|, (5)
W13 W23 W33

See that there are only 6 unknowns in w.

Given N images of the calibration pattern from different angles, we can calculate the set of homo-
graphies that relates the world coordinates with the coordinates of the calibration pattern of each of
the images taken from different angles and positions. We end up getting N homographies that they
are obtained using Singular Value Decomposition taking the right column vector of V.

Given an homography H:

hi1 hiz his
H = |ha1 hae hos (6)
h31 hsa hss
we can rewrite Equations 3 and 4 as:
T
hii — his w11

2h11ho1 — 2h12ha2 w12
2h11h31 — 2h12h32 w13

—0 7
h%1 - h%z W22 ()
2ha1h31 — 2haohaa wa3
h31 — h3, w33
hi1hio g w11
hi1hoo 4 hi2ho w12
hi1hsa + hi2ha: w13
=0 8
ha1haoo Wo ®)
ha1hsa + haohsy w3
ESLED w33

Using SVD, we can solve this set of homogeneous equations and end up getting w.

2.3 Estimating the intrinsic parameters of the camera

The intrinsic parameters of the camera are contained in the matrix K which can be written as:

Each of these intrinsic parameters can be calculated as:

—w11Wa3 + Wi2wWi3
Yo = 3 (10)
W11W22 — Wi

2
_ wiz + yo(—wii1was + wipwi)

A= wss onr (11)
A
Y AN 12
Qg Wi (12)
A
a, = /# (13)
W11W22 — WYy
- aiaywlz (14)
B A
—a2w13 SYo
_ z 299 15
o vt . (15)

2.4 Estimating the extrinsic parameters of the camera

R and t are the extrinsic parameters.
Given an homography H = [hy, hs, hs] we can estimate R = [rq,r2,r3] and ¢ as follows (£ is a scale
factor):

€ = T (16)
ry =¢(K thy (17)
ry = &K thy (18)
rs =1 XTIy (19)
t=EK thy (20)

To ensure that R is orthogonal, we perform SVD such that R = UDV”, and then redefine R as
R=UVT.
2.5 Refining the Calibration Parameters

The estimations K, R and t will give us some good result. Nevertheless, this result can be improved
by refining K, R and ¢ using a non-linear least squares optimization approach.

We project the points from world coordinated to image coordinates using the actual K, R and ¢
for different images. We compute the Euclidean distance between the projected points and the actual
points. We sum all the distances. This is the cost function that we use for the non-linear least squares
optimization approach. We can write the cost function as:

d? = ZZ @5 — 24511 = ZZ @iy — K [ran o] @i (21)
i g P

where:
e z;; is each of the actual points

e 1;; is each of the projected points

Before applying the LM optimization algorithm, it is important to modify the representation of the
rotation matrix R. Following the theory from Lecture 21, in any optimization algorithm, the number
of variables used to represent an entity must equal the DoF of the entity. The rotation matrix has 9
elements but only 3 degrees of freedom (DoF). We need a 3-parameter representation of the rotation
matrix. We use the Rodrigues Representation in which a rotation in 3D is expressed as a vector w,
which is computed as:

32 —T23
W= ——"— |ri3—ra (22)
2sing
21 — T12

where

¢ =cos ! (trace(f)_l) (23)

In order to go from w back to R we can do the following operations:

0 —Ws3 wo
= | ws —w1
w 0 24
— W2 w1 0
si 1 — cos
R=eV = Iys + H;@W+ . L2 (25)

where ¢ = ||w]|.

2.6 Radial Distortion (Extra Credit)

In practical applications, real-world cameras often exhibit a phenomenon known as radial distortion,
where straight lines in the scene appear curved in the captured image. This effect arises due to the
inherent imperfections in the lens design, which cause light rays to deviate from their ideal pinhole
model trajectory as they pass through the lens. This distortion can be corrected using:

frad = &+ (2 — 20) (k17?4 kor?) (26)

Jrad =+ (9 — yo) (k1r® + kar?) (27)

where:
e (Z,7) are the projected pixel coordinates before radial distortion correction
® (&rad, Grad) are the projected pixel coordinates after radial distortion correction

Note that the values of k; and k5 are calculated using the LM algorithm.
The parameters k; and ko, which characterize the radial distortion, are refined together with K,
R and t also following the approach explained in Section 2.5.

2.7 Creating Our Dataset

We have built a dataset with a total of 21 images of the calibration pattern provided in the instructions
which was printed. We have used an iPhone 12. The focal length was set to 26 mm. The distance
between the camera and the ”Fixed Image” was 32.4 cm approximately. With a ruler we measure that
the side of the squares is 2.2 cm. We have set this distance to be 10 in digital. Therefore, the digital
distance from the center of projection to the ”Fixed Image” in digital would be:

(2.6 + 32.4)10

=159.1 2
59 99 (28)

3 Obtained results

3.1 Given Dataset

Figure 1 and 2 show the 4 images resulting from the preprocessing of the images in the dataset. It
contains the edges after using the Canny edge detector, the multiple lines resulting from the Hough
Transform, the final selected lines and the final intersection points.

(b) Lines resulting from the Hough Transform

(c) Final selected lines (d) Final intersection points

Figure 1: Preprocessing of image 4 from the given dataset.

(a) Edges after using the Canny edge detector (b) Lines resulting from the Hough Transform

(c) Final selected lines (d) Final intersection points

Figure 2: Preprocessing of image 10 from the given dataset.

Figures 3 and 4 show the projection results at the beginning and after the refinements. See that
reprojected corners are printed in green color. Red corners correspond to ground truth corners. Repro-
jected corners are drawn above ground truth corners. Therefore, not seeing the ground truth corner
means almost perfect reprojection.

(a) Original corners) Initial projection
¢) Projection after LM (d) Projection after LM with radial distortion

Figure 3: Comparison of the projection of the world coordinates onto the pattern from image 4 in the
given dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after
the refinements:

71746 0.58 317.77 72242 1.73 321.43 728.05 1.72 319.50
Kinit = 0 714.16 23740 Kpym = 0 719.71 238.28| Kradial = 0 725.66 238.89
0 0 1 0 0 1 0 0 1
(29)
0.999 0.006 0.041 0.999 0.006 0.037 0.999 0.005 0.037
Rinit = |—0.004 0.999 —0.035| Ry = |—0.003 0.999 —0.038| Rrqdiat = |—0.004 0.999 —0.034
—-0.041 0.035 0.998 —-0.037 0.038 0.998 —0.037 0.034 0.998
(30)

tinit = [—35.57 —40.76 166.52] t;n = [—36.36 —41.12 167.82] tyqair = [—35.91 —41.27 168.08]
(31)

ki = —2.93% — 7 ks = 1.912¢ — 12 (32)

(a) Original corners) Initial projection
(c) Projection after LM (d) Projection after LM with radial distortion

Figure 4: Comparison of the projection of the world coordinates onto the pattern from image 10 in
the given dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after
the refinements (matrices Ks are the same as stated for image 4):

0.868 0.106 0.484 0.874 0.105 0.474 0.872 0.105 0.476
Rinit = |—0.069 0.993 —0.094| Ry = | —0.069 0.993 —0.091| Rrqdiat = |—0.069 0.993 —0.093
—0.491 0.048 0.869 —0.480 0.047 0.875 —0.482 0.048 0.874

(33)

tinit = [~43.432 —41.000 182.717] tras = [~44.486 —41.589 184.471] tyquiar = [~44.004 —41.746 184.640]
(34)

ki = —2.939% — 7 kg =1.912¢ — 12 (35)

Table 1 shows the quantitative evaluation of the projection error

Metric Image 4 | Image 10
Initial error mean 1.01774 1.5646
Initial error variance 0.3092 0.7657
Error mean after LM 0.8693 1.0625
Error variance after LM 0.1785 0.2874
Error mean after LM + radial 0.7890 0.9558
Error variance after LM + radial | 0.1652 0.2662

Table 1: Error mean and variance for images 4 and 10 of the given dataset

Figure 5 shows the camera poses that has been used in order to create the given dataset in the
instructions. The black box simulates the position of the calibration pattern.

0 -50-100-150
,,J:,,,,,,,’,!L,,» ,‘_;‘-'; [

Figure 5: Camera poses to create the images of the calibration pattern in the given dataset

10

3.2 My own Dataset

Figure 6 and 7 show the 4 images resulting from the preprocessing of the images in the dataset. It
contains the edges after using the Canny edge detector, the multiple lines resulting from the Hough
Transform, the final selected lines and the final intersection points.

(a) Edges after using the Canny edge detector (b) Lines resulting from the Hough Transform

|

(c) Final selected lines (d) Final intersection points

Figure 6: Preprocessing of image 4 from my dataset.

11

(a) Edges after using the Canny edge detector (b) Lines resulting from the Hough Transform

im
n
iﬂix

ﬁ gﬁ fﬂ 7Tai‘ 5702

(c) Final selected lines (d) Final intersection points

Figure 7: Preprocessing of image 10 from my dataset.

12

Figures 8 and 9 show the projection results at the beginning and after the refinements. See that
reprojected corners are printed in green color. Red corners correspond to ground truth corners. Repro-
jected corners are drawn above ground truth corners. Therefore, not seeing the ground truth corner
means almost perfect reprojection.

(a) Original corners) Initial projection
(c) Projection after LM (d) Projection after LM with radial distortion

Figure 8: Comparison of the projection of the world coordinates onto the pattern from image 4 in my
dataset

13

These are the camera matrix, rotation matrix and translation matrix at the beginning and after
the refinements:

489.356 —0.433 238.076 492.779 —0.253 239.687 478.630 —0.240 238.052
Kinit = 0 493.202 316.913| Ky = 0 496.544 317.690 | Kradial = 0 481.911 318.075
0 0 1 0 0 1 0 0 1
(36)
0.928 —0.215 0.302 0.921 —-0.207 0.329 0.920 —-0.205 0.332
Rinit =] 0292 0926 —0.237(Rpapy = | 0297 0920 —0.253| Ryqdia = | 0.298 0.919 —0.256
—-0.229 0309 0.923 —0.250 0.331 0.909 —-0.253 0.335 0.907
(37)

tinit = [~47.68 —20.517 168.201] tra = [~47.803 —29.392 167.734] tyquiar = [~47.266 —29.508 164.223]
(38)

ki = 6.267e — 7 ky = —6.473¢ — 12 (39)

14

(a) Original corners (b) Initial projection

(c) Projection after LM (d) Projection after LM with radial distortion

Figure 9: Comparison of the projection of the world coordinates onto the pattern from image 10 in
my dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after
the refinements (matrices Ks and coefficients k1 and ko are the same as stated for image 4):

15

0.885 —0.156 —0.436 0.886 —0.158 —0.433 0.889 —0.158 —0.429
Rinit = 10.088 0.981 —0.170| Ry = |0.087 0980 —0.178| Rrqdiat = [0.087 0979 —0.179
0.455 0.112 0.883 0.453 0.120 0.883 0.449 0.121 0.885

(40)

tinit = [~17.015 —43.200 147.223] tpnr = [~17.543 —43.748 148.756] t,quiar = [~17.038 —43.870 145.225]
(41)

ki = 6.267¢ — 7 ky = —6.473¢ — 12 (42)

16

Finally, we also show the performance with the ”Fixed Image” so that we can validate the obtained
results with the metrics calculated in Section 2.7
Figure 10 shows the 4 images resulting from the preprocessing of the Fixed Image in the dataset.

It contains the edges after using the Canny edge detector, the multiple lines resulting from the Hough
Transform, the final selected lines and the final intersection points.

(a) Edges after using the Canny edge detector

(b) Lines resulting from the Hough Transform

E NN
L BB
NN
(B W
[BB M B

(c) Final selected lines (d) Final intersection points

Figure 10: Preprocessing of Fixed Image from my dataset.

17

Figure 11 shows the projection results at the beginning and after the refinements. See that repro-
jected corners are printed in green color. Red corners correspond to ground truth corners. Reprojected
corners are drawn above ground truth corners. Therefore, not seeing the ground truth corner means
almost perfect reprojection.

(a) Original corners (b) Initial projection

(c) Projection after LM (d) Projection after LM with radial distortion

Figure 11: Comparison of the projection of the world coordinates onto Fixed Image in my dataset

These are the camera matrix, rotation matrix and translation matrix at the beginning and after

18

the refinements (matrices Ks and coefficients k1 and ko are the same as stated for image 4):

0.999 0.020 0.003 0.999 0.020 0.004 0.999 0.019 —0.0009
Rinie = [—0.019 0.997 —-0.065| Rrpr = |—0.019 0.997 —0.069| Rrgdiaci = | —0.019 0.997 —0.072
—0.004 0.065 0.997 —0.005 0.069 0.997 —0.0005 0.072 0.997
(43)

tinit = [~31.899 —38.917 159.520] trn = [~32.392 —39.276 160.829] trquia = [~31.819 —39.389 157.063]
(44)

ki = 6.267¢ — 7 ky = —6.473¢ — 12 (45)

Table 2 shows the quantitative evaluation of the projection error

Metric Image 4 | Image 10 | Fixed Image
Initial error mean 2.1072 1.2747 0.8405
Initial error variance 0.8061 0.3647 0.2528
Error mean after LM 0.7849 0.7801 0.7452
Error variance after LM 0.1935 0.1366 0.1353
Error mean after LM + radial 0.6531 0.7128 0.6620
Error variance after LM + radial | 0.1417 0.1251 0.1281

Table 2: Error mean and variance for images 4 and 10 and Fixed Image of my dataset

Figure 12 shows the camera poses that have been used in order to create my dataset. The black
box simulates the position of the calibration pattern.

150 100 50 0 —50 —100

Figure 12: Camera poses to create the images of the calibration pattern in the given dataset

19

4 Observations

For both, the given dataset and the dataset that we have created we see the same behavior. When
reprojecting the corners from the world coordinated onto the selected images we can qualitatively
see that the error is reduced after refining the parameters using the LM optimization algorithm and
it is even more reduced after incorporating the radial distortion parameters from the ”Extra Credit”
section of the instructions. This is the desired behavior. Since it is difficult to perceive this improvement
visually, we have also shown in tables how the mean and variance error of the reprojection is reduced
after refining and even more reduced when refining using the radial distortion parameters. Thus, these
quantitative metrics support our qualitative evaluation.

Finally, for the "Fixed Image” in the dataset that we have created, we can also see how the 3rd
component of the translation vector ¢ is vary close to the digital distance that we computed in Section
2.7: 159.1. This can serve as a confirmation that our implementation of the tasks asked in this
assignment were correctly accomplished.

20

5 Code

import
import
import
import

matplotlib.pyplot as plt
numpy as np

math

cv2

from scipy.optimize import least_squares
import os
from scipy.stats import gmean

function to find the intersection of 2 lines given 2 points to define each
line
def find_intersection(hline, vline):

x1
x2
x3
x4

B

B

B

>

y1 = hline [0][0], hline[0][1]
y2 = hline[1]1[0], hline[1][1]
y3 = vline[0][0], vline [0][1]
y4 = vline[1][0], vline[1][1]

Create first line

Al
Bl
C1

y2 - yi
= x1 - x2
A1l * x1 + Bl * yi1

Create second line
A2 = y4 - y3

B2
Cc2

#
D
X
y

F

= x3 - x4
= A2 * x3 + B2 * y3

ind intersections

A1l * B2 - A2 x B1

(C1 * B2 - C2 *x B1) / D
(A1 * C2 - A2 *x C1) / D

return (int(x), int(y))

Group lines that correspond to the same true line
def group_lines(lines, part):

clusters = []

temp_cluster = [lines [0]]

Store rho distances between lines and set threshold in those places

where distance between lines is higher (should correspond to
different groups)

dist = []
for k in range(len(lines) - 1):

dist.append(lines[k + 1]1[0] - lines[k][0])

threshold = np.partition(dist, -part)[-part]

Group lines depending on the threshold and distance
for line in lines[1:]:

rho = line [0]

prevrho = temp_cluster [-1][0]

if rho - prevrho < threshold:
temp_cluster.append(line)

else:
clusters.append(temp_cluster)
temp_cluster = [line]

if temp_cluster:

clusters.append(temp_cluster)

#return found groups

21

57 return clusters

5o # Function to given a group of lines find the true line
60 def get_line(line_form, img, tipo):

61 final_lines = []

62 for lines in line_form:

63 if tipo == "h":

64 for i, line in enumerate(lines):

65 if line[0] > O:

66 lines[i] = [1line[0], 1line[1]]

67 else:

68 lines[i] = [-1line[0], line[1] - np.pil
69

70 if tipo == "v'":

71 for i, line in enumerate (lines):

72 if line[2] == 1:

73 lines[i] = [1line[0], 1line[1]]

74 else:

75 lines[i] = [1line[0], 1line[1] - np.pil
76

77 rho_val = np.array([line[0] for line in lines])

78 theta_val = np.array([line[1] for line in lines])
79 # Compute the new rho and theta as the average of the given lines
80 new_rho = gmean(rho_val)

81 new_theta = np.mean(theta_val)

82 new_rho, new_theta = (-new_rho, new_theta + np.pi) if new_theta < O

else (new_rho, new_theta)

84 ptl = (int(math.cos(new_theta) * new_rho + 5000 *
(-math.sin(new_theta))), int(math.sin(new_theta) * new_rho + 5000
* (math.cos(new_theta))))

85 pt2 = (int(math.cos(new_theta) * new_rho - 5000 =*
(-math.sin(new_theta))), int(math.sin(new_theta) * new_rho - 5000
* (math.cos(new_theta))))

87 # Get the points for that line and store it
88 final_lines.append ([ptl, pt2])
89 # Draw line

90 cv2.line(img, ptl, pt2, (255, 0, 0), 3, cv2.LINE_AA)
92 return final_lines

94 # Main function to find the corners of the calibration pattern for each image
of the dataset

o5 def get_cormners(path, name):

96 img = cv2.imread(path)

97 # Apply canny to gray image

98 edges = cv2.Canny(cv2.cvtColor (img, cv2.COLOR_RGB2GRAY), 400, 300)
99 cv2.imwrite(f’/home/aolivepe/Computer-Vision/HW8/output/{name} _edges.jpg’,
edges)

100
101 # Use Hough transform to get the lines given the edge image. Classify
images in vertical or horizontal depending on the value of rho and

theta
102 lines = cv2.HoughLines(edges, 1, np.pi / 180, 50, None, 0, 0)
103 vliines = []

104 hlines = []

105 img_lines = np.copy(img)

106 if lines is not None:

107 for i in range(len(lines)):
108 rho = lines[i] [0][0]

109 theta = lines[i][0][1]

22

110 if (rho < 0 and theta > 3 * np.pi / 4) or (rho > 0 and theta <

np.pi / 4):
111 vlines.append ((np.abs(lines[i][0][0]), lines[i][0][1],
np.sign(rho)))
112 else:
113 hlines.append((lines[i][0][0], lines[i][0][1]1))

115 ptl = (int(math.cos(theta) * rho + 5000 * (-math.sin(theta))),
int (math.sin(theta) * rho + 5000 * (math.cos(theta))))

116 pt2 = (int(math.cos(theta) * rho - 5000 * (-math.sin(theta))),
int (math.sin(theta) * rho - 5000 * (math.cos(theta))))

117 cv2.line(img_lines, ptl, pt2, (0, 255, 255), 4, cv2.LINE_AA)

119 cv2.imwrite (f’/home/aolivepe/Computer -Vision/HW8/output/{name}_lines. jpg’,
img_lines)

121 hlines = np.sort(np.array(hlines, dtype=[(’’, np.float32), (’’,
np.float32)]), axis=0)

122 vlines = np.sort(mnp.array(vlines, dtype=[(’’, np.float32), (’’,
np.float32), (’’, int)]), axis=0)

9)
7)

125 real_hlines = group_lines(hlines, part
126 real_vlines = group_lines(vlines, part

129 img_final_lines = np.copy(img)

130 assert len(real_hlines) == 10

131 assert len(real_vlines) == 8

132 hoz_lines = get_line(real_hlines, img_final_lines, "h")

133 ver_lines = get_line(real_vlines, img_final_lines, "v"

134 cv2.imwrite (f’/home/aolivepe/Computer-Vision/HW8/output/{name}_all_lines. jpg’,
img_final_lines)

137 intersect = []

138 img_intersec = np.copy(img)

139 for hoz_line in hoz_lines:

140 for ver_line in ver_lines:

141 pt = find_intersection(hoz_line, ver_line)

142 intersect.append(pt)

143 X, y = pt

144 color = (0, 0, 255)

145 thickness = 1

146 cv2.line(img_intersec, (x - 5, y - 5), (x + 5, y + 5), color,
thickness)

147 cv2.line(img_intersec, (x - 5, y + 5), (x + 5, y - 5), color,
thickness)

148 number = str(len(intersect))

149 font = cv2.FONT_HERSHEY_SIMPLEX

150 font_scale = 0.5

151 text_thickness = 1

152 text_position = (x + 7, y + 7)

153 cv2.putText (img_intersec, number, text_position, font,
font_scale, color, text_thickness)

155 cv2.imwrite(f’/home/aolivepe/Computer-Vision/HW8/output/{name}_final_intersec. jpg’,
img_intersec)
156 return intersect

150 def get_homography(d_pts, r_pts):

23

160 mat_A = []

161 for i in range(len(r_pts)):

162 mat_A.append ([0, O, O, -d_pts[i][0], -d_pts[il[1], -1, r_pts[i][1] =
d_pts[il[0], r_pts[il[1] * d_pts[il[1]l, r_pts[il[111)

163 mat_A.append ([d_pts[i][0], d_pts[i]l[1], 1, O, O, O, -r_pts[i][0] =*
d_pts[il[0], -r_pts[il[0] * d_pts[il[1], -r_pts[il[0]11)

164 mat_A = np.array(mat_A)

166 _, _, v = np.linalg.svd(mat_A.T @ mat_A)
167 return np.reshape(v[-1], (3, 3))

170 def get_homographies(data_path, world_coord):

171 jpg_files = [f for f in os.listdir(data_path) if
f.lower () .endswith(’.jpg’)]

172 print ("Num images in dataset: ", len(jpg_files))

173 jpg_files.sort ()

175 homographies = []

176 intersecs_total = []

177 for i, file in enumerate(jpg_files, start=1):

178 path = os.path.join(data_path, file)

179 intersec_points = get_corners(path, name=f’Pic_{i}’)

180 intersecs_total.append(intersec_points)

181 homographies.append (get_homography (world_coord, intersec_points))
182 return homographies, intersecs_total

15 def calculate_w_matrix_coefficients(h):

186 hi, h2 = h([:, 0], h[:, 1]
187

188

189 eql_coeffs = [

190 h1[0]**2 - h2 [0]**2,

191 2 *x (h1[0] = hi1i[1] - h2[0] * h2[1]),
102 2 * (h1[0] * hi1[2] - h2[0] * h2[2]),
193 h1[1]**2 - h2 [1]**2,
194 2 % (h1[1] * hi1[2] - h2[1] * h2[2]),
105 h1[2]**2 - h2[2]**2

196]

198 eq2_coeffs = [

199 h1[0] * h2[0],

h1[0] * h2[1] + h1[1] * h2[0],
201 h1[0] * h2[2] + hi1[2] * h2[0],
202 hi1[1] * h2[1],

203 h1[1] * h2[2] + h1[2] * h2[1],
204 hi[2] * h2[2]

05 1

207 return np.array([eql_coeffs, eq2_coeffs])

210 def estimate_w(homographies):

211 lhs = []

212 for h in homographies:

213 lhs.append(calculate_w_matrix_coefficients (h) [0])
214 lhs.append(calculate_w_matrix_coefficients (h) [1])

216 lhs = np.asarray(lhs, dtype=np.float64)

24

Use last vector of V in SVD to find w

-

_, v = np.linalg.svd(1lhs)

w_solution = v[-1, :]
return w_solution

Estimate K given w. First calculate all the coefficients following the

equations from the report and then form matrix K
def estimate_k(w):
will, wi12, w13, w22, w23, w33 = w

yo

lam

S

x0

K

= (w12 * w13 - wil * w23) / (wll * w22 - wil2 **x 2)

= w33 - (w13 ** 2 + y0O * (w12 * w13 - will * w23)) / will
alphax = np.sqrt(lam / will)
alphay = np.sqrt(lam * wil / (wll * w22 - wl2 ** 2))

-(w12 * alphax ** 2 * alphay) / lam
= s *x y0O / alphay - (w13 * alphax ** 2) / lam

np.array([[alphax, s, x0],
[0, alphay, yoOIl,
[o, o, 111

return K

Estimate the extrinsic parameters for each image given the homography and

K. Compute parameters following equations from the report
def estimate_extrinsic_param(homographies, K):

rot = []

trans = []

K_inv = np.linalg.inv(X)

for H in homographies:

h1l, h2, h3 = H[:, 0], H[:, 11, H[:, 2]

rl = K_inv @ hl / np.linalg.norm(K_inv @ hl)
r2 = K_inv @ h2 / np.linalg.norm(K_inv @ hl)
r3 = np.cross(rl, r2)

t = K_inv @ h3 / np.linalg.norm(K_inv @ hil)
R = np.stack([rl,r2,r3], axis=1)

Enforce orthogonality

u, _, v = np.linalg.svd(R)

R=uo@yv

rot.append(R)
trans.append (t)

return rot, trans

Create vector with all the parameters for each image

is needed for the optimization algorithm
def param_cam(X, rots, trans):

p

(kfo, ol, k[0, 11, K[0, 2], K[1, 11, K[1, 2]]

Use Rodrigues Representation for R
for R, t in zip(rots, trans):

p-extend(np.hstack (((np.arccos((np.trace(R) - 1) / 2)

np.sin(np.arccos ((np.trace(R) - 1) / 2)))) * np.array([R[2,

R[1, 2], rR[O, 2] - R[2, O], R[1, O] - R[O, 111),

return p

Given the flettened vector p, reconstruct the parameters K,
def reconstruct_p(p):

K

np.array ([[p[0], pl[1], p[21]1,
[o, p[3], pl[4]1],

25

in the dataset.

/(2

t)))

R and t

This

1]

291

292

294

295

296

298

299

300

301

def

def

[o, o, 1111

rotation_matrices, translation_vectors = [], []
step_size = 6
for idx in range(5, len(p), step_size):
rot_vec = plidx:idx+3]
trans_vec = p[idx+3:idx+6]
rot_angle = np.linalg.norm(rot_vec)
skew_matrix = np.array ([

[0, -rot_vec[2], rot_vec[1]],
[rot_vec[2], 0, -rot_vec[0]],
[-rot_vec[1], rot_vec[0], O]

D
identity_matrix = np.identity (3)
R_matrix = identity_matrix + (np.sin(rot_angle) / rot_angle) *

skew_matrix + ((1 - np.cos(rot_angle)) / (rot_angle ** 2)) *
(skew_matrix @ skew_matrix)

rotation_matrices.append(R_matrix)
translation_vectors.append(trans_vec)

return K, rotation_matrices, translation_vectors

error (diff, idx):

diff = diff.reshape((-1 , 2))

start = idx * 80

end = start + 80

diff_norm = np.linalg.norm(diff[start:end], axis =1)
return np.average(diff_norm), np.var (diff_norm)

cost(p, full_corners, world_coord, radial=False, img_idx=-1, name=DNone):
K, Rs, ts = reconstruct_p(p[:-2] if radial else p)

all_projected_points = []
for k, (R, t) in enumerate(zip(Rs, ts)):

H = np.matmul (K, np.column_stack((R[:, 0], R[:, 11, t)))
pts_h = np.hstack([world_coord, np.ones((len(world_coord), 1))]1)

transf_pts = H @ pts_h.T
transf_pts = transf_pts.T
projected_points = transf_pts([:, :2] / transf_pts[:, 2, np.newaxis]

if radial:
X, y = projected_points[:, 0], projected_points[:, 1]
k1, k2, x0, yo = p[-2], p[-1]1, pl[2], pl4]
r_squared = (x - x0)**2 + (y - y0)*x*2

x_corrected = x + (x - x0) * (k1 * r_squared + k2 * r_squared**2)
y_corrected = y + (y - y0O) * (k1 * r_squared + k2 * r_squared**2)
projected_points = np.vstack((x_corrected, y_corrected)).T

all_projected_points.append(projected_points)

26

330 reproject(all_projected_points, img_idx, name)

332 # Calculated the distance between projected corners and ground truth

corners
333 all_projected_points = np.concatenate(all_projected_points, axis=0)
334 full_corners = np.concatenate(full_corners, axis=0)
335 diff = full_corners - all_projected_points

336 return diff.flatten ()

338 # Function to draw the projected images onto an image in whic ground truth
corners are already drawn
330 def reproject(all_projected_points, img_idx, name) :
340 path = f"/home/aolivepe/Computer-Vision/HW8/output/Pic_{img_idx +
1} _final_intersec.jpg"

341 img = cv2.imread (path)

342 for point in all_projected_points[img_idx]:

343 x, y = int(point [0]), int(point[1])

344 color = (0, 255, 0)

345 thickness = 1

346 cv2.line(img, (x - 5, y - 5), (x + 5, y + 5), color, thickness)

347 cv2.line(img, (x - 5, y + 5), (x + 5, y - 5), color, thickness)

348 cv2.imwrite(f’/home/aolivepe/Computer-Vision/HW8/output/Pic_{img_idx +

1}{namel}reproject.jpg’, img)

350 # Function to plot the camera poses for each image of the dataset

351 def camera_poses(Rs, ts):

352 # Calculate the camera centers based on rotations and translations
353 camera_centers = [-R.T @ t for R, t in zip(Rs, ts)]

355 # Define the axes for each camera

356 axis_x = [R.T @ np.array([1, O, 0]) + center for R, center in zip(Rs,
camera_centers)]

357 axis_y = [R.T @ np.array([0, 1, 0]) + center for R, center in zip(Rs,
camera_centers)]

358 axis_z = [R.T @ np.array ([0, 0, 1]) + center for R, center in zip(Rs,

camera_centers)]

360 # Set up the 3D plot

361 vector_length = 35

362 fig = plt.figure()

363 ax = fig.add_subplot (111, projection=’3d’)

365 # Plot each camera’s x, y, z axes with color-coded quivers

366 for center, x, y, z in zip(camera_centers, axis_x, axis_y, axis_z):

367 ax.quiver (center [0], center[1], center[2], x[0]-center[0],
x[1]-center[1], x[2]-center[2], color="r", length=vector_length,
normalize=True)

368 ax.quiver (center [0], center[1], center[2], y[0]-center[O0],
y[1]l-center[1], y[2]-center[2], color="g", length=vector_length,
normalize=True)

369 ax.quiver (center [0], center[1], center[2], z[0]-center[O0],
z[1]-center[1], z[2]-center[2], color="b", length=vector_length,
normalize=True)

371 # Plot planes based on camera orientation

372 for center, z_axis in zip(camera_centers, axis_z):

373 x_vals, y_vals = np.meshgrid(range(int(center[0] - vector_length),
int (center [0] + vector_length)), range(int(center[1] -
vector_length), int(center[1] + vector_length)))

374 z_vals = -((x_vals - center[0]) * z_axis[0] + (y_vals - center[1]) *
z_axis [1]) / z_axis[2] + center[2]

375 ax.plot_surface(x_vals, y_vals, z_vals, alpha=0.3)

27

377 # Plot calibration pattern as a black square

378 center_x, center_y = 20, 60

379 size = 50

380 x_square = [center_x - size / 2, center_x + size / 2, center_x + size /
2, center_x - size / 2]

381 y_square = [center_y - size / 2, center_y - size / 2, center_y + size /
2, center_y + size / 2]

382 z_square = [0, 0, 0, O]

383 ax.plot_trisurf (x_square, y_square, z_square, color=’black’)

384

385 ax.set_ylim([—l, 200]1)

386 ax.set_zlim ([-300, O0])

387 ax.set_xlabel ("X")

388 ax.set_ylabel("Y")

389 ax.set_zlabel ("Z")

39

391 # Set orientation of the plot

392 elev = -20

393 azim = 85

394 ax.view_init (elev=elev, azim=azim)

395

396 plt.savefig("3d_vectors_plot.jpg", format="jpg", dpi=300)
397

308 HABHAHAHHAHAHBAHAHBABABRAHAH AR HAHBHBAHAHBHBHSH

390 # MAIN #

100 HHHBHAHAHHAHAHHAHAHBAHAH RS HAH RS RS H AR B S H AR HRHAHH

401

202 index_img_1 = 0

103 index_img_2 = 10

404

105 dataset_path = "/home/aolivepe/Computer-Vision/HW8/Dataset2"

106 # dataset_path = "/home/aolivepe/Computer-Vision/HW8/HW8-Files/Datasetl"

407

108 # Get world coordinates

109 x_coords = 10 * np.arange (8)

110 y_coords = 10 * np.arange (10)

411 y_grid, x_grid = np.meshgrid(y_coords, x_coords, indexing=’ij’)
112 world_coord = np.stack([x_grid.ravel(), y_grid.ravel()], axis=-1)
413

414 # Get homogrphies and ground truth corners

115 Hs, full_corners = get_homographies(dataset_path, world_coord)
416

417 # Get parameters

118 W = estimate_w(Hs)

119 K = estimate_k (w)

420 print("K: ", K)

121 Rs, ts = estimate_extrinsic_param(Hs, K)

122 print ("Rs[index_img_1]: ", Rs[index_img_11])

123 print("ts[index_img_1]: ", ts[index_img_11])

s2¢ print ("Rs[index_img_2]: ", Rs[index_img_21])

125 print ("ts[index_img_2]: ", ts[index_img_21])

127 # Prepare parameters for refinement

125 p = param_cam(K, Rs, ts)

4290 # Quantitative metrics for evaluation

130 mean_init_1, var_init_1 = error(cost(mnp.array(p), full_corners, world_coord,
img_idx=index_img_1, name="_original"), idx=index_img_1)

431 mean_init_2, var_init_2 = error(cost(mnp.array(p), full_cormers, world_coord,
img_idx=index_img_2, name="_original"), idx=index_img_2)

432

433 # Refine and project and quantitative metrics of projection after refinement

28

34 p_lm = least_squares(cost, np.array(p), method=’1lm’, args=[full_cormners,
world_coord])

135 mean_refined_1, var_refined_1 = error(cost(p_lm.x, full_corners, world_coord,
img_idx=index_img_1, name="_1m"), idx=index_img_1)

136 mean_refined_2, var_refined_2 = error(cost(p_lm.x, full_corners, world_coord,
img_idx=index_img_2, name="_1m"), idx=index_img_2)

137

133 K_refined, Rs_refined, ts_refined = reconstruct_p(p_lm.x)

130 print ("K_refined: ", K_refined)

110 print("Rs_refined[index_img_1]: ", Rs_refined[index_img_11])

111 print("ts_refined[index_img_1]: ", ts_refined[index_img_1])

112 print ("Rs_refined[index_img_2]: ", Rs_refined[index_img_2])

115 print("ts_refined[index_img_2]: ", ts_refined[index_img_2])

1457 # Incorporate radial distortion parameters, refine and quantitative metrics
of projection after refinement

16 p_rad = param_cam(K, Rs, ts)

17 p_rad.extend ([0, 0])

us p_lm_rad = least_squares(cost, np.array(p_rad), method=’1lm’,
args=[full_corners, world_coord, True])

110 mean_radial_1, var_radial_1 = error(cost(p_lm_rad.x, full_cormners,

world_coord, radial=True, img_idx=index_img_1, name="1lm_w_rad"),
idx=index_img_1)

150 mean_radial_2, var_radial_2 = error(cost(p_lm_rad.x, full_cormners,
world_coord, radial=True, img_idx=index_img_2, name="1lm_w_rad"),
idx=index_img_2)

52 K_refined_rad, Rs_refined_rad, ts_refined_rad = reconstruct_p(p_lm_rad.x[:-2])
155 print ("K_refined_rad: ", K_refined_rad)

154 print("Rs_refined_rad[index_img_1]: ", Rs_refined_rad[index_img_11])

55 print("ts_refined_rad[index_img_1]: ", ts_refined_rad[index_img_1])

156 print ("Rs_refined_rad[index_img_2]: ", Rs_refined_rad[index_img_21])

157 print("ts_refined_rad[index_img_2]: ", ts_refined_rad[index_img_2])

158

150 print (f"-------------- Image {index_img_1}---------------- ")

w60 print(£f"|Init mean: {mean_init_13} Init var: {var_init_1}")
61 print (f"|Refined mean: {mean_refined_1} Refined var: {var_refined_11}")

162 print (f"|Radial mean: {mean_radial_1} Radial var: {var_radial_13}")
w63 print (" [kl k2] ", p_lm_rad.x[-2:]1)

64 Print (M -mmm e "y

465

w6 print(f"'-------------- Image {index_img_2}---------------- D)

67 print (£"|Init mean: {mean_init_2} Init var: {var_init_2}")

165 print (f"|Refined mean: {mean_refined_2} Refined var: {var_refined_2}")
6o print (f£"|Radial mean: {mean_radial_2} Radial var: {var_radial_23}")

7o print (" [k1 k2] ", p_lm_rad.x[-2:])

71 print (M ------mmmmmm e ")

73 # Get the camera poses plot
172 camera_poses (Rs, ts)

29

	Theory Questions
	Question 1
	Question 2

	Implementation Details
	Corner Detection
	Zhang's Algorithm
	Estimating the intrinsic parameters of the camera
	Estimating the extrinsic parameters of the camera
	Refining the Calibration Parameters
	Radial Distortion (Extra Credit)
	Creating Our Dataset

	Obtained results
	Given Dataset
	My own Dataset

	Observations
	Code

