
ECE 66100 Homework #6

by

Adrien Dubois (dubois6@purdue.edu)

October 31, 2024

Contents

1 Theory Questions 1
1.1 Question 1: . 1

2 RGB to HSV: 2

3 Extracting LBP Histograms: 3
3.1 Algorithm Description: . 3
3.2 Code Implementation: . 4

4 Gram Matrix based texture extraction: 6
4.1 Gram Matrix . 6
4.2 Code Implementation: . 6

5 Extra Credit: Channel Normalization Parameter based Texture Extraction: 6
5.1 Implementation: . 6

6 Results: 7
6.1 Dataset Description: . 7
6.2 LBP Results: . 7
6.3 Gram Matrix Results: . 9

6.3.1 VGG-19 Results: . 9
6.3.2 Resnet50-Coarse Results: . 11
6.3.3 Resnet50-Fine Results: . 14

6.4 Discussion of results: . 15
6.5 Channel Normalization Parameter Results: . 15

6.5.1 VGG Bonus Results: . 16
6.5.2 Resnet Coarse Bonus Results: . 16
6.5.3 Resnet Fine Bonus Results: . 17

7 Full Code Printout: 18

1 Theory Questions

1.1 Question 1:

Conceiver of a new texture detector software. You can use the pyramid representation of an image to
capture information in some or all of the octaves.

• On one side, I would build a scale-pyramid representation of the image through mean-pooling
layers where each layer reduces the spatial dimensions by a factor of 2 without changing the
channel dimension.

1

• Using this scale pyramid, I could caculate individual Gram Matrices per layer.

• On the other side, I would apply a deep learning architecture for image classification using CNNs
similar to the VGG implementation.

• By downsampling the Gram Matrices along the channel dimesion by the appropriate factor of 2, I
could concatenate the gram matrix with the CNN’s dense representation of the image to provide
greater texture information that would help guide the learning process. This would be done across
each layer of scale pyramid and CNN netowrk.

I don’t have any particular examples where I believe that my architecture would work well; however,
I believe that it would outperform the Gram Matrix implementation that was performed during this
assignment since the deep-learning model would be informed of the Gram Matrix based textural infor-
mation during the training process and could therefore decide whether or not to use such information
for predicting the class labels. Finally, extracting the feature map for the final layer of my CNN encoder
would provide a dense-matrix-representation of the image, with textural information fed in through the
multi-scale gram matrix pipeline.

2 RGB to HSV:

For this project, we first convert the BGR representation of the image to HSV. This can be visualized
as a rotation of the RGB cube along the vertical axis as seen in the graph below from Avi Kak’s lecture
on texture and color.

In the RGB space, you would find black pixels close to the origin, while white pixels would be at
the corner furthest away from the origin. Therefore, you can think of HSV turning this cube onto the
vertical axis where the pixel with the highest intensity (white) is the highest point along the w axis.
The hue space then becomes a rotation around that axis, and the saturation is a scalar value of the
distance of a color to that vertical axis. In this way, we use the following equations to determine the
HSV representation of an image

M = max(R,G,B)

m = min(R,G,B)

c = M −m

V = M

H =


60

(
G−B

c mod6
)

M == R, c ̸= 0

60
(
B−R

c + 2
)

M == G, c ̸= 0

60
(
R−G

c + 4
)

M == B, c ̸= 0

0 c == 0

2

S =

{
c
V ∗ 255 V ̸= 0

0 V == 0

Lastly, to match the outputs generated through OpenCV, I rescale the huespace to 180deg istead of a
full 360. I also apply a ceiling function on the floating point values generated above before convertingt
them to numpy integers.

1 def img_BGR_to_HSV(img):

2 img = img.astype(np.float32)

3 img_hsv = np.zeros_like(img)

4

5 # Calculate key parameters through the channel axis

6 M = np.max(img , axis =2)

7 m = np.min(img , axis =2)

8 c = M - m

9 V = M

10

11 # For the rows , if the max is in the first column , etc

12 h0_mask = (M == img[:, :, 2]) & (c != 0) # M == R, c=/=0

13 h1_mask = (M == img[:, :, 1]) & (c != 0) # M == G, c=/=0

14 h2_mask = (M == img[:, :, 0]) & (c != 0) # M == B, c=/=0

15 c_mask = (c == 0) # c == 0

16

17 # Calculate H Values for each row

18 # We don’t just want to use the mask since c can be zero for greyscale. So we want

to only compute on the masks , by checking for where to input values in first.

19 with np.errstate(divide=’ignore ’, invalid=’ignore ’):

20 img_hsv[:, :, 0] = np.where(h0_mask , (60 * (((img[:, :, 1] - img[:, :, 0]) / c)

% 6)), img_hsv[:, :, 0])

21 img_hsv[:, :, 0] = np.where(h1_mask , (60 * ((img[:, :, 0] - img[:, :, 2]) / c +

2)), img_hsv[:, :, 0])

22 img_hsv[:, :, 0] = np.where(h2_mask , (60 * ((img[:, :, 2] - img[:, :, 1]) / c +

4)), img_hsv[:, :, 0])

23 img_hsv[:, :, 0][c_mask] = 0 # No divide by 0 errors are possible here

24 # To follow opencv formatting , I will rescale the hue angles to 180deg instead of

360

25 img_hsv[:, :, 0] /= 2

26

27 # Fill in with correct values for the S column: (c/V)

28 img_hsv[:, :, 1][V != 0] = c[V != 0]/V[V != 0] * 255

29

30 # Fill in V col

31 img_hsv [:,:,2] = V

32

33 return np.ceil(img_hsv).astype(np.uint8)

3 Extracting LBP Histograms:

3.1 Algorithm Description:

The LBP histogram method for texture extraction works by looking at every pixel in the image, counting
that as a center pixel and creating a binary pattern for the surrounding pixels in a circle around the
center. Formally, this binary pattern can be calculate as follows:

• First, it is important to note that this only works for 1 dimensional images. In our assignment we
used the Hue channel of HSV images, but greyscaled images would work just as well.

• Consider a coordinate on the image as the center point x

• Evaluate the pixel value at points around the circle. The number of points (P), and the radius of
that circle (R) are user-defined hyper-parameters.

– These points can be evaluated as follows:

(x, y) = R× cos

(
2π

P

)
, R× sin

(
2π

P

)

3

– It is important to note that since we are using discrete indices (images), we compute the pixel
interpolation as follows for pixels on the top-right diagonal (a similar formula is used for other
diagonals):

p[1] = center value · (1− 0.707) · (1− 0.707)+

img h pad[y][x+ 1] · (1− 0.707) · 0.707+
img h pad[y + 1][x] · 0.707 · (1− 0.707)+

img h pad[y + 1][x+ 1] · 0.707 · 0.707

• Once we have calculated the pixel value for all points, we threshold them using the center pixel.
Starting from the top and moving clockwise, we assign a value of 1 if the pixel on the circle is
bigger than the center, and 0 if it is less than or equal to the center pixel.

• Next, since we need a rotational-invariant version of the binary pattern, we circularly shift the
pattern until we find its minimal representation.

• Lastly, the authors of the LBP paper noticed that only binary patterns with a run of 0s followed
by a run of only 1s provided useful information. Therefore, we can encode the binary patterns as
follows for the histogram.

• – If the minIntVal representation involves more than two runs, we encode it by the integer
P + 1.

– Else, if the minIntVal representation consists of all 0’s, we encode it as 0.

– Else, if the minIntVal representation consists of all 1’s, we encode it as P .

– Else: the minIntVal representation of a binary pattern has exactly two runs (i.e., a run of
0’s followed by a run of 1’s). We represent the pattern by the number of 1’s in the second run.

3.2 Code Implementation:

1 class LBP():

2 def __init__(self , R, P):

3 self.R = R

4 self.P = P

5 def run_lbp(self , img_path):

6 # Read image and convert it to HSV , then use the H channel for all downstream

tasks.

7 img_bgr = cv2.imread(img_path)

8 img_hsv = img_BGR_to_HSV(img_bgr)

9 img_h = img_hsv[:, :, 0]

10

11 # Create padded image of size (64 ,64) for more feasilbe computation

12 img_h_sized = cv2.resize(img_h , (62 ,62), interpolation=cv2.INTER_AREA)

13 img_h_pad = np.pad(img_h_sized , pad_width =1, mode="constant", constant_values =0)

14

15 # Initialize the histogram vector for the image: (We allow a max index of P + 1

0->9 in this case)

16 lbp_histogram = np.zeros(self.P + 2)

17

18 # Loop through all possible LBP centers:

19 for y in range(self.R, img_h_pad.shape[0]-self.R):

20 for x in range(self.R, img_h_pad.shape[1]-self.R):

21 center_value = img_h_pad[y, x] # Scalar due to greyscale

22 p = np.zeros (8)

23

24 # Check the cardinal direction points (up ,down ,left ,right)

25 if img_h_pad[y+1][x] > center_value:

26 p[0] = 1

27 if img_h_pad[y][x+1] > center_value:

28 p[2] = 1

29 if img_h_pad[y-1][x] > center_value:

30 p[4] = 1

31 if img_h_pad[y][x-1] > center_value:

32 p[6] = 1

33

34 # We also have to check the diagonals.

4

35 # To calculate the pixel values at these diagonal points , we need to do

pixel -interpolation

36 # We also apply thresholding on the interpolated points compared to the

center to determine 0/1.

37 # Top right point

38 p[1] = center_value * (1 - 0.707) * (1 - 0.707) + \

39 img_h_pad[y][x+1] * (1 - 0.707) * 0.707 + \

40 img_h_pad[y+1][x] * 0.707 * (1 - 0.707) + \

41 img_h_pad[y+1][x+1] * 0.707 * 0.707

42 p[1] = 1 if p[1] > center_value else 0

43

44 # Bottom right point

45 p[3] = center_value * (1 - 0.707) * (1 - 0.707) + \

46 img_h_pad[y][x+1] * (1 - 0.707) * 0.707 + \

47 img_h_pad[y-1][x] * 0.707 * (1 - 0.707) + \

48 img_h_pad[y-1][x+1] * 0.707 * 0.707

49 p[3] = 1 if p[3] > center_value else 0

50

51 # Bottom left point

52 p[5] = center_value * (1 - 0.707) * (1 - 0.707) + \

53 img_h_pad[y][x-1] * (1 - 0.707) * 0.707 + \

54 img_h_pad[y-1][x] * 0.707 * (1 - 0.707) + \

55 img_h_pad[y-1][x-1] * 0.707 * 0.707

56 p[5] = 1 if p[5] > center_value else 0

57

58 # Top left point

59 p[7] = center_value * (1 - 0.707) * (1 - 0.707) + \

60 img_h_pad[y][x-1] * (1 - 0.707) * 0.707 + \

61 img_h_pad[y+1][x] * 0.707 * (1 - 0.707) + \

62 img_h_pad[y+1][x-1] * 0.707 * 0.707

63 p[7] = 1 if p[7] > center_value else 0

64

65 # Now that we have out bitvector representation for the circle of points

around the center

66 # We want to find the unique min bitvector to represent the value at

that point

67 # We do this through circular bit -shifts to find the minimal

representation:

68 # This method is from Avi Kak’s implementation in lecture 16

69 bv = BitVector(bitlist=p)

70 min_val = min([int(bv <<1) for _ in p])

71 min_bv = BitVector(intVal=min_val , size=len(p))

72

73 # Lastly , we use this min -bv value to get the final encoding for that

point

74 # So we create a min -int -val based integer representation of the binary

pattern

75 # From Avi’s Notes:

76 # - If the minIntVal representation involves more than two runs , encode

it by the integer P + 1

77 # - Else , if the minIntVal representation consists of all 0’s, represent

it be the encoding 0.

78 # - Else , if the minIntVal representation consists of all 1’s, represent

it by the encoding P.

79 # - Else: the minIntVal representation of a binary pattern has exactly

two runs , that is,

80 # a run of 0s followed by a run of 1s, represent the pattern by

the number of 1’s in the second run

81 num_runs = len(min_bv.runs())

82

83 encoding = None

84 # Mix of 1s and 0s

85 if num_runs > 2:

86 encoding = self.P + 1

87 # All 0s (8 of them)

88 elif min_bv.int_val () == 0 and num_runs == 1:

89 encoding = self.P

90 # 8 1s

91 elif min_bv.int_val () == 255 and num_runs == 1:

92 encoding = self.P

93 # Number of 1s in the second pattern if it is a run of all 0s then 1s

94 else:

95 encoding = len(min_bv.runs()[1])

5

96 lbp_histogram[encoding] += 1

97 return lbp_histogram

4 Gram Matrix based texture extraction:

4.1 Gram Matrix

For the Gram Matrix portion of this assignment, I first had to conver the images read using OpenCV
from BGR to RGB due to the requirements of Resnet and VGG. Next, I rescaled the images to a shape
of (256,256) for faster computation speed of the feature maps. Once I have a feature map, I can compute
the gram matrix as follows:

G = F × FT

To do so, I first flattened my input image from a shape of (N, C, H, W) to (N, C, H×W). I can then
compute the Gram Matrix by tranposing along the channel and height
width dimensions. Lastly, to most easily display the gram matrices using a heatmap, it is important to
note that I use bilinear interpolation to rescale the matrix from a shape of (N, C, C) to (N, 32, 32).
This speeds up the training time for my SVM classifier since it would only use 1024 features instead of
262, 144 features per image.

4.2 Code Implementation:

1 def get_gram_matrix(feature_mat_list):

2 f_mats = np.array(feature_mat_list)

3 N, C, H, W = f_mats.shape

4 fmats_flat = f_mats.reshape(N, C, H*W)

5

6 # A Gram matrix is the feature_map * feature_map.T

7 gram_matrix = fmats_flat @ fmats_flat.transpose (0, 2, 1)

8

9 # Conver the numpy array to a pytorch tensor for biliinear interpolation in

downsampling

10 # I also unsqueeze in the first dimension so that pytorch treats the final two

dimensions as H,W and downsamples on those

11 # Otherwise , would read the it as Batch , Channel , Height and a missing width

12 gram_mat_tensor = torch.from_numpy(gram_matrix).unsqueeze (0)

13

14 # Lastly , we want to resize the gram matrix from 512 x512 to (32 ,32) for easier

computation

15 # We do this using bilinear interpolation

16 downsampled_matrix = F.interpolate(gram_mat_tensor , size =(32, 32), mode=’bilinear ’,

align_corners=False)

17

18 return downsampled_matrix.squeeze ().numpy()

5 Extra Credit: Channel Normalization Parameter based Tex-
ture Extraction:

For the channel normalization parameters the process is even more simple and efficient. In this method,
we will find the mean and variance of the pixel values across each channel. We can then interleave these
values together to create the texture matrix. For displaying the results, I take the flattened result and
reshape it into a square matrix that I display using Seaborn’s heatmap method.

5.1 Implementation:

1 def get_normalization_params(feature_mat_list):

2 f_mats = np.array(feature_mat_list)

3

4 means = f_mats.mean(axis=(2, 3))

5 variances = f_mats.std(axis=(2, 3))

6

6

7 # I first stack the arrays together , and then reshape the final matrix to interleave

the means and variances

8 mu_sigma_stacked = np.stack((means , variances), axis=-1)

9 channel_norm_params = mu_sigma_stacked.reshape(f_mats.shape[0], 2* f_mats.shape [1])

10

11 return channel_norm_params

6 Results:

6.1 Dataset Description:

The dataset used for the results section of this assignment includes 1125 photos split into training and
test splits (925 training images and 200 test images). These images belong to four different categories:
cloudy, rain, sunshine and sunrise, and the dataset is evenly distributed among all of these categories
to avoid overfitting. The goal of this assignment is to classify these images based on their textures. We
will report a 4×4 confusion matrix for the classification accurac for all texture dectors. It is important
to note that the following encoding will be used to represent the class names for the confusion matrices:

• cloudy: 0

• rain: 1

• shine: 2

• sunrise: 3

6.2 LBP Results:

The following bar charts are the histograms for each class. I have included the image followed by its LBP
histogram in each example. Additionally, the first image was one that resulted in a correct classification
prediction, while the second image was one that resulted in an incorrect prediction.

7

Correct image classification and LBP histogram Incorrect image classification and LBP histogram

Cloudy: Image classification and histogram pairs

Correct image classification and LBP histogram Incorrect image classification and LBP histogram

Rain: Image classification and histogram pairs

Correct image classification and LBP histogram Incorrect image classification and LBP histogram

Sunshine: Image classification and histogram pairs

Correct image classification and LBP histogram Incorrect image classification and LBP histogram

Sunrise: Image classification and histogram pairs

After training an SVM on the training set, the following results were found by running the trained
SVM model on the testing dataset:

Class Precision Recall F1-Score Support
0 0.71 0.80 0.75 50
1 0.79 0.30 0.43 50
2 0.74 0.40 0.52 50
3 0.44 0.86 0.58 50

Accuracy 0.59 (200 samples)
Macro Avg 0.67 0.59 0.57 200

Weighted Avg 0.67 0.59 0.57 200

Table 1: Classification Report for SVM Model based on LBP histograms

8

Additionally, I have generated the following confusion matrix to visualize the results in a different
way:

6.3 Gram Matrix Results:

6.3.1 VGG-19 Results:

Included below are examples of a correctly classified image, and an incorrectly classified image for each
class. The gram matrix associated with that image is also displayed using Seaborn’s heatmap method.

9

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Cloudy: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Rain: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunshine: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunrise: Image classification and Gram Matrix pairs

After training an SVM on the training set, the following results were found by running the trained
SVM model on the testing dataset for VGG:

Additionally, I have generated the following confusion matrix to visualize the results in a different
way:

10

Class Precision Recall F1-Score Support
0 0.87 0.94 0.90 50
1 0.92 0.88 0.90 50
2 0.93 0.84 0.88 50
3 0.91 0.96 0.93 50

Accuracy 0.905 (200 samples)
Macro Avg 0.91 0.90 0.90 200

Weighted Avg 0.91 0.91 0.90 200

Table 2: Classification Report for SVM Model based on VGG Gram Matrices

6.3.2 Resnet50-Coarse Results:

The same results are included below for the Resnet50-Coarse feature maps:

11

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Cloudy: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Rain: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunshine: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunrise: Image classification and Gram Matrix pairs

After training an SVM on the training set, the following results were found by running the trained
SVM model on the testing dataset for Resnet Coarse:

Additionally, I have generated the following confusion matrix to visualize the results in a different
way:

12

Class Precision Recall F1-Score Support
0 0.57 0.88 0.69 50
1 1.00 0.68 0.81 50
2 0.88 0.60 0.71 50
3 0.80 0.88 0.84 50

Accuracy 0.76 (200 samples)
Macro Avg 0.81 0.76 0.76 200

Weighted Avg 0.81 0.76 0.76 200

Table 3: Classification Report for SVM Model based on Resnet50-Coarse Gram Matrices

13

6.3.3 Resnet50-Fine Results:

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Cloudy: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Rain: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunshine: Image classification and Gram Matrix pairs

Correct image classification and Gram Matrix Incorrect image classification and Gram Matrix

Sunrise: Image classification and Gram Matrix pairs

After training an SVM on the training set, the following results were found by running the trained SVM
model on the testing dataset for Resnet Fine:

Additionally, I have generated the following confusion matrix to visualize the results in a different
way:

14

Class Precision Recall F1-Score Support
0 0.82 0.84 0.83 50
1 1.00 0.94 0.97 50
2 0.93 0.82 0.87 50
3 0.84 0.98 0.91 50

Accuracy 0.895 (200 samples)
Macro Avg 0.90 0.89 0.90 200

Weighted Avg 0.90 0.90 0.90 200

Table 4: Classification Report for SVM Model based on Resnet50-Fine Gram Matrices

6.4 Discussion of results:

For the required portion of this assignment, the best performing model was the VGG based Gram Matrix
extraction. It is logical that the approach that relies on deep learning outperforms the baseline LBP
approach that relied only on one channel of the image. This is due to the fact that deep learning models
will encode a large amount of information into the feature maps on the inter-pixel correlations, while
the LBP baed method only looks at a circle. In this way, deep-convolutional-models ”jam” an immense
amount of spatial pixel information into the channel dimension which we used calculate the Gram Matrix.
Something that was not clear to me however, was that the VGG based method outperformed Resnet50
based approaches even though that model has a lower accuracy on standard datasets such as ImageNet
etc. This may be due to architectural differences in VGG that lend itself more to textural information
encoded in the feature map.

6.5 Channel Normalization Parameter Results:

In the following results section, I include one example correct classification and one example incorrect
classification for each feature map type. I do not report over all classes since some classes were fully
predicted correctly. Additionally, I report accuracy metrics for the SVM training, and a confusion matrix
for the prediction errors as has been reported for all other results section of this report.

15

6.5.1 VGG Bonus Results:

Correct image classification and channel normalization
Parameters in matrix form

Incorrect image classification and channel normaliza-
tion Parameters in matrix form

Class Precision Recall F1-Score Support
0 0.96 0.98 0.97 50
1 1.00 1.00 1.00 50
2 0.98 0.94 0.96 50
3 0.98 1.00 0.99 50

Accuracy 0.98 (200 samples)
Macro Avg 0.98 0.98 0.98 200

Weighted Avg 0.98 0.98 0.98 200

Table 5: Classification Report for SVM Model based on LBP histograms

6.5.2 Resnet Coarse Bonus Results:

Correct image classification and channel normalization
Parameters in matrix form

Incorrect image classification and channel normaliza-
tion Parameters in matrix form

16

Class Precision Recall F1-Score Support
0 0.83 0.96 0.89 50
1 1.00 0.94 0.97 50
2 1.00 0.84 0.91 50
3 0.92 0.98 0.95 50

Accuracy 0.93 (200 samples)
Macro Avg 0.94 0.93 0.93 200

Weighted Avg 0.94 0.93 0.93 200

Table 6: Classification Report for SVM Model based on Channel Normalization parameters

6.5.3 Resnet Fine Bonus Results:

Correct image classification and channel normalization
Parameters in matrix form

Incorrect image classification and channel normaliza-
tion Parameters in matrix form

Class Precision Recall F1-Score Support
0 0.84 0.92 0.88 50
1 1.00 0.94 0.97 50
2 0.98 0.82 0.89 50
3 0.88 0.98 0.92 50

Accuracy 0.915 (200 samples)
Macro Avg 0.92 0.91 0.92 200

Weighted Avg 0.92 0.92 0.92 200

Table 7: Classification Report for SVM Model based on Channel Normalization parameters

17

7 Full Code Printout:

Included below is the printout for my entire code for this assignment. It is important to note that since
this is a conversion from a python notebook to python code, there could be artifacts in the code that
would not be present otherwise.

1 # %%

2 import cv2

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import seaborn as sns

6 from tqdm import tqdm

7 import pandas as pd

8 from BitVector import BitVector

9 import os

10 from sklearn.svm import SVC

11 from sklearn.metrics import classification_report , accuracy_score , confusion_matrix

12 import re

13 import pickle

14 from vgg_and_resnet import *

15 import torch.nn.functional as F

16

17 # %%

18 def img_BGR_to_HSV(img):

19 img = img.astype(np.float32)

20 img_hsv = np.zeros_like(img)

21

22 # Calculate key parameters through the channel axis

23 M = np.max(img , axis =2)

24 m = np.min(img , axis =2)

25 c = M - m

26 V = M

27

28 # For the rows , if the max is in the first column , etc

29 h0_mask = (M == img[:, :, 2]) & (c != 0) # M == R, c=/=0

30 h1_mask = (M == img[:, :, 1]) & (c != 0) # M == G, c=/=0

31 h2_mask = (M == img[:, :, 0]) & (c != 0) # M == B, c=/=0

32 c_mask = (c == 0) # c == 0

33

34 # Calculate H Values for each row

35 # We don’t just want to use the mask since c can be zero for greyscale. So we want

to only compute on the masks , by checking for where to input values in first.

36 with np.errstate(divide=’ignore ’, invalid=’ignore ’):

37 img_hsv[:, :, 0] = np.where(h0_mask , (60 * (((img[:, :, 1] - img[:, :, 0]) / c)

% 6)), img_hsv[:, :, 0])

38 img_hsv[:, :, 0] = np.where(h1_mask , (60 * ((img[:, :, 0] - img[:, :, 2]) / c +

2)), img_hsv[:, :, 0])

39 img_hsv[:, :, 0] = np.where(h2_mask , (60 * ((img[:, :, 2] - img[:, :, 1]) / c +

4)), img_hsv[:, :, 0])

40 img_hsv[:, :, 0][c_mask] = 0 # No divide by 0 errors are possible here

18

41 # To follow opencv formatting , I will rescale the hue angles to 180deg instead of

360

42 img_hsv[:, :, 0] /= 2

43

44 # Fill in with correct values for the S column: (c/V)

45 img_hsv[:, :, 1][V != 0] = c[V != 0]/V[V != 0] * 255

46

47 # Fill in V col

48 img_hsv [:,:,2] = V

49

50 return np.ceil(img_hsv).astype(np.uint8)

51

52 # %%

53 class LBP():

54 def __init__(self , R, P):

55 self.R = R

56 self.P = P

57 def run_lbp(self , img_path):

58 # Read image and convert it to HSV , then use the H channel for all downstream

tasks.

59 img_bgr = cv2.imread(img_path)

60 img_hsv = img_BGR_to_HSV(img_bgr)

61 img_h = img_hsv[:, :, 0]

62

63 # Create padded image of size (64 ,64) for more feasilbe computation

64 img_h_sized = cv2.resize(img_h , (62 ,62), interpolation=cv2.INTER_AREA)

65 img_h_pad = np.pad(img_h_sized , pad_width =1, mode="constant", constant_values =0)

66

67 # Initialize the histogram vector for the image: (We allow a max index of P + 1

0->9 in this case)

68 lbp_histogram = np.zeros(self.P + 2)

69

70 # Loop through all possible LBP centers:

71 for y in range(self.R, img_h_pad.shape[0]-self.R):

72 for x in range(self.R, img_h_pad.shape[1]-self.R):

73 center_value = img_h_pad[y, x] # Scalar due to greyscale

74 p = np.zeros (8)

75

76 # Check the cardinal direction points (up ,down ,left ,right)

77 if img_h_pad[y+1][x] > center_value:

78 p[0] = 1

79 if img_h_pad[y][x+1] > center_value:

80 p[2] = 1

81 if img_h_pad[y-1][x] > center_value:

82 p[4] = 1

83 if img_h_pad[y][x-1] > center_value:

84 p[6] = 1

85

86 # We also have to check the diagonals.

87 # To calculate the pixel values at these diagonal points , we need to do

pixel -interpolation

88 # We also apply thresholding on the interpolated points compared to the

center to determine 0/1.

89 # Top right point

90 p[1] = center_value * (1 - 0.707) * (1 - 0.707) + \

91 img_h_pad[y][x+1] * (1 - 0.707) * 0.707 + \

92 img_h_pad[y+1][x] * 0.707 * (1 - 0.707) + \

93 img_h_pad[y+1][x+1] * 0.707 * 0.707

94 p[1] = 1 if p[1] > center_value else 0

95

96 # Bottom right point

97 p[3] = center_value * (1 - 0.707) * (1 - 0.707) + \

98 img_h_pad[y][x+1] * (1 - 0.707) * 0.707 + \

99 img_h_pad[y-1][x] * 0.707 * (1 - 0.707) + \

100 img_h_pad[y-1][x+1] * 0.707 * 0.707

101 p[3] = 1 if p[3] > center_value else 0

102

103 # Bottom left point

104 p[5] = center_value * (1 - 0.707) * (1 - 0.707) + \

105 img_h_pad[y][x-1] * (1 - 0.707) * 0.707 + \

106 img_h_pad[y-1][x] * 0.707 * (1 - 0.707) + \

107 img_h_pad[y-1][x-1] * 0.707 * 0.707

108 p[5] = 1 if p[5] > center_value else 0

19

109

110 # Top left point

111 p[7] = center_value * (1 - 0.707) * (1 - 0.707) + \

112 img_h_pad[y][x-1] * (1 - 0.707) * 0.707 + \

113 img_h_pad[y+1][x] * 0.707 * (1 - 0.707) + \

114 img_h_pad[y+1][x-1] * 0.707 * 0.707

115 p[7] = 1 if p[7] > center_value else 0

116

117 # Now that we have out bitvector representation for the circle of points

around the center

118 # We want to find the unique min bitvector to represent the value at

that point

119 # We do this through circular bit -shifts to find the minimal

representation:

120 # This method is from Avi Kak’s implementation in lecture 16

121 bv = BitVector(bitlist=p)

122 min_val = min([int(bv <<1) for _ in p])

123 min_bv = BitVector(intVal=min_val , size=len(p))

124

125 # Lastly , we use this min -bv value to get the final encoding for that

point

126 # So we create a min -int -val based integer representation of the binary

pattern

127 # From Avi’s Notes:

128 # - If the minIntVal representation involves more than two runs , encode

it by the integer P + 1

129 # - Else , if the minIntVal representation consists of all 0’s, represent

it be the encoding 0.

130 # - Else , if the minIntVal representation consists of all 1’s, represent

it by the encoding P.

131 # - Else: the minIntVal representation of a binary pattern has exactly

two runs , that is,

132 # a run of 0s followed by a run of 1s, represent the pattern by

the number of 1’s in the second run

133 num_runs = len(min_bv.runs())

134

135 encoding = None

136 # Mix of 1s and 0s

137 if num_runs > 2:

138 encoding = self.P + 1

139 # All 0s (8 of them)

140 elif min_bv.int_val () == 0 and num_runs == 1:

141 encoding = self.P

142 # 8 1s

143 elif min_bv.int_val () == 255 and num_runs == 1:

144 encoding = self.P

145 # Number of 1s in the second pattern if it is a run of all 0s then 1s

146 else:

147 encoding = len(min_bv.runs()[1])

148 lbp_histogram[encoding] += 1

149 return lbp_histogram

150

151 # %%

152 class MySVM():

153 def __init__(self):

154 self.classifier = SVC(decision_function_shape="ovr")

155

156 def fit(self , features , labels):

157 # Train the classifier on the train data/labels

158 self.classifier.fit(features , labels)

159

160 def predict(self , features):

161 # Predict the labels for the tes data

162 return self.classifier.predict(features)

163

164 def fit_predict(self , features , labels):

165 # Fit and predict on the same data

166 self.classifier.fit(features , labels)

167 return self.classifier.predict(features)

168

169 def score(self , predicted_labels , true_labels):

170 # Returns the mean accuracy using the test data and labels.

20

171 return accuracy_score(true_labels , predicted_labels), classification_report(

true_labels , predicted_labels)

172

173 # %%

174 R = 1

175 P = 8

176 image_list = os.listdir("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

training/")

177 lbp_hist_list = []

178 labels_list = []

179 progress_bar = tqdm(image_list , desc="Training Loop")

180 image_type_to_label = {"cloudy": 0, "rain": 1, "shine": 2, "sunrise": 3}

181

182 for image_name in progress_bar:

183 try:

184 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

training/" + image_name

185 image_type = re.split(r"([0 -9]+)", image_name)[0]

186 label = image_type_to_label[image_type]

187

188 lbp_hist = LBP(R=R, P=P).run_lbp(img_path=image_path)

189 lbp_hist_list.append(lbp_hist)

190

191 # Fill in with image name -> index for training

192 labels_list.append(label)

193 except Exception as e:

194 print("This image did not work: ", image_name)

195

196

197 # %%

198 svm = MySVM()

199 svm.fit(lbp_hist_list , labels_list)

200

201 # %%

202 result_dict = {"lbp_hist_list": lbp_hist_list , "labels_list": labels_list}

203 with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/lbp_hists.pkl", "wb") as file

:

204 pickle.dump(result_dict , file)

205

206 # %%

207 test_image_list = os.listdir("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/

data/testing/")

208 test_lbp_hist_list = []

209 test_labels_list = []

210 image_type_to_label = {"cloudy": 0, "rain": 1, "shine": 2, "sunrise": 3}

211 test_progress_bar = tqdm(test_image_list , desc="Testing Loop")

212

213 for image_name in test_progress_bar:

214 try:

215 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

testing/" + image_name

216 image_type = re.split(r"([0 -9]+)", image_name)[0]

217 label = image_type_to_label[image_type]

218

219 lbp_hist = LBP(R=R, P=P).run_lbp(img_path=image_path)

220 test_lbp_hist_list.append(lbp_hist)

221

222 # Add in labels based on image name

223 test_labels_list.append(label)

224 except Exception as e:

225 print("This image did not work: ", image_name)

226

227 # %%

228 test_result_dict = {"test_lbp_hist_list": test_lbp_hist_list , "test_labels_list":

test_labels_list}

229 with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/test_lbp_hists.pkl", "wb") as

file:

230 pickle.dump(test_result_dict , file)

231

232 # %%

233 predicted_labels = svm.predict(test_lbp_hist_list)

234

235 # %%

21

236 accuracy , class_report = svm.score(predicted_labels , test_labels_list)

237

238 # %%

239 confusion_mat = confusion_matrix(test_labels_list , predicted_labels)

240

241 plt.figure(figsize =(8, 6))

242 sns.heatmap(confusion_mat , annot=True , fmt=’d’, cmap=’Blues ’, cbar=False)

243 plt.xlabel(’Predicted Labels ’)

244 plt.ylabel(’True Labels ’)

245 plt.title(’Confusion Matrix ’, fontsize =16, fontweight=’bold’)

246 plt.show()

247

248 # %% [markdown]

249 # # Get results for LBP histograms & images success/failure

250

251 # %%

252 lbp_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/LBP_Results/"

253 lbp_hist_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/LBP_Hists/"

254 # I only want to save 1 positive match example and 1 negative match example for each

class

255 # The class is therefore the first number , and the second number is for matching labels

or not

256 results_gotten = {"01": 0, "00": 0,

257 "11": 0, "10": 0,

258 "21": 0, "20": 0,

259 "31": 0, "30": 0}

260

261 for image_name , test_lbp_hist , test_label , pred_label in zip(test_progress_bar ,

test_lbp_hist_list , test_labels_list , predicted_labels):

262 encoding = str(test_label)

263 correct = ""

264 if test_label == pred_label:

265 encoding += "1"

266 correct = "correct"

267 else:

268 encoding += "0"

269 correct = "false"

270

271 if results_gotten[encoding] == 0:

272 # New type of result to save

273 results_gotten[encoding] += 1

274

275 # Save the resize testing image

276 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

testing/" + image_name

277 img = cv2.imread(image_path)

278 img_resized = cv2.resize(img , (128 ,128), interpolation=cv2.INTER_AREA)

279 cv2.imwrite(lbp_hist_path+image_name , img_resized)

280

281 # Save the histogram plot

282 plt.figure(figsize =(8,6))

283 plt.bar(range(len(test_lbp_hist)), test_lbp_hist , color=’blue’) # Customize

color as needed

284 plt.tight_layout ()

285 # Save the plot to a file

286 plt.savefig(lbp_hist_path+image_name [:-4] + "_lbp_hist_" + correct + ".png",

format=’png’, dpi =300)

287 plt.close()

288

289 # %% [markdown]

290 # # Feature Map Extraction

291

292 # %%

293 # We run this once , and save all of the feature maps for all of the images to save

computation time during debugging

294 class FeatureMapper ():

295 def __init__(self):

296 pass

297 def get_resized_img_input(self , img_path):

298 img = cv2.imread(img_path)

299 # Convert images to RGB due to how RESNET and VGG expect inputs

300 img = cv2.cvtColor(img , cv2.COLOR_BGR2RGB)

301

22

302 # Create padded image of size (256 ,256) for more feasilbe computation

303 img = cv2.resize(img , (256 ,256), interpolation=cv2.INTER_AREA)

304 return img

305

306 def get_feature_map_vgg(self , img_path):

307 img = self.get_resized_img_input(img_path)

308

309 # The next three lines are from the tutorial included in the instructions

310 vgg = VGG19()

311 vgg.load_weights(’vgg_normalized.pth’)

312 vgg_feature = vgg(img)

313 return vgg_feature

314

315 def get_feature_map_resnet(self , img_path):

316 img = self.get_resized_img_input(img_path)

317

318 # The next three lines are from the tutorial included in the instructions

319 encoder_name=’resnet50 ’

320 resnet = CustomResNet(encoder=encoder_name)

321 resnet_feat_coarse , resnet_feat_fine = resnet(img)

322 return resnet_feat_coarse , resnet_feat_fine

323

324 # %%

325 image_list = os.listdir("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

training/")

326 vgg_feature_list = []

327 resnet_coarse_feature_list = []

328 resnet_fine_feature_list = []

329 progress_bar = tqdm(image_list , desc="Training Loop")

330 image_type_to_label = {"cloudy": 0, "rain": 1, "shine": 2, "sunrise": 3}

331 img_names = []

332 labels_list = []

333 featureMapper = FeatureMapper ()

334

335 for image_name in progress_bar:

336 try:

337 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

training/" + image_name

338 image_type = re.split(r"([0 -9]+)", image_name)[0]

339 label = image_type_to_label[image_type]

340

341 # Get VGG Feature Map

342 vgg_feature = featureMapper.get_feature_map_vgg(img_path=image_path)

343 vgg_feature_list.append(vgg_feature)

344

345 # Resnet Features

346 resnet_feat_coarse , resnet_feat_fine = featureMapper.get_feature_map_resnet(

img_path=image_path)

347 resnet_coarse_feature_list.append(resnet_feat_coarse)

348 resnet_fine_feature_list.append(resnet_feat_fine)

349

350 # Append the image name:

351 img_names.append(image_name)

352

353 # Fill in with image name -> index for training

354 labels_list.append(label)

355 except Exception as e:

356 print("This image did not work: ", image_name)

357 print(e)

358

359

360 # %%

361 result_dict = {"vgg_feature_list": vgg_feature_list ,

362 "resnet_coarse_feature_list": resnet_coarse_feature_list ,

363 "resnet_fine_feature_list": resnet_fine_feature_list ,

364 "img_names": img_names ,

365 "labels_list": labels_list}

366

367 # %%

368 with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/training_freature_mats.pkl",

"wb") as file:

369 pickle.dump(result_dict , file)

370

23

371 # %%

372 test_image_list = os.listdir("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/

data/testing/")

373 test_vgg_feature_list = []

374 test_resnet_coarse_feature_list = []

375 test_resnet_fine_feature_list = []

376 test_img_names = []

377 test_labels_list = []

378 image_type_to_label = {"cloudy": 0, "rain": 1, "shine": 2, "sunrise": 3}

379 featureMapper = FeatureMapper ()

380 test_progress_bar = tqdm(test_image_list , desc="Testing Loop")

381

382 for image_name in test_progress_bar:

383 try:

384 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

testing/" + image_name

385 image_type = re.split(r"([0 -9]+)", image_name)[0]

386 label = image_type_to_label[image_type]

387

388 # Get VGG Feature Map

389 test_vgg_feature = featureMapper.get_feature_map_vgg(img_path=image_path)

390 test_vgg_feature_list.append(test_vgg_feature)

391

392 # Resnet Features

393 test_resnet_feat_coarse , test_resnet_feat_fine = featureMapper.

get_feature_map_resnet(img_path=image_path)

394 test_resnet_coarse_feature_list.append(test_resnet_feat_coarse)

395 test_resnet_fine_feature_list.append(test_resnet_feat_fine)

396

397 # Append the image name:

398 test_img_names.append(image_name)

399

400 # Fill in with image name -> index for training

401 test_labels_list.append(label)

402 except Exception as e:

403 print("This image did not work: ", image_name)

404 print(e)

405

406

407 # %%

408 test_result_dict = {"test_vgg_feature_list": test_vgg_feature_list ,

409 "test_resnet_coarse_feature_list": test_resnet_coarse_feature_list ,

410 "test_resnet_fine_feature_list": test_resnet_fine_feature_list ,

411 "test_img_names": test_img_names ,

412 "test_labels_list": test_labels_list}

413

414 # %%

415 with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/testing_freature_mats.pkl", "

wb") as file:

416 pickle.dump(result_dict , file)

417

418 # %% [markdown]

419 # # Gram Matrix Calculation:

420

421 # %%

422 def get_gram_matrix(feature_mat_list):

423 f_mats = np.array(feature_mat_list)

424 N, C, H, W = f_mats.shape

425 fmats_flat = f_mats.reshape(N, C, H*W)

426

427 # A Gram matrix is the feature_map * feature_map.T

428 gram_matrix = fmats_flat @ fmats_flat.transpose (0, 2, 1)

429

430 # Conver the numpy array to a pytorch tensor for biliinear interpolation in

downsampling

431 # I also unsqueeze in the first dimension so that pytorch treats the final two

dimensions as H,W and downsamples on those

432 # Otherwise , would read the it as Batch , Channel , Height and a missing width

433 gram_mat_tensor = torch.from_numpy(gram_matrix).unsqueeze (0)

434

435 # Lastly , we want to resize the gram matrix from 512 x512 to (32 ,32) for easier

computation

436 # We do this using bilinear interpolation

24

437 downsampled_matrix = F.interpolate(gram_mat_tensor , size =(32, 32), mode=’bilinear ’,

align_corners=False)

438

439 return downsampled_matrix.squeeze ().numpy()

440

441 # %%

442 vgg_gram_matrices = get_gram_matrix(vgg_feature_list)

443 resnet_coarse_gram_matrices = get_gram_matrix(resnet_coarse_feature_list)

444 resnet_fine_gram_matrices = get_gram_matrix(resnet_fine_feature_list)

445 test_vgg_gram_matrices = get_gram_matrix(test_vgg_feature_list)

446 test_resnet_coarse_gram_matrices = get_gram_matrix(test_resnet_coarse_feature_list)

447 test_resnet_fine_gram_matrices = get_gram_matrix(test_resnet_fine_feature_list)

448

449 # %%

450 # Flattening the final dimseion is required since SVM can only take in as inputs 2 dims

(Batch , features)

451 vgg_gram_matrices = vgg_gram_matrices.reshape(vgg_gram_matrices.shape[0], -1)

452 resnet_coarse_gram_matrices = resnet_coarse_gram_matrices.reshape(

resnet_coarse_gram_matrices.shape[0], -1)

453 resnet_fine_gram_matrices = resnet_fine_gram_matrices.reshape(resnet_fine_gram_matrices.

shape[0], -1)

454 test_vgg_gram_matrices = test_vgg_gram_matrices.reshape(test_vgg_gram_matrices.shape [0],

-1)

455 test_resnet_coarse_gram_matrices = test_resnet_coarse_gram_matrices.reshape(

test_resnet_coarse_gram_matrices.shape[0], -1)

456 test_resnet_fine_gram_matrices = test_resnet_fine_gram_matrices.reshape(

test_resnet_fine_gram_matrices.shape [0], -1)

457

458 # %%

459 # Save gram matrices to a file:

460 gram_matrices = {"vgg_gram_matrices": vgg_gram_matrices ,

461 "resnet_coarse_gram_matrices": resnet_coarse_gram_matrices ,

462 "resnet_fine_gram_matrices": resnet_fine_gram_matrices ,

463 "test_vgg_gram_matrices": test_vgg_gram_matrices ,

464 "test_resnet_coarse_gram_matrices": test_resnet_coarse_gram_matrices ,

465 "test_resnet_fine_gram_matrices": test_resnet_fine_gram_matrices}

466 with open("/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Saves/all_gram_matrices.pkl", "wb")

as file:

467 pickle.dump(gram_matrices , file)

468

469 # %% [markdown]

470 # # VGG Final Results

471

472 # %%

473 # VGG SVM:

474 svm = MySVM()

475 svm.fit(vgg_gram_matrices , labels_list)

476 vgg_predicted_labels = svm.predict(test_vgg_gram_matrices)

477 vgg_accuracy , vgg_class_report = svm.score(vgg_predicted_labels , test_labels_list)

478 print("Accuracy: ", vgg_accuracy)

479 print(vgg_class_report)

480

481 # %%

482 vgg_confusion_mat = confusion_matrix(test_labels_list , vgg_predicted_labels)

483

484 plt.figure(figsize =(8, 6))

485 sns.heatmap(vgg_confusion_mat , annot=True , fmt=’d’, cmap=’Blues ’, cbar=False)

486 plt.xlabel(’Predicted Labels ’)

487 plt.ylabel(’True Labels ’)

488 plt.title(’Confusion Matrix ’, fontsize =16, fontweight=’bold’)

489 plt.show()

490

491 # %%

492 vgg_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/VGG_Results/"

493 # I only want to save 1 positive match example and 1 negative match example for each

class

494 # The class is therefore the first number , and the second number is for matching labels

or not

495 results_gotten = {"01": 0, "00": 0,

496 "11": 0, "10": 0,

497 "21": 0, "20": 0,

498 "31": 0, "30": 0}

499

25

500 for image_name , gram_matrix , test_label , pred_label in zip(test_progress_bar ,

test_vgg_gram_matrices , test_labels_list , vgg_predicted_labels):

501 encoding = str(test_label)

502 correct = ""

503 if test_label == pred_label:

504 encoding += "1"

505 correct = "correct"

506 else:

507 encoding += "0"

508 correct = "false"

509

510 if results_gotten[encoding] == 0:

511 # New type of result to save

512 results_gotten[encoding] += 1

513

514 # Convert the vgg_gram_matrix back from (N ,1024) -> (N, 32,32) for display

515 gram_matrix = gram_matrix.reshape (32, 32)

516

517 # Save the resize testing image

518 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

testing/" + image_name

519 img = cv2.imread(image_path)

520 img_resized = cv2.resize(img , (128 ,128), interpolation=cv2.INTER_AREA)

521 cv2.imwrite(vgg_path+image_name , img_resized)

522

523 # Save the gram matrix to display for results section of the report

524 plt.figure(figsize =(8,6))

525

526 # Use seaborn to create a heatmap

527 sns.heatmap(gram_matrix , cmap="viridis", cbar=True)

528 plt.tight_layout ()

529 # Save the heatmap to a file

530 plt.savefig(vgg_path+image_name [:-4] + "_gram_mat_" + correct + ".png", format=’

png’, dpi=300, bbox_inches="tight")

531 plt.close()

532

533 # %% [markdown]

534 # # Resnet Coarse Results

535

536 # %%

537 # Resnet Coarse:

538 svm = MySVM()

539 svm.fit(resnet_coarse_gram_matrices , labels_list)

540 resnet_coarse_predicted_labels = svm.predict(test_resnet_coarse_gram_matrices)

541 resnet_coarse_accuracy , resnet_coarse_class_report = svm.score(

resnet_coarse_predicted_labels , test_labels_list)

542 print("Accuracy: ", resnet_coarse_accuracy)

543 print(resnet_coarse_class_report)

544

545 # %%

546 resnet_coarse_confusion_mat = confusion_matrix(test_labels_list ,

resnet_coarse_predicted_labels)

547

548 plt.figure(figsize =(8, 6))

549 sns.heatmap(resnet_coarse_confusion_mat , annot=True , fmt=’d’, cmap=’Blues ’, cbar=False)

550 plt.xlabel(’Predicted Labels ’)

551 plt.ylabel(’True Labels ’)

552 plt.title(’Confusion Matrix ’, fontsize =16, fontweight=’bold’)

553 plt.show()

554

555 # %%

556 resnet_coarse_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/

Resnet_Coarse_Results/"

557 # I only want to save 1 positive match example and 1 negative match example for each

class

558 # The class is therefore the first number , and the second number is for matching labels

or not

559 results_gotten = {"01": 0, "00": 0,

560 "11": 0, "10": 0,

561 "21": 0, "20": 0,

562 "31": 0, "30": 0}

563

26

564 for image_name , gram_matrix , test_label , pred_label in zip(test_progress_bar ,

test_resnet_coarse_gram_matrices , test_labels_list , resnet_coarse_predicted_labels):

565 encoding = str(test_label)

566 correct = ""

567 if test_label == pred_label:

568 encoding += "1"

569 correct = "correct"

570 else:

571 encoding += "0"

572 correct = "false"

573

574 if results_gotten[encoding] == 0:

575 # New type of result to save

576 results_gotten[encoding] += 1

577

578 # Convert the vgg_gram_matrix back from (N ,1024) -> (N, 32,32) for display

579 gram_matrix = gram_matrix.reshape (32, 32)

580

581 # Save the resize testing image

582 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

testing/" + image_name

583 img = cv2.imread(image_path)

584 img_resized = cv2.resize(img , (128 ,128), interpolation=cv2.INTER_AREA)

585 cv2.imwrite(resnet_coarse_path+image_name , img_resized)

586

587 # Save the gram matrix to display for results section of the report

588 plt.figure(figsize =(8,6))

589

590 # Use seaborn to create a heatmap

591 sns.heatmap(gram_matrix , cmap="viridis", cbar=True)

592 plt.tight_layout ()

593 # Save the heatmap to a file

594 plt.savefig(resnet_coarse_path+image_name [:-4] + "_gram_mat_" + correct + ".png"

, format=’png’, dpi=300, bbox_inches="tight")

595 plt.close()

596

597 # %% [markdown]

598 # # Resnet Fine Results:

599

600 # %%

601 # VGG SVM:

602 svm = MySVM()

603 svm.fit(resnet_fine_gram_matrices , labels_list)

604 resnet_fine_predicted_labels = svm.predict(test_resnet_fine_gram_matrices)

605 resnet_fine_accuracy , resnet_fine_class_report = svm.score(resnet_fine_predicted_labels ,

test_labels_list)

606 print("Accuracy: ", resnet_fine_accuracy)

607 print(resnet_fine_class_report)

608

609 # %%

610 resnet_fine_confusion_mat = confusion_matrix(test_labels_list ,

resnet_fine_predicted_labels)

611

612 plt.figure(figsize =(8, 6))

613 sns.heatmap(resnet_fine_confusion_mat , annot=True , fmt=’d’, cmap=’Blues’, cbar=False)

614 plt.xlabel(’Predicted Labels ’)

615 plt.ylabel(’True Labels ’)

616 plt.title(’Confusion Matrix ’, fontsize =16, fontweight=’bold’)

617 plt.show()

618

619 # %%

620 resnet_fine_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/

Resnet_Fine_Results/"

621 # I only want to save 1 positive match example and 1 negative match example for each

class

622 # The class is therefore the first number , and the second number is for matching labels

or not

623 results_gotten = {"01": 0, "00": 0,

624 "11": 0, "10": 0,

625 "21": 0, "20": 0,

626 "31": 0, "30": 0}

627

27

628 for image_name , gram_matrix , test_label , pred_label in zip(test_progress_bar ,

test_resnet_fine_gram_matrices , test_labels_list , resnet_fine_predicted_labels):

629 encoding = str(test_label)

630 correct = ""

631 if test_label == pred_label:

632 encoding += "1"

633 correct = "correct"

634 else:

635 encoding += "0"

636 correct = "false"

637

638 if results_gotten[encoding] == 0:

639 # New type of result to save

640 results_gotten[encoding] += 1

641

642 # Convert the vgg_gram_matrix back from (N ,1024) -> (N, 32,32) for display

643 gram_matrix = gram_matrix.reshape (32, 32)

644

645 # Save the resize testing image

646 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

testing/" + image_name

647 img = cv2.imread(image_path)

648 img_resized = cv2.resize(img , (128 ,128), interpolation=cv2.INTER_AREA)

649 cv2.imwrite(resnet_fine_path+image_name , img_resized)

650

651 # Save the gram matrix to display for results section of the report

652 plt.figure(figsize =(8,6))

653

654 # Use seaborn to create a heatmap

655 sns.heatmap(gram_matrix , cmap="viridis", cbar=True)

656 plt.tight_layout ()

657 # Save the heatmap to a file

658 plt.savefig(resnet_fine_path+image_name [:-4] + "_gram_mat_" + correct + ".png",

format=’png’, dpi=300, bbox_inches="tight")

659 plt.close()

660

661 # %% [markdown]

662 # # Bonus: Channel Normalization Parameter Based Texture Descriptor

663

664 # %%

665 def get_normalization_params(feature_mat_list):

666 f_mats = np.array(feature_mat_list)

667

668 means = f_mats.mean(axis=(2, 3))

669 variances = f_mats.std(axis=(2, 3))

670

671 # I first stack the arrays together , and then reshape the final matrix to interleave

the means and variances

672 mu_sigma_stacked = np.stack((means , variances), axis=-1)

673 channel_norm_params = mu_sigma_stacked.reshape(f_mats.shape[0], 2* f_mats.shape [1])

674

675 return channel_norm_params

676

677 # %%

678 vgg_norm_params = get_normalization_params(vgg_feature_list)

679 resnet_coarse_norm_params = get_normalization_params(resnet_coarse_feature_list)

680 resnet_fine_norm_params = get_normalization_params(resnet_fine_feature_list)

681 test_vgg_norm_params = get_normalization_params(test_vgg_feature_list)

682 test_resnet_coarse_norm_params = get_normalization_params(

test_resnet_coarse_feature_list)

683 test_resnet_fine_norm_params = get_normalization_params(test_resnet_fine_feature_list)

684

685 # %%

686 vgg_norm_params.shape

687

688 # %% [markdown]

689 # # Channel Norm Params VGG

690

691 # %%

692 # VGG SVM:

693 svm = MySVM()

694 svm.fit(vgg_norm_params , labels_list)

695 vgg_norm_predicted_labels = svm.predict(test_vgg_norm_params)

28

696 vgg_norm_accuracy , vgg_norm_class_report = svm.score(vgg_norm_predicted_labels ,

test_labels_list)

697 print("Accuracy: ", vgg_norm_accuracy)

698 print(vgg_norm_class_report)

699

700 # %%

701 vgg_norm_confusion_mat = confusion_matrix(test_labels_list , vgg_norm_predicted_labels)

702

703 plt.figure(figsize =(8, 6))

704 sns.heatmap(vgg_norm_confusion_mat , annot=True , fmt=’d’, cmap=’Blues ’, cbar=False)

705 plt.xlabel(’Predicted Labels ’)

706 plt.ylabel(’True Labels ’)

707 plt.title(’Confusion Matrix ’, fontsize =16, fontweight=’bold’)

708 plt.show()

709

710 # %%

711 vgg_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/VGG_Bonus_Results/"

712 # I only want to save 1 positive match example and 1 negative match example for each

class

713 # The class is therefore the first number , and the second number is for matching labels

or not

714 results_gotten = {"correct": 0, "false": 0}

715

716 for image_name , norm_params , test_label , pred_label in zip(test_progress_bar ,

test_vgg_norm_params , test_labels_list , vgg_norm_predicted_labels):

717 correct = ""

718 if test_label == pred_label:

719 encoding = "correct"

720 else:

721 encoding = "false"

722

723 if results_gotten[encoding] == 0:

724 # New type of result to save

725 results_gotten[encoding] += 1

726

727 # Convert the vgg_gram_matrix back from (N ,1024) -> (N, 32,32) for display

728 norm_params = norm_params.reshape (32, 32)

729

730 # Save the resize testing image

731 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

testing/" + image_name

732 img = cv2.imread(image_path)

733 img_resized = cv2.resize(img , (128 ,128), interpolation=cv2.INTER_AREA)

734 cv2.imwrite(vgg_path+image_name , img_resized)

735

736 # Save the gram matrix to display for results section of the report

737 plt.figure(figsize =(8,6))

738

739 # Use seaborn to create a heatmap

740 sns.heatmap(norm_params , cmap="viridis", cbar=True)

741 plt.tight_layout ()

742 # Save the heatmap to a file

743 plt.savefig(vgg_path+image_name [:-4] + "_gram_mat_" + encoding + ".png", format=

’png’, dpi=300, bbox_inches="tight")

744 plt.close()

745

746 # %% [markdown]

747 # # Resnet Coarse Results

748

749 # %%

750 # VGG SVM:

751 svm = MySVM()

752 svm.fit(resnet_coarse_norm_params , labels_list)

753 resnet_coarse_norm_predicted_labels = svm.predict(test_resnet_coarse_norm_params)

754 resnet_coarse_norm_accuracy , resnet_coarse_norm_class_report = svm.score(

resnet_coarse_norm_predicted_labels , test_labels_list)

755 print("Accuracy: ", resnet_coarse_norm_accuracy)

756 print(resnet_coarse_norm_class_report)

757

758 # %%

759 resnet_coarse_norm_confusion_mat = confusion_matrix(test_labels_list ,

resnet_coarse_norm_predicted_labels)

760

29

761 plt.figure(figsize =(8, 6))

762 sns.heatmap(resnet_coarse_norm_confusion_mat , annot=True , fmt=’d’, cmap=’Blues ’, cbar=

False)

763 plt.xlabel(’Predicted Labels ’)

764 plt.ylabel(’True Labels ’)

765 plt.title(’Confusion Matrix ’, fontsize =16, fontweight=’bold’)

766 plt.show()

767

768 # %%

769 vgg_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/

Resnet_Coarse_Bonus_Results/"

770 # I only want to save 1 positive match example and 1 negative match example for each

class

771 # The class is therefore the first number , and the second number is for matching labels

or not

772 results_gotten = {"correct": 0, "false": 0}

773

774 for image_name , norm_params , test_label , pred_label in zip(test_progress_bar ,

test_resnet_coarse_norm_params , test_labels_list ,

resnet_coarse_norm_predicted_labels):

775 correct = ""

776 if test_label == pred_label:

777 encoding = "correct"

778 else:

779 encoding = "false"

780

781 if results_gotten[encoding] == 0:

782 # New type of result to save

783 results_gotten[encoding] += 1

784

785 # Convert the Norm Params back from (N ,2048) -> (N, 32 ,32) for display

786 # For this calculation , I need first downsample the image from 2048 - >1024 by

taking only the even indices and then I can represent the matrix as (32 ,32)

787 norm_params = norm_params [::2] # Extract even indices

788 norm_params = norm_params.reshape (32, 32)

789

790 # Save the resize testing image

791 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

testing/" + image_name

792 img = cv2.imread(image_path)

793 img_resized = cv2.resize(img , (128 ,128), interpolation=cv2.INTER_AREA)

794 cv2.imwrite(vgg_path+image_name , img_resized)

795

796 # Save the gram matrix to display for results section of the report

797 plt.figure(figsize =(8,6))

798

799 # Use seaborn to create a heatmap

800 sns.heatmap(norm_params , cmap="viridis", cbar=True)

801 plt.tight_layout ()

802 # Save the heatmap to a file

803 plt.savefig(vgg_path+image_name [:-4] + "_gram_mat_" + encoding + ".png", format=

’png’, dpi=300, bbox_inches="tight")

804 plt.close()

805

806 # %% [markdown]

807 # # Resent Fine Results:

808

809 # %%

810 # VGG SVM:

811 svm = MySVM()

812 svm.fit(resnet_fine_norm_params , labels_list)

813 resnet_fine_norm_predicted_labels = svm.predict(test_resnet_fine_norm_params)

814 resnet_fine_norm_accuracy , resnet_fine_norm_class_report = svm.score(

resnet_fine_norm_predicted_labels , test_labels_list)

815 print("Accuracy: ", resnet_fine_norm_accuracy)

816 print(resnet_fine_norm_class_report)

817

818 # %%

819 resnet_fine_norm_confusion_mat = confusion_matrix(test_labels_list ,

resnet_fine_norm_predicted_labels)

820

821 plt.figure(figsize =(8, 6))

30

822 sns.heatmap(resnet_fine_norm_confusion_mat , annot=True , fmt=’d’, cmap=’Blues’, cbar=

False)

823 plt.xlabel(’Predicted Labels ’)

824 plt.ylabel(’True Labels ’)

825 plt.title(’Confusion Matrix ’, fontsize =16, fontweight=’bold’)

826 plt.show()

827

828 # %%

829 vgg_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/Results/Resnet_Fine_Bonus_Results/

"

830 # I only want to save 1 positive match example and 1 negative match example for each

class

831 # The class is therefore the first number , and the second number is for matching labels

or not

832 results_gotten = {"correct": 0, "false": 0}

833

834 for image_name , norm_params , test_label , pred_label in zip(test_progress_bar ,

test_resnet_fine_norm_params , test_labels_list , resnet_fine_norm_predicted_labels):

835 correct = ""

836 if test_label == pred_label:

837 encoding = "correct"

838 else:

839 encoding = "false"

840

841 if results_gotten[encoding] == 0:

842 # New type of result to save

843 results_gotten[encoding] += 1

844

845 # Convert the vgg_gram_matrix back from (N ,1024) -> (N, 32,32) for display

846 norm_params = norm_params.reshape (32, 32)

847

848 # Save the resize testing image

849 image_path = "/mnt/cloudNAS3/Adubois/Classes/ECE661/HW7/HW7 -Auxilliary/data/

testing/" + image_name

850 img = cv2.imread(image_path)

851 img_resized = cv2.resize(img , (128 ,128), interpolation=cv2.INTER_AREA)

852 cv2.imwrite(vgg_path+image_name , img_resized)

853

854 # Save the gram matrix to display for results section of the report

855 plt.figure(figsize =(8,6))

856

857 # Use seaborn to create a heatmap

858 sns.heatmap(norm_params , cmap="viridis", cbar=True)

859 plt.tight_layout ()

860 # Save the heatmap to a file

861 plt.savefig(vgg_path+image_name [:-4] + "_gram_mat_" + encoding + ".png", format=

’png’, dpi=300, bbox_inches="tight")

862 plt.close()

31

	Theory Questions
	Question 1:

	RGB to HSV:
	Extracting LBP Histograms:
	Algorithm Description:
	Code Implementation:

	Gram Matrix based texture extraction:
	Gram Matrix
	Code Implementation:

	Extra Credit: Channel Normalization Parameter based Texture Extraction:
	Implementation:

	Results:
	Dataset Description:
	LBP Results:
	Gram Matrix Results:
	VGG-19 Results:
	Resnet50-Coarse Results:
	Resnet50-Fine Results:

	Discussion of results:
	Channel Normalization Parameter Results:
	VGG Bonus Results:
	Resnet Coarse Bonus Results:
	Resnet Fine Bonus Results:

	Full Code Printout:

