ECE 66100 Homework #26
by
Adrien Dubois (dubois6@purdue.edu)

October 31, 2024

Contents

1 Theory Questions
1.1 Question 1: e e

2 RGB to HSV:

3 Extracting LBP Histograms:

4 Gram Matrix based texture extraction:
4.1 Gram Matrix o o e e e
4.2 Code Implementation: L L

5 Extra Credit: Channel Normalization Parameter based Texture Extraction:
5.1 Implementation: L e

6 Results:
6.1 Dataset Description: oL e
6.2 LBP Results: e
6.3 Gram Matrix Results: e
6.3.1 VGG-19 Results: e
6.3.2 Resnetb0-Coarse Results:

6.4 Discussion of results:
6.5 Channel Normalization Parameter Results:
6.5.1 VGG Bonus Results:

7 Full Code Printout:

1 Theory Questions

1.1 Question 1:

Conceiver of a new texture detector software. You can use the pyramid representation of an image to

capture information in some or all of the octaves.

e On one side, I would build a scale-pyramid representation of the image through mean-pooling
layers where each layer reduces the spatial dimensions by a factor of 2 without changing the

channel dimension.

e Using this scale pyramid, I could caculate individual Gram Matrices per layer.

e On the other side, I would apply a deep learning architecture for image classification using CNNs
similar to the VGG implementation.

e By downsampling the Gram Matrices along the channel dimesion by the appropriate factor of 2, I
could concatenate the gram matrix with the CNN’s dense representation of the image to provide
greater texture information that would help guide the learning process. This would be done across
each layer of scale pyramid and CNN netowrk.

I don’t have any particular examples where I believe that my architecture would work well; however,
I believe that it would outperform the Gram Matrix implementation that was performed during this
assignment since the deep-learning model would be informed of the Gram Matrix based textural infor-
mation during the training process and could therefore decide whether or not to use such information
for predicting the class labels. Finally, extracting the feature map for the final layer of my CNN encoder
would provide a dense-matrix-representation of the image, with textural information fed in through the
multi-scale gram matrix pipeline.

2 RGB to HSV:

For this project, we first convert the BGR representation of the image to HSV. This can be visualized
as a rotation of the RGB cube along the vertical axis as seen in the graph below from Avi Kak’s lecture
on texture and color.

In the RGB space, you would find black pixels close to the origin, while white pixels would be at
the corner furthest away from the origin. Therefore, you can think of HSV turning this cube onto the
vertical axis where the pixel with the highest intensity (white) is the highest point along the w axis.
The hue space then becomes a rotation around that axis, and the saturation is a scalar value of the
distance of a color to that vertical axis. In this way, we use the following equations to determine the
HSV representation of an image

M = maz(R,G, B)
m = min(R,G, B)
c=M-m
V=M
60 (=2mod6) M == R,c#0

C
60 (Z=£ +2) M==G,c#0
60 (=€ +4) M==B,c#0

0 c==10

1

N

19

£ %255 V£0
0 V==

S:

Lastly, to match the outputs generated through OpenCV, I rescale the huespace to 180deg istead of a
full 360. T also apply a ceiling function on the floating point values generated above before convertingt
them to numpy integers.

def img_BGR_to_HSV(img):
img = img.astype(np.float32)

img_hsv = np.zeros_like (img)

Calculate key parameters through the channel axis

M = np.max(img, axis=2)

m = np.min(img, axis=2)

c=M-m

V=M

For the rows, if the max is in the first column, etc
hO_mask = (M == imgl[:, :, 2]) & (c != 0) # M == R, c=/=0
hi_mask = (M == img[:, :, 1]) & (c !'= 0) # M == G, c=/=0
h2_mask = (M == imgl[:, :, 0]) & (c != 0) # M == B, c=/=0
c_mask = (c == 0) # c == 0

Calculate H Values for each row
We don’t just want to use the mask since ¢ can be zero for greyscale. So we want
to only compute on the masks, by checking for where to input values in first.

with np.errstate(divide=’ignore’, invalid=’ignore’):

img_hsv[:, :, 0] = np.where(hO_mask, (60 * (((img[:, :, 1] - imgl[:, :, 0]) / c)
% 6)), img_hsv[:, :, 0])

img_hsv[:, :, 0] = np.where(hl_mask, (60 * ((img([l:, :, 0] - imgl:, :, 2]) / c +
2)), img_hsv[:, :, 0])

img_hsv([:, :, 0] = np.where(h2_mask, (60 * ((imgl:, :, 2] - imgl:, :, 1]1) / c +
4)), img_hsv[:, :, 0])

img_hsv([:, :, 0][c_mask] = O # No divide by O errors are possible here
To follow opencv formatting, I will rescale the hue angles to 180deg instead of
360
img_hsv[:, :, 0] /= 2

Fill in with correct values for the S column: (c/V)
img_hsv[:, :, 1]J[V != 0] = c[V !'= 0]/V[V !'= 0] * 255

Fill in V col
img_hsv[:,:,2] =V

return np.ceil (img_hsv) .astype(np.uint8)

3 Extracting LBP Histograms:

3.1 Algorithm Description:

The LBP histogram method for texture extraction works by looking at every pixel in the image, counting
that as a center pixel and creating a binary pattern for the surrounding pixels in a circle around the
center. Formally, this binary pattern can be calculate as follows:

e First, it is important to note that this only works for 1 dimensional images. In our assignment we
used the Hue channel of HSV images, but greyscaled images would work just as well.

e Consider a coordinate on the image as the center point x

e Evaluate the pixel value at points around the circle. The number of points (P), and the radius of
that circle (R) are user-defined hyper-parameters.

— These points can be evaluated as follows:

2 2
(z,y) = R X cos <;) , R x sin (}7;)

1
>
3
:

— It is important to note that since we are using discrete indices (images), we compute the pixel
interpolation as follows for pixels on the top-right diagonal (a similar formula is used for other
diagonals):

p[1] = center_value - (1 — 0.707) - (1 — 0.707)+
img_h_pad[y][x + 1] - (1 — 0.707) - 0.707+
img_h_pad[y + 1][z] - 0.707 - (1 — 0.707)+
img_h_pad[y + 1][z + 1] - 0.707 - 0.707

e Once we have calculated the pixel value for all points, we threshold them using the center pixel.
Starting from the top and moving clockwise, we assign a value of 1 if the pixel on the circle is
bigger than the center, and 0 if it is less than or equal to the center pixel.

e Next, since we need a rotational-invariant version of the binary pattern, we circularly shift the
pattern until we find its minimal representation.

e Lastly, the authors of the LBP paper noticed that only binary patterns with a run of Os followed
by a run of only 1s provided useful information. Therefore, we can encode the binary patterns as
follows for the histogram.

e — If the minIntVal representation involves more than two runs, we encode it by the integer
P+1

Else, if the minIntVal representation consists of all 0’s, we encode it as 0.

Else, if the minIntVal representation consists of all 1’s, we encode it as P.

— Else: the minIntVal representation of a binary pattern has exactly two runs (i.e., a run of
0’s followed by a run of 1’s). We represent the pattern by the number of 1’s in the second run.

3.2 Code Implementation:

class LBP():
def __init__(self, R, P):
self .R = R
self .P = P
def run_lbp(self, img_path):
Read image and convert it to HSV, then use the H channel for all downstream
tasks.
img_bgr = cv2.imread(img_path)
img_hsv = img_BGR_to_HSV (img_bgr)
img_h = img_hsv[:, :, 0]

Create padded image of size (64,64) for more feasilbe computation
img_h_sized = cv2.resize(img_h, (62,62), interpolation=cv2.INTER_AREA)
img_h_pad = np.pad(img_h_sized, pad_width=1, mode="constant", constant_values=0)

Initialize the histogram vector for the image: (We allow a max index of P + 1
0->9 in this case)
lbp_histogram = np.zeros(self.P + 2)

Loop through all possible LBP centers:
for y in range(self.R, img_h_pad.shape[0]-self.R):
for x in range(self.R, img_h_pad.shape[1]l-self.R):
center_value = img_h_padl[y, x] # Scalar due to greyscale
p = np.zeros (8)

Check the cardinal direction points (up,down,left,right)
if img_h_pad[y+1][x] > center_value:

plol =1

if img_h_pad[y]l[x+1] > center_value:
pl2] =1

if img_h_pad[y-1]1[x] > center_value:
pl4] =1

if img_h_pad[y]l[x-1] > center_value:
pléel =1

We also have to check the diagonals.

35 # To calculate the pixel values at these diagonal points, we need to do
pixel-interpolation

36 # We also apply thresholding on the interpolated points compared to the
center to determine 0/1.

37 # Top right point

38 pl1] = center_value * (1 - 0.707) * (1 - 0.707) + \
39 img_h_pad[yl[x+1] * (1 - 0.707) * 0.707 + \
40 img_h_pad[y+1]1[x] * 0.707 * (1 - 0.707) + \
41 img_h_pad[y+1] [x+1] * 0.707 * 0.707

12 pl1]l = 1 if p[1] > center_value else O

43

44 # Bottom right point

45 p[3] = center_value * (1 - 0.707) * (1 - 0.707) + \
16 img_h_pad[y][x+1] * (1 - 0.707) * 0.707 + \
a7 img_h_pad[y-11[x] * 0.707 * (1 - 0.707) + \
48 img_h_pad[y-1][x+1] * 0.707 * 0.707

19 pl3] = 1 if p[3] > center_value else O

1 # Bottom left point

52 p[5] = center_value * (1 - 0.707) * (1 - 0.707) +
3 img_h_pad[y]l[x-1] * (1 - 0.707) * 0.707
4

+
s

54 img_h_pad[y-11[x] * 0.707 * (1 - 0.707) +
55 img_h_pad[y-1]1[x-1] * 0.707 * 0.707
56 pl5] = 1 if p[5] > center_value else O

58 # Top left point

59 pl7] = center_value * (1 - 0.707) * (1 - 0.707) + \
60 img_h_pad[y]l[x-1] * (1 - 0.707) * 0.707 + \
61 img_h_pad[y+1]1[x] * 0.707 * (1 - 0.707) + \
62 img_h_pad[y+1][x-1] * 0.707 * 0.707

63 pl7] = 1 if p[7] > center_value else 0O

64
65 # Now that we have out bitvector representation for the circle of points
around the center
66 # We want to find the unique min bitvector to represent the value at
that point
67 # We do this through circular bit-shifts to find the minimal
representation:

68 # This method is from Avi Kak’s implementation in lecture 16
69 bv = BitVector(bitlist=p)
) min_val = min([int(bv<<1l) for _ in pl)
min_bv = BitVector (intVal=min_val, size=len(p))

Lastly, we use this min-bv value to get the final encoding for that

point
74 # So we create a min-int-val based integer representation of the binary
pattern
75 # From Avi’s Notes:
76 # - If the minIntVal representation involves more than two runs, encode
it by the integer P + 1
77 # - Else, if the minIntVal representation consists of all O’s, represent
it be the encoding O.
78 # - Else, if the minIntVal representation consists of all 1’s, represent
it by the encoding P.
79 # - Else: the minIntVal representation of a binary pattern has exactly
two runs, that is,
80 # a run of Os followed by a run of 1s, represent the pattern by
the number of 1’s in the second run
81 num_runs = len(min_bv.runs())
82
83 encoding = None
84 # Mix of 1s and Os
85 if num_runs > 2:
86 encoding = self.P + 1
87 # All Os (8 of them)
88 elif min_bv.int_val() == 0 and num_runs == 1:
89 encoding = self.P
90 # 8 1s
91 elif min_bv.int_val() == 255 and num_runs == 1:
92 encoding = self.P

93 # Number of 1s in the second pattern if it is a run of all Os then 1s
04 else:
95 encoding = len(min_bv.runs () [1])

lbp_histogram[encoding] += 1
return lbp_histogram

4 Gram Matrix based texture extraction:

4.1 Gram Matrix

For the Gram Matrix portion of this assignment, I first had to conver the images read using OpenCV
from BGR to RGB due to the requirements of Resnet and VGG. Next, I rescaled the images to a shape
of (256,256) for faster computation speed of the feature maps. Once I have a feature map, I can compute
the gram matrix as follows:

G=FxFT

To do so, I first flattened my input image from a shape of (N, C, H, W) to (N, C, HxW). I can then
compute the Gram Matrix by tranposing along the channel and height
width dimensions. Lastly, to most easily display the gram matrices using a heatmap, it is important to
note that I use bilinear interpolation to rescale the matrix from a shape of (N, C, C) to (N, 32, 32).
This speeds up the training time for my SVM classifier since it would only use 1024 features instead of
262, 144 features per image.

4.2 Code Implementation:

def get_gram_matrix(feature_mat_list):
f_mats = np.array(feature_mat_list)
N, C, H, W = f_mats.shape
fmats_flat = f_mats.reshape(N, C, Hx*W)

A Gram matrix is the feature_map * feature_map.T
gram_matrix = fmats_flat @ fmats_flat.transpose(0, 2, 1)

Conver the numpy array to a pytorch tensor for biliinear interpolation in
downsampling

I also unsqueeze in the first dimension so that pytorch treats the final two
dimensions as H,W and downsamples on those

Otherwise, would read the it as Batch, Channel, Height and a missing width
gram_mat_tensor = torch.from_numpy(gram_matrix).unsqueeze (0)

Lastly, we want to resize the gram matrix from 512x512 to (32,32) for easier
computation

We do this using bilinear interpolation

downsampled_matrix = F.interpolate(gram_mat_tensor, size=(32, 32), mode=’bilinear’,

align_corners=False)

return downsampled_matrix.squeeze () .numpy ()

5 Extra Credit: Channel Normalization Parameter based Tex-
ture Extraction:

For the channel normalization parameters the process is even more simple and efficient. In this method,
we will find the mean and variance of the pixel values across each channel. We can then interleave these
values together to create the texture matrix. For displaying the results, I take the flattened result and
reshape it into a square matrix that I display using Seaborn’s heatmap method.

5.1 Implementation:

def get_normalization_params(feature_mat_list):

f_mats = np.array(feature_mat_list)
means = f_mats.mean(axis=(2, 3))
variances = f_mats.std(axis=(2, 3))

I first stack the arrays together, and then reshape the final matrix to interleave
the means and variances

mu_sigma_stacked = np.stack((means, variances), axis=-1)

channel_norm_params = mu_sigma_stacked.reshape(f_mats.shape[0], 2*f_mats.shape[1])

return channel_norm_params

6 Results:

6.1 Dataset Description:

The dataset used for the results section of this assignment includes 1125 photos split into training and
test splits (925 training images and 200 test images). These images belong to four different categories:
cloudy, rain, sunshine and sunrise, and the dataset is evenly distributed among all of these categories
to avoid overfitting. The goal of this assignment is to classify these images based on their textures. We
will report a 4x4 confusion matrix for the classification accurac for all texture dectors. It is important
to note that the following encoding will be used to represent the class names for the confusion matrices:

e cloudy: 0
e rain: 1
e shine: 2

e sunrise: 3

6.2 LBP Results:

The following bar charts are the histograms for each class. I have included the image followed by its LBP
histogram in each example. Additionally, the first image was one that resulted in a correct classification
prediction, while the second image was one that resulted in an incorrect prediction.

-
-

Correct image classification and LBP histogram

Cloudy: Image classification and histogram pairs

B

Correct image classification and LBP histogram

Rain: Image classification and histogram pairs

3
3

Correct image classification and LBP histogram

Sunshine: Image classification and histogram pairs

-
=

Correct image classification and LBP histogram

Sunrise: Image classification and histogram pairs

After training an SVM on the training set, the following results were found by running the trained

SVM model on the testing dataset:

Incorrect image classification and LBP histogram

Incorrect image classification and LBP histogram

Incorrect image classification and LBP histogram

Incorrect image classification and LBP histogram

Class Precision | Recall | F1-Score | Support

0 0.71 0.80 0.75 50

1 0.79 0.30 0.43 50

2 0.74 0.40 0.52 50

3 0.44 0.86 0.58 50

Accuracy 0.59 (200 samples)

Macro Avg 0.67 0.59 0.57 200
Weighted Avg 0.67 0.59 0.57 200

Table 1: Classification Report for SVM Model based on LBP histograms

Additionally, T have generated the following confusion matrix to visualize the results in a different
way:

Confusion Matrix

- 8 15
n
]
E=]
5
w
2
~ 7 1
m 1 0
: | .
0 1 2

Predicted Labels

6.3 Gram Matrix Results:
6.3.1 VGG-19 Results:

Included below are examples of a correctly classified image, and an incorrectly classified image for each
class. The gram matrix associated with that image is also displayed using Seaborn’s heatmap method.

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Cloudy: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Rain: Image classification and Gram Matrix pairs

0z

00

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunshine: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunrise: Image classification and Gram Matrix pairs

After training an SVM on the training set, the following results were found by running the trained
SVM model on the testing dataset for VGG:

Additionally, I have generated the following confusion matrix to visualize the results in a different
way:

10

Class Precision | Recall | F1-Score | Support

0 0.87 0.94 0.90 50

1 0.92 0.88 0.90 50

2 0.93 0.84 0.88 50

3 0.91 0.96 0.93 50
Accuracy 0.905 (200 samples)

Macro Avg 0.91 0.90 0.90 200

Weighted Avg | 0.91 0.91 0.90 200

Table 2: Classification Report for SVM Model based on VGG Gram Matrices

Confusion Matrix

True Labels

Predicted Labels

6.3.2 Resnet50-Coarse Results:

The same results are included below for the Resnet50-Coarse feature maps:

11

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Cloudy: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Rain: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunshine: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunrise: Image classification and Gram Matrix pairs

After training an SVM on the training set, the following results were found by running the trained
SVM model on the testing dataset for Resnet Coarse:

Additionally, T have generated the following confusion matrix to visualize the results in a different
way:

12

Class Precision | Recall | F1-Score | Support

0 0.57 0.88 0.69 50

1 1.00 0.68 0.81 50

2 0.88 0.60 0.71 50

3 0.80 0.88 0.84 50

Accuracy 0.76 (200 samples)

Macro Avg 0.81 0.76 0.76 200
Weighted Avg 0.81 0.76 0.76 200

Table 3: Classification Report for SVM Model based on Resnet50-Coarse Gram Matrices

Confusion Matrix

True Labels

Predicted Labels

13

6.3.3 Resnet50-Fine Results:

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Cloudy: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Rain: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunshine: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunrise: Image classification and Gram Matrix pairs

After training an SVM on the training set, the following results were found by running the trained SVM
model on the testing dataset for Resnet Fine:

Additionally, I have generated the following confusion matrix to visualize the results in a different
way:

14

Class Precision | Recall | F1-Score | Support

0 0.82 0.84 0.83 50

1 1.00 0.94 0.97 50

2 0.93 0.82 0.87 50

3 0.84 0.98 091 50

Accuracy 0.895 (200 samples)

Macro Avg 0.90 0.89 0.90 200
Weighted Avg 0.90 0.90 0.90 200

Table 4: Classification Report for SVM Model based on Resnet50-Fine Gram Matrices

Confusion Matrix

True Labels

Predicted Labels

6.4 Discussion of results:

For the required portion of this assignment, the best performing model was the VGG based Gram Matrix
extraction. It is logical that the approach that relies on deep learning outperforms the baseline LBP
approach that relied only on one channel of the image. This is due to the fact that deep learning models
will encode a large amount of information into the feature maps on the inter-pixel correlations, while
the LBP baed method only looks at a circle. In this way, deep-convolutional-models ”jam” an immense
amount of spatial pixel information into the channel dimension which we used calculate the Gram Matrix.
Something that was not clear to me however, was that the VGG based method outperformed Resnet50
based approaches even though that model has a lower accuracy on standard datasets such as ImageNet
etc. This may be due to architectural differences in VGG that lend itself more to textural information
encoded in the feature map.

6.5 Channel Normalization Parameter Results:

In the following results section, I include one example correct classification and one example incorrect
classification for each feature map type. I do not report over all classes since some classes were fully
predicted correctly. Additionally, I report accuracy metrics for the SVM training, and a confusion matrix
for the prediction errors as has been reported for all other results section of this report.

15

6.5.1 VGG Bonus Results:

Correct image classification and channel normalization Incorrect image classification and channel normaliza-

Parameters in matrix form tion Parameters in matrix form
Class Precision | Recall | F1-Score | Support

0 0.96 0.98 0.97 50

1 1.00 1.00 1.00 50

2 0.98 0.94 0.96 50

3 0.98 1.00 0.99 50

Accuracy 0.98 (200 samples)
Macro Avg 0.98 0.98 0.98 200
Weighted Avg 0.98 0.98 0.98 200

Table 5: Classification Report for SVM Model based on LBP histograms

Confusion Matrix

True Labels

Predicted Labels

3 .
H
H
- 015
h = 010
-
- -2 0.05
T e e
oo ‘ B

e
BT

6.5.2 Resnet Coarse Bonus Results:

Correct image classification and channel normalization Incorrect image classification and channel normaliza-
Parameters in matrix form tion Parameters in matrix form

16

Class Precision | Recall | F1-Score | Support

0 0.83 0.96 0.89 50

1 1.00 0.94 0.97 50

2 1.00 0.84 0.91 50

3 0.92 0.98 0.95 50

Accuracy 0.93 (200 samples)

Macro Avg 0.94 0.93 0.93 200
Weighted Avg 0.94 0.93 0.93 200

Table 6: Classification Report for SVM Model based on Channel Normalization parameters

Confusion Matrix

True Labels

']]
[} 1 2
Predicted Labels

6.5.3 Resnet Fine Bonus Results:

Correct image classification and channel normalization Incorrect image classification and channel normaliza-

Parameters in matrix form tion Parameters in matrix form
Class Precision | Recall | F1-Score | Support

0 0.84 0.92 0.88 50

1 1.00 0.94 0.97 50

2 0.98 0.82 0.89 50

3 0.88 0.98 0.92 50

Accuracy 0.915 (200 samples)
Macro Avg 0.92 0.91 0.92 200
Weighted Avg 0.92 0.92 0.92 200

Table 7: Classification Report for SVM Model based on Channel Normalization parameters

17

[CEY)

[CEY)

NN N
®

39

40

Confusion Matrix

True Labels

I
0 1 2 3

Predicted Labels

7 Full Code Printout:

Included below is the printout for my entire code for this assignment. It is important to note that since
this is a conversion from a python notebook to python code, there could be artifacts in the code that
would not be present otherwise.

%

import cv2

import numpy as np

import matplotlib.pyplot as plt
import seaborn as sns

from tqdm import tqdm

import pandas as pd

from BitVector import BitVector
import os

from sklearn.svm import SVC
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
import re

import pickle

from vgg_and_resnet import *
import torch.nn.functional as F

#
def img_BGR_to_HSV (img) :
img = img.astype(np.float32)

img_hsv = np.zeros_like (img)

Calculate key parameters through the channel axis

M = np.max(img, axis=2)

m np.min(img, axis=2)

c=M-m

\ M

For the rows, if the max is in the first column, etc
hO_mask = (M == imgl[:, :, 2]) & (c != 0) # M == R, c=/=0
hi_mask = (M == imgl[:, :, 1]1) & (c != 0) # M == G, c=/=0
h2_mask = (M == imgl[:, :, 0]) & (c !'= 0) # M == B, c=/=0
c_mask = (c == 0) # ¢ == 0

Calculate H Values for each row
We don’t just want to use the mask since c can be zero for greyscale. So we want
to only compute on the masks, by checking for where to input values in first.
with np.errstate(divide=’ignore’, invalid=’ignore’):

img_hsv[:, :, 0] = np.where(hO_mask, (60 * (((img[:, :, 1] - imgl[:, :, 0]) / ¢)
% 6)), img_hsv[:, :, 0])

img_hsv[:, :, 0] = np.where(hl_mask, (60 * ((imgl:, :, 0] - imgl:, :, 2]) / c +
2)), img_hsv[:, :, 01)

img_hsv[:, :, 0] = np.where(h2_mask, (60 * ((imgl:, :, 2] - imgl:, :, 11) / c +
4)), img_hsvl[:, :, 01)

img_hsv[:, :, Ol[c_mask] = 0 # No divide by O errors are possible here

18

11

65
66

67

68

69

w N

[N RS TN

IS S TERS SRS TR JES TS SRS IS

88

To follow opencv formatting,

360

img_hsv[:, :, 0] /= 2

Fill in with correct values for the S
img_hsv[:, :, 11[V != 0] = c[V !'= 0]1/V[V

Fill in V col
img_hsv[:,:,2] =V

return np.ceil (img_hsv) .astype(np.uint8)

hh
class LBP():
def __init__(self, R, P):
self .R = R
self .P = P
def run_lbp(self, img_path):
Read image and convert it to HSV,
tasks.
img_bgr cv2.imread (img_path)
img_hsv = img_BGR_to_HSV (img_bgr)
img_h = img_hsv[:, :, 0]

Create padded image of size
img_h_sized = cv2.resize(img_h,
img_h_pad = np.pad(img_h_sized,

(62,

Initialize the histogram vector for the image:

0->9 in this case)

lbp_histogram = np.zeros(self.P + 2)

pad_

I will rescale the hue angles to 180deg instead of

(c/V)
* 255

column:
0]

then use the H channel for all downstream

(64,64) for more feasilbe computation

62) , interpolation=cv2.INTER_AREA)
width=1, mode="constant", constant_values=0)

(We allow a max index of P + 1

Loop through all possible LBP centers:

for y in range(self.R,
for x in range(self.R,
center_value =

p = np.zeros (8)

img_h_padly,

Check the cardinal
if img_h_padl[y+1][x] >

plo]l =1

if img_h_padl[y][x+1] >
pl2] =1

if img_h_pad[y-11[x] >
pl4] =1

if img_h_pad[y][x-1] >
plél = 1

We also have to check the

To calculate the pixel values at these diagonal points,

pixel-interpolation

direction points
center_value:

img_h_pad.shape [0] -self.R):
img_h_pad.shape[1]-self.R):

x] # Scalar due to greyscale

(up ,down ,left ,right)

center_value:

center_value:

center_value:

diagonals.
we need to do

We also apply thresholding on the interpolated points compared to the

center to determine 0/1.
Top right point

pl1] = center_value * (1 - 0.707) * (1 - 0.707) + \
img_h_pad[y]l[x+1] * (1 - 0.707) * 0.707 + \
img_h_pad[y+1]1[x] * 0.707 * (1 - 0.707) + \
img_h_pad[y+1][x+1] * 0.707 * 0.707

pl1] = 1 if p[1] > center_value else O

Bottom right point

p[3] = center_value * (1 - 0.707) * (1 - 0.707) + \
img_h_pad[y]l[x+1] * (1 - 0.707) * 0.707 + \
img_h_pad[y-1]1[x] * 0.707 * (1 - 0.707) + \
img_h_pad[y-1]1[x+1] * 0.707 * 0.707

pl3] = 1 if p[3] > center_value else O

Bottom left point

p[5] = center_value * (1 - 0.707) * (1 - 0.707) + \
img_h_pad[y][x-1] * (1 - 0.707) * 0.707 + \
img_h_pad[y-11[x] * 0.707 * (1 - 0.707) + \
img_h_pad[y-11[x-1] * 0.707 * 0.707

pl5] = 1 if p[5] > center_value else O

19

118

119

126

127

128

130

Top left point

pl7] = center_value * (1 - 0.707) * (1 - 0.707) + \
img_h_pad[y]l[x-1] * (1 - 0.707) * 0.707 + \
img_h_pad[y+1]1[x] * 0.707 * (1 - 0.707) + \
img_h_pad[y+1][x-1] * 0.707 * 0.707

pl7] = 1 if p[7] > center_value else O

Now that we have out bitvector representation

around the center

for the circle of points

We want to find the unique min bitvector to represent the value at

that point
We do this through circular bit-shifts to
representation:

find the minimal

This method is from Avi Kak’s implementation in lecture 16

bv = BitVector(bitlist=p)
min_val = min([int(bv<<l) for in pl)
min_bv = BitVector (intVal=min_val, size=len(p))
Lastly, we use this min-bv value to get the final encoding for that
point
So we create a min-int-val based integer representation of the binary
pattern
From Avi’s Notes:
- If the minIntVal representation involves more than two runs, encode
it by the integer P + 1
- Else, if the minIntVal representation consists of all O’s, represent
it be the encoding O.
- Else, if the minIntVal representation consists of all 1’s, represent
it by the encoding P.
- Else: the minIntVal representation of a binary pattern has exactly
two runs, that is,
a run of Os followed by a run of 1s, represent the pattern by
the number of 1’s in the second run
num_runs = len(min_bv.runs())
encoding = None
Mix of 1s and Os
if num_runs > 2:
encoding = self.P + 1
All Os (8 of them)
elif min_bv.int_val() == 0 and num_runs == 1:
encoding = self.P
8 1s
elif min_bv.int_val() == 255 and num_runs == 1:
encoding = self.P
Number of 1s in the second pattern if it is a run of all Os then 1s
else:
encoding = len(min_bv.runs () [1])

lbp_histogram[encoding] += 1
return lbp_histogram

W

class MySVM():

def __init__(self):

self.classifier = SVC(decision_function_shape="ovr"

def fit(self, features, labels):
Train the classifier on the train data/labels
self.classifier.fit (features, labels)
def predict(self, features):
Predict the labels for the tes data
return self.classifier.predict(features)
def fit_predict(self, features, labels):
Fit and predict on the same data
self.classifier.fit (features, labels)
return self.classifier.predict(features)
def true_labels):

score (self, predicted_labels,

)

Returns the mean accuracy using the test data and labels.

20

171 return accuracy_score(true_labels, predicted_labels), classification_report(
true_labels, predicted_labels)

%h

R =1

P =8

image_list = os.listdir("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
training/")

77 lbp_hist_list = []

7s labels_list = []

70 progress_bar = tqdm(image_list, desc="Training Loop")

180 image_type_to_label = {"cloudy": 0, "rain": 1, "shine": 2, "sunrise": 3}

1s2 for image_name in progress_bar:

183 try:

184 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
training/" + image_name

185 image_type = re.split(r" ([0-9]+)", image_name) [0]

186 label = image_type_to_label[image_typel

187

188 lbp_hist = LBP(R=R, P=P).run_1lbp(img_path=image_path)

189 lbp_hist_list.append(lbp_hist)

19¢(

191 # Fill in with image name -> index for training

192 labels_list.append(label)

193 except Exception as e:

194 print ("This image did not work: ", image_name)

195

196

197 # %

195 svm = MySVM()
100 svm.fit (lbp_hist_list, labels_list)

201 # %k
202 result_dict = {"lbp_hist_list": lbp_hist_list, "labels_list": labels_list}
203 with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/lbp_hists.pkl", "wb") as file

204 pickle.dump(result_dict, file)

206 # %hh

207 test_image_list = os.listdir("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/
data/testing/")

208 test_lbp_hist_list = []

200 test_labels_list = []

210 image_type_to_label = {"cloudy": O, "rain": 1, "shine": 2, "sunrise": 3}
11 test_progress_bar = tqdm(test_image_list, desc="Testing Loop")
12

213 for image_name in test_progress_bar:

214 try:

215 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
testing/" + image_name

216 image_type = re.split(r" ([0-9]+)", image_name) [0]

217 label = image_type_to_label[image_typel

218

219 lbp_hist = LBP(R=R, P=P).run_1lbp(img_path=image_path)

220 test_lbp_hist_list.append(lbp_hist)

221

222 # Add in labels based on image name

223 test_labels_list.append(label)

224 except Exception as e:

225 print ("This image did not work: ", image_name)

226

207 # %o

228 test_result_dict = {"test_lbp_hist_list": test_lbp_hist_list, "test_labels_list":
test_labels_list}

220 with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/test_lbp_hists.pkl", "wb") as

file:

230 pickle.dump(test_result_dict, file)

231

232 # %%

233 predicted_labels = svm.predict(test_lbp_hist_list)

234

235 # %hh

21

accuracy, class_report = svm.score(predicted_labels, test_labels_list)

%

confusion_mat = confusion_matrix(test_labels_list, predicted_labels)

plt.figure(figsize=(8, 6))

sns.heatmap (confusion_mat, annot=True, fmt=’d’, cmap=’Blues’, cbar=False)
plt.xlabel (’Predicted Labels’)

plt.ylabel (’True Labels’)

plt.title(’Confusion Matrix’, fontsize=16, fontweight=’bold’)

plt.show ()

%% [markdown]
Get results for LBP histograms & images success/failure

Wh

lbp_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/LBP_Results/"

lbp_hist_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/LBP_Hists/"

I only want to save 1 positive match example and 1 negative match example for each
class

The class is therefore the first number, and the second number is for matching labels
or not

results_gotten = {"01": 0, "00": O,
"11": 0’ ||10": 0’
"21": 0, "20": O,
"31": 0, "30": O}

for image_name, test_lbp_hist, test_label, pred_label in zip(test_progress_bar,
test_lbp_hist_list, test_labels_list, predicted_labels):
encoding = str(test_label)
correct = ""
if test_label == pred_label:
encoding += "1"
correct = "correct"
else:
encoding += "O"
correct = "false"

if results_gotten[encoding] == O0:
New type of result to save

results_gotten[encoding] += 1

Save the resize testing image

image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
testing/" + image_name
img = cv2.imread(image_path)

img_resized = cv2.resize(img, (128,128), interpolation=cv2.INTER_AREA)
cv2.imwrite(lbp_hist_path+image_name, img_resized)

Save the histogram plot

plt.figure(figsize=(8,6))

plt.bar(range(len(test_lbp_hist)), test_lbp_hist, color=’blue’) # Customize
color as needed

plt.tight_layout ()

Save the plot to a file

plt.savefig(lbp_hist_path+image_name[:-4] + " _lbp_hist_" + correct + ".png",
format=’png’, dpi=300)

plt.close ()

%% [markdown]
Feature Map Extraction

%h
We run this once, and save all of the feature maps for all of the images to save
computation time during debugging
class FeatureMapper ():
def __init__(self):
pass
def get_resized_img_input(self, img_path):
img = cv2.imread(img_path)
Convert images to RGB due to how RESNET and VGG expect inputs
img = cv2.cvtColor (img, cv2.COLOR_BGR2RGB)

22

302 # Create padded image of size (256,256) for more feasilbe computation
303 img = cv2.resize(img, (256,256), interpolation=cv2.INTER_AREA)
304 return img

306 def get_feature_map_vgg(self, img_path):

307 img = self.get_resized_img_input (img_path)

308

309 # The next three lines are from the tutorial included in the instructions
310 vgg = VGG19 ()

311 vgg.load_weights (’vgg_normalized.pth’)
312 vgg_feature = vgg(img)
313 return vgg_feature

315 def get_feature_map_resnet(self, img_path):
316 img = self.get_resized_img_input (img_path)

318 # The next three lines are from the tutorial included in the instructions
319 encoder_name=’resnet50’

320 resnet = CustomResNet (encoder=encoder_name)

321 resnet_feat_coarse, resnet_feat_fine = resnet(img)

322 return resnet_feat_coarse, resnet_feat_fine

324 # %tk
325 image_list = os.listdir("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
training/")

320 vgg_feature_list = []

327 resnet_coarse_feature_list = []

325 resnet_fine_feature_list = []

320 progress_bar = tqdm(image_list, desc="Training Loop")

330 image_type_to_label = {"cloudy": 0, "rain": 1, "shine": 2, "sunrise": 3}
331 img_names = []

332 labels_list = []
333 featureMapper = FeatureMapper ()

335 for image_name in progress_bar:

336 try:

337 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
training/" + image_name

338 image_type = re.split(r" ([0-9]+)", image_name) [0]

339 label = image_type_to_label[image_typel

341 # Get VGG Feature Map
342 vgg_feature = featureMapper.get_feature_map_vgg(img_path=image_path)
343 vgg_feature_list.append(vgg_feature)

345 # Resnet Features

346 resnet_feat_coarse, resnet_feat_fine = featureMapper.get_feature_map_resnet (
img_path=image_path)

347 resnet_coarse_feature_list.append(resnet_feat_coarse)

348 resnet_fine_feature_list.append(resnet_feat_fine)

349

350 # Append the image name:

351 img_names.append (image_name)

352

353 # Fill in with image name -> index for training

354 labels_list.append(label)

355 except Exception as e:

356 print ("This image did not work: ", image_name)

357 print (e)

358

359

360 # %h

361 result_dict = {"vgg_feature_list": vgg_feature_list,

362 "resnet_coarse_feature_list": resnet_coarse_feature_list,

363 "resnet_fine_feature_list": resnet_fine_feature_list,

364 "img_names": img_names,

365 "labels_list": labels_list}

366

367 # %k

368 with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/training_freature_mats.pkl",
"wb") as file:
369 pickle.dump (result_dict, file)

23

136

hh

test_image_list = os.listdir("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/

data/testing/")

test_vgg_feature_list = []

test_resnet_coarse_feature_list = []

test_resnet_fine_feature_list = []

test_img_names = []

test_labels_list = []

image_type_to_label = {"cloudy": 0, "rain": 1, "shine": 2, "sunrise": 3}

featureMapper = FeatureMapper ()
test_progress_bar = tqdm(test_image_list, desc="Testing Loop")

for image_name in test_progress_bar:
try:
image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
testing/" + image_name
image_type = re.split(r"([0-9]+)", image_name) [0]
label = image_type_to_label[image_typel

Get VGG Feature Map
test_vgg_feature = featureMapper.get_feature_map_vgg(img_path=image_path)
test_vgg_feature_list.append(test_vgg_feature)

Resnet Features

test_resnet_feat_coarse, test_resnet_feat_fine = featureMapper.
get_feature_map_resnet (img_path=image_path)

test_resnet_coarse_feature_list.append(test_resnet_feat_coarse)

test_resnet_fine_feature_list.append(test_resnet_feat_fine)

Append the image name:
test_img_names.append(image_name)

Fill in with image name -> index for training
test_labels_list.append(label)
except Exception as e:

print ("This image did not work: ", image_name)
print (e)
Wh
test_result_dict = {"test_vgg_feature_list": test_vgg_feature_list,
"test_resnet_coarse_feature_list": test_resnet_coarse_feature_list,
"test_resnet_fine_feature_list": test_resnet_fine_feature_list,
"test_img_names": test_img_names,
"test_labels_list": test_labels_list}
Wh

with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/testing_freature_mats.pkl",

wb") as file:
pickle.dump (result_dict, file)

%% [markdown]
Gram Matrix Calculation:

%h

def get_gram_matrix(feature_mat_list):
f_mats = np.array(feature_mat_list)
N, C, H, W = f_mats.shape
fmats_flat = f_mats.reshape(N, C, Hx*W)

A Gram matrix is the feature_map * feature_map.T
gram_matrix = fmats_flat @ fmats_flat.transpose(0, 2, 1)

Conver the numpy array to a pytorch tensor for biliinear interpolation in
downsampling

I also unsqueeze in the first dimension so that pytorch treats the final two
dimensions as H,W and downsamples on those

Otherwise, would read the it as Batch, Channel, Height and a missing width
gram_mat_tensor = torch.from_numpy(gram_matrix).unsqueeze (0)

Lastly, we want to resize the gram matrix from 512x512 to (32,32) for easier

computation
We do this using bilinear interpolation

24

153

154

456

494

195
196
197
498

199

downsampled_matrix = F.interpolate(gram_mat_tensor, size=(32, 32), mode=’bilinear’,
align_corners=False)

return downsampled_matrix.squeeze () .numpy ()

%h

vgg_gram_matrices = get_gram_matrix(vgg_feature_list)

resnet_coarse_gram_matrices = get_gram_matrix(resnet_coarse_feature_list)
resnet_fine_gram_matrices = get_gram_matrix(resnet_fine_feature_list)
test_vgg_gram_matrices = get_gram_matrix(test_vgg_feature_list)
test_resnet_coarse_gram_matrices = get_gram_matrix(test_resnet_coarse_feature_list)
test_resnet_fine_gram_matrices = get_gram_matrix(test_resnet_fine_feature_list)

%h

Flattening the final dimseion is required since SVM can only take in as inputs 2 dims
(Batch, features)

vgg_gram_matrices = vgg_gram_matrices.reshape(vgg_gram_matrices.shape[0], -1)

resnet_coarse_gram_matrices = resnet_coarse_gram_matrices.reshape(
resnet_coarse_gram_matrices.shape[0], -1)

resnet_fine_gram_matrices = resnet_fine_gram_matrices.reshape(resnet_fine_gram_matrices.
shape [0], -1)

test_vgg_gram_matrices = test_vgg_gram_matrices.reshape(test_vgg_gram_matrices.shapel[0],

=il))

test_resnet_coarse_gram_matrices = test_resnet_coarse_gram_matrices.reshape(
test_resnet_coarse_gram_matrices.shape[0], -1)

test_resnet_fine_gram_matrices = test_resnet_fine_gram_matrices.reshape(

test_resnet_fine_gram_matrices.shape[0], -1)

%h
Save gram matrices to a file:
gram_matrices = {"vgg_gram_matrices": vgg_gram_matrices,
"resnet_coarse_gram_matrices": resnet_coarse_gram_matrices,
"resnet_fine_gram_matrices": resnet_fine_gram_matrices,
"test_vgg_gram_matrices": test_vgg_gram_matrices,
"test_resnet_coarse_gram_matrices": test_resnet_coarse_gram_matrices,
"test_resnet_fine_gram_matrices": test_resnet_fine_gram_matrices}
with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/all_gram_matrices.pkl", "wb")
as file:
pickle.dump (gram_matrices, file)

%% [markdown]
VGG Final Results

%h

VGG SVM:

svm = MySVM()

svm.fit (vgg_gram_matrices, labels_list)

vgg_predicted_labels = svm.predict(test_vgg_gram_matrices)

vgg_accuracy , vgg_class_report = svm.score(vgg_predicted_labels, test_labels_list)
print ("Accuracy: ", vgg_accuracy)

print (vgg_class_report)

W

vgg_confusion_mat = confusion_matrix(test_labels_list, vgg_predicted_labels)

plt.figure(figsize=(8, 6))

sns.heatmap (vgg_confusion_mat, annot=True, fmt=’d’, cmap=’Blues’, cbar=False)
plt.xlabel (’Predicted Labels’)

plt.ylabel (’True Labels’)

plt.title(’Confusion Matrix’, fontsize=16, fontweight=’bold’)

plt.show ()

hh

vgg_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/VGG_Results/"

I only want to save 1 positive match example and 1 negative match example for each
class

The class is therefore the first number, and the second number is for matching labels
or not

results_gotten = {"01": 0, "00": O,
nyqn. O, nqQ": O,
"21": 0, "20": O,
"31": 0, "30": O}

25

500

test_label,
test_labels_list,

for image_name, gram_matrix,
test_vgg_gram_matrices,

encoding = str(test_label)
correct = ""
if test_label == pred_label:
encoding += "1"
correct = "correct"
else:
encoding += "O"
correct = "false"

if results_gotten[encoding] == O0:
New type of result to save
results_gotten[encoding] += 1

Convert the vgg_gram_matrix back from (N,

gram_matrix = gram_matrix.reshape (32, 32)
Save the resize testing image
image_path =

testing/" + image_name
img = cv2.imread(image_path)
img_resized = cv2.resize(img, (128,128),
cv2.imwrite (vgg_path+image_name,

pred_label in zip(test_progress_bar,
vgg_predicted_labels):

1024) -> (N, 32,32) for display

"/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

interpolation=cv2.INTER_AREA)
img_resized)

Save the gram matrix to display for results section of the report

plt.figure(figsize=(8,6))

Use seaborn to create a heatmap
sns.heatmap (gram_matrix, cmap="viridis",
plt.tight_layout ()

Save the heatmap to a file

cbar=True)

plt.savefig(vgg_path+image_name[:-4] + "_gram_mat_" + correct + ".png", format=’
png’, dpi=300, bbox_inches="tight")
plt.close ()
%% [markdown]
Resnet Coarse Results
%hh
Resnet Coarse:
svm = MySVM()

svm.fit (resnet_coarse_gram_matrices, labels_list)
resnet_coarse_predicted_labels =
resnet_coarse_accuracy, resnet_coarse_class_report

resnet_coarse_predicted_labels,
print ("Accuracy: ", resnet_coarse_accuracy)

print (resnet_coarse_class_report)

%
resnet_coarse_confusion_mat =
resnet_coarse_predicted_labels)

plt.
sns.
plt.

figure (figsize=(8, 6))
heatmap(resnet_coarse_confusion_mat,
xlabel (’Predicted Labels’)
plt.ylabel (’True Labels’)
plt.title(’Confusion Matrix’,
plt.show ()

fontsize=16,

hh

resnet_coarse_path =
Resnet_Coarse_Results/"

I only want to save 1 positive match example and

class
The class is therefore the first number, and the
or mnot
results_gotten = {"01": 0, "00": O,
"11": 0, "10": O,
"21": 0, "20": O,
"31": 0, "30": O}

26

annot=True,

svm.predict (test_resnet_coarse_gram_matrices)
= svm.score (
test_labels_list)

confusion_matrix(test_labels_list,

fmt=’d’, cmap=’Blues’, cbar=False)

fontweight=’bold’)

"/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/

1 negative match example for each

second number is for matching labels

564

565

566

597
598
599
600

601

606
607
608

609

621

for image_name, gram_matrix, test_label, pred_label in zip(test_progress_bar,
test_resnet_coarse_gram_matrices, test_labels_list, resnet_coarse_predicted_labels):
encoding = str(test_label)

correct = ""
if test_label == pred_label:
encoding += "1"
correct = "correct"
else:
encoding += "O"
correct = "false"
if results_gotten[encoding] == O0:

New type of result to save
results_gotten[encoding] += 1

Convert the vgg_gram_matrix back from (N,1024) -> (N, 32,32) for display
gram_matrix = gram_matrix.reshape (32, 32)

Save the resize testing image

image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
testing/" + image_name
img = cv2.imread(image_path)

img_resized = cv2.resize(img, (128,128), interpolation=cv2.INTER_AREA)
cv2.imwrite(resnet_coarse_path+image_name, img_resized)

Save the gram matrix to display for results section of the report
plt.figure(figsize=(8,6))

Use seaborn to create a heatmap

sns.heatmap (gram_matrix, cmap="viridis", cbar=True)
plt.tight_layout ()

Save the heatmap to a file

plt.savefig(resnet_coarse_path+image_name[:-4] + "_gram_mat_" + correct + ".png"
, format=’png’, dpi=300, bbox_inches="tight")
plt.close ()
%% [markdown]
Resnet Fine Results:
%hh
VGG SVM:
svm = MySVM()
svm.fit(resnet_fine_gram_matrices, labels_list)
resnet_fine_predicted_labels = svm.predict(test_resnet_fine_gram_matrices)
resnet_fine_accuracy, resnet_fine_class_report = svm.score(resnet_fine_predicted_labels,
test_labels_list)
print ("Accuracy: ", resnet_fine_accuracy)

print (resnet_fine_class_report)

%
resnet_fine_confusion_mat = confusion_matrix(test_labels_list,
resnet_fine_predicted_labels)

plt.figure(figsize=(8, 6))

sns.heatmap(resnet_fine_confusion_mat, annot=True, fmt=’d’, cmap=’Blues’, cbar=False)
plt.xlabel (’Predicted Labels’)

plt.ylabel (’True Labels’)

plt.title(’Confusion Matrix’, fontsize=16, fontweight=’bold’)

plt.show ()

%
resnet_fine_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/
Resnet_Fine_Results/"
I only want to save 1 positive match example and 1 negative match example for each
class
The class is therefore the first number, and the second number is for matching labels
or mnot
results_gotten = {"01": 0, "00": O,
"11": 0, "10": O,
"21": 0’ II20": O’
H31II: o’ IISO": 0}

27

62s for image_name, gram_matrix, test_label, pred_label in zip(test_progress_bar,
test_resnet_fine_gram_matrices, test_labels_list, resnet_fine_predicted_labels):
629 encoding = str(test_label)

630 correct = ""

631 if test_label == pred_label:

632 encoding += "1"

633 correct = "correct"

634 else:

635 encoding += "O0"

636 correct = "false"

637

638 if results_gotten[encoding] == O0:

639 # New type of result to save
640 results_gotten[encoding] += 1

642 # Convert the vgg_gram_matrix back from (N,1024) -> (N, 32,32) for display

643 gram_matrix = gram_matrix.reshape (32, 32)

644

645 # Save the resize testing image

646 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
testing/" + image_name

647 img = cv2.imread(image_path)

648 img_resized = cv2.resize(img, (128,128), interpolation=cv2.INTER_AREA)

649 cv2.imwrite(resnet_fine_path+image_name, img_resized)

650

651 # Save the gram matrix to display for results section of the report

652 plt.figure(figsize=(8,6))

653

654 # Use seaborn to create a heatmap

655 sns.heatmap (gram_matrix, cmap="viridis", cbar=True)

656 plt.tight_layout ()

657 # Save the heatmap to a file

658 plt.savefig(resnet_fine_path+image_name[:-4] + "_gram_mat_" + correct + ".png",
format=’png’, dpi=300, bbox_inches="tight")

659 plt.close ()

660

661 # %% [markdown]

662 # # Bonus: Channel Normalization Parameter Based Texture Descriptor
663

664 # %%

665 def get_normalization_params(feature_mat_list):

666 f_mats = np.array(feature_mat_list)

667

668 means = f_mats.mean(axis=(2, 3))

669 variances = f_mats.std(axis=(2, 3))

671 # I first stack the arrays together, and then reshape the final matrix to interleave
the means and variances

672 mu_sigma_stacked = np.stack((means, variances), axis=-1)

673 channel_norm_params = mu_sigma_stacked.reshape(f_mats.shape[0], 2*f_mats.shapel[1])

675 return channel_norm_params
676

677 # hh

678 vgg_norm_params = get_normalization_params(vgg_feature_list)

679 resnet_coarse_norm_params = get_normalization_params(resnet_coarse_feature_list)

680 resnet_fine_norm_params = get_normalization_params(resnet_fine_feature_list)

6s1 test_vgg_norm_params = get_normalization_params(test_vgg_feature_list)

682 test_resnet_coarse_norm_params = get_normalization_params (
test_resnet_coarse_feature_list)

683 test_resnet_fine_norm_params = get_normalization_params(test_resnet_fine_feature_list)

684

685 # %hih

686 vgg_norm_params.shape

687

6ss # %% [markdown]

680 # # Channel Norm Params VGG

690

co1 # %%

692 # VGG SVM:

603 svm = MySVM()

604 svm.fit(vgg_norm_params, labels_list)

605 vgg_norm_predicted_labels = svm.predict(test_vgg_norm_params)

28

696

760

vgg_norm_accuracy, vgg_norm_class_report = svm.score(vgg_norm_predicted_labels,
test_labels_list)

print ("Accuracy: ", vgg_norm_accuracy)

print (vgg_norm_class_report)

%h

vgg_norm_confusion_mat = confusion_matrix(test_labels_list, vgg_norm_predicted_labels)

plt.figure(figsize=(8, 6))

sns.heatmap (vgg_norm_confusion_mat, annot=True, fmt=’d’, cmap=’Blues’, cbar=False)
plt.xlabel (’Predicted Labels’)

plt.ylabel (’True Labels’)

plt.title(’Confusion Matrix’, fontsize=16, fontweight=’bold’)

plt.show ()

%

vgg_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/VGG_Bonus_Results/"

I only want to save 1 positive match example and 1 negative match example for each
class

The class is therefore the first number, and the second number is for matching labels
or mnot

results_gotten = {"correct": 0, "false": 0}

for image_name, norm_params, test_label, pred_label in zip(test_progress_bar,
test_vgg_norm_params, test_labels_list, vgg_norm_predicted_labels):

correct = ""

if test_label == pred_label:
encoding = "correct"

else:
encoding = "false"

if results_gotten[encoding] == O0:

New type of result to save
results_gotten[encoding] += 1

Convert the vgg_gram_matrix back from (N,1024) -> (N, 32,32) for display
norm_params = norm_params.reshape (32, 32)

Save the resize testing image

image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
testing/" + image_name
img = cv2.imread(image_path)

img_resized = cv2.resize(img, (128,128), interpolation=cv2.INTER_AREA)
cv2.imwrite(vgg_path+image_name, img_resized)

Save the gram matrix to display for results section of the report
plt.figure(figsize=(8,6))

Use seaborn to create a heatmap

sns.heatmap (norm_params, cmap="viridis", cbar=True)
plt.tight_layout ()

Save the heatmap to a file

plt.savefig(vgg_path+image_name[:-4] + "_gram_mat_" + encoding + ".png", format=
’png’, dpi=300, bbox_inches="tight")
plt.close ()
%% [markdown]
7 # # Resnet Coarse Results
%
VGG SVM:
svm = MySVM()
svm.fit (resnet_coarse_norm_params, labels_list)
resnet_coarse_norm_predicted_labels = svm.predict(test_resnet_coarse_norm_params)
resnet_coarse_norm_accuracy, resnet_coarse_norm_class_report = svm.score(
resnet_coarse_norm_predicted_labels, test_labels_list)
print ("Accuracy: ", resnet_coarse_norm_accuracy)
print (resnet_coarse_norm_class_report)
Wh
resnet_coarse_norm_confusion_mat = confusion_matrix(test_labels_list,

resnet_coarse_norm_predicted_labels)

29

plt.figure(figsize=(8, 6))

sns.heatmap (resnet_coarse_norm_confusion_mat, annot=True, fmt=’d’, cmap=’Blues’, cbar=
False)

plt.xlabel (’Predicted Labels’)

plt.ylabel (’True Labels’)

plt.title(’Confusion Matrix’, fontsize=16, fontweight=’bold’)

plt.show ()

Wh

vgg_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/
Resnet_Coarse_Bonus_Results/"

I only want to save 1 positive match example and 1 negative match example for each

class

The class is therefore the first number, and the second number is for matching labels
or not

results_gotten = {"correct": 0, "false": 0}

for image_name, norm_params, test_label, pred_label in zip(test_progress_bar,
test_resnet_coarse_norm_params, test_labels_list,
resnet_coarse_norm_predicted_labels):

correct = ""

if test_label == pred_label:
encoding = "correct"

GILEE 8
encoding = "false"

if results_gotten[encoding] == 0:

New type of result to save
results_gotten[encoding] += 1

Convert the Norm Params back from (N,2048) -> (N, 32,32) for display

For this calculation, I need first downsample the image from 2048->1024 by
taking only the even indices and then I can represent the matrix as (32,32)

norm_params = norm_params [::2] # Extract even indices

norm_params = norm_params.reshape (32, 32)

Save the resize testing image

image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
testing/" + image_name
img = cv2.imread(image_path)

img_resized = cv2.resize(img, (128,128), interpolation=cv2.INTER_AREA)
cv2.imwrite (vgg_path+image_name, img_resized)

Save the gram matrix to display for results section of the report
plt.figure(figsize=(8,6))

Use seaborn to create a heatmap

sns.heatmap (norm_params, cmap="viridis", cbar=True)
plt.tight_layout ()

Save the heatmap to a file

plt.savefig(vgg_path+image_name[:-4] + " _gram_mat_" + encoding + ".png", format=
’png’, dpi=300, bbox_inches="tight")
plt.close ()
%% [markdown]
Resent Fine Results:
%
VGG SVM:
svm = MySVM()
svm.fit(resnet_fine_norm_params, labels_list)
resnet_fine_norm_predicted_labels = svm.predict(test_resnet_fine_norm_params)
resnet_fine_norm_accuracy, resnet_fine_norm_class_report = svm.score(
resnet_fine_norm_predicted_labels, test_labels_list)
print ("Accuracy: ", resnet_fine_norm_accuracy)

print (resnet_fine_norm_class_report)
W
resnet_fine_norm_confusion_mat = confusion_matrix(test_labels_list,

resnet_fine_norm_predicted_labels)

plt.figure(figsize=(8, 6))

30

830

862

sns.heatmap (resnet_fine_norm_confusion_mat, annot=True, fmt=’d’, cmap=’Blues’, cbar=
False)

plt.xlabel (’Predicted Labels’)

plt.ylabel (’True Labels’)

plt.title(’Confusion Matrix’, fontsize=16, fontweight=’bold’)

plt.show ()

hh
vgg_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/Resnet_Fine_Bonus_Results/
n

I only want to save 1 positive match example and 1 negative match example for each

class

The class is therefore the first number, and the second number is for matching labels
or not

results_gotten = {"correct": 0, "false": 0}

for image_name, norm_params, test_label, pred_label in zip(test_progress_bar,
test_resnet_fine_norm_params, test_labels_list, resnet_fine_norm_predicted_labels):

correct = ""

if test_label == pred_label:
encoding = "correct"

else:
encoding = "false"

if results_gotten[encoding] == 0:
New type of result to save

results_gotten[encoding] += 1

Convert the vgg_gram_matrix back from (N,1024) -> (N, 32,32) for display
norm_params = norm_params.reshape (32, 32)

Save the resize testing image

image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7-Auxilliary/data/
testing/" + image_name
img = cv2.imread(image_path)

img_resized = cv2.resize(img, (128,128), interpolation=cv2.INTER_AREA)
cv2.imwrite(vgg_path+image_name, img_resized)

Save the gram matrix to display for results section of the report
plt.figure(figsize=(8,6))

Use seaborn to create a heatmap

sns.heatmap (norm_params, cmap="viridis", cbar=True)

plt.tight_layout ()

Save the heatmap to a file

plt.savefig(vgg_path+image_name[:-4] + " _gram_mat_" + encoding + ".png", format=
’png’, dpi=300, bbox_inches="tight")

plt.close ()

31

	Theory Questions
	Question 1:

	RGB to HSV:
	Extracting LBP Histograms:
	Algorithm Description:
	Code Implementation:

	Gram Matrix based texture extraction:
	Gram Matrix
	Code Implementation:

	Extra Credit: Channel Normalization Parameter based Texture Extraction:
	Implementation:

	Results:
	Dataset Description:
	LBP Results:
	Gram Matrix Results:
	VGG-19 Results:
	Resnet50-Coarse Results:
	Resnet50-Fine Results:

	Discussion of results:
	Channel Normalization Parameter Results:
	VGG Bonus Results:
	Resnet Coarse Bonus Results:
	Resnet Fine Bonus Results:

	Full Code Printout:

