ECE 661 - Assignment 6

Ali Almuallem, aalmuall@purdue.edu

October 2024

1 Theory Questions
1.1 Watershed v.s. Otsu Strengths and Weakeness

The Watershed algorithm treats the image as a topographic surface with valleys using the gradient of
the image to represent the elevation where water will flow into low-elevation basins and the watershed
lines (ridges) are the boundary that separate regions. Therefore it is a region-based algorithm. The Otsu
algorithm on the other hand computes a global threshold to separate foreground and background based
on the intensity and by maximizing the variance between classes and minimizing the variance within
each class. The main strengths of the watershed method are that it performs well with overlapping or
touching objects, and produces good continuous segmentation boundaries (ridges). However, it is prone
to noise in the gradients and is sensitive to local minima which may lead to over-segmentation, and can
be expensive computationally. The Otsu algorithm on the other hand is simple and does not require user
input as much as the Watershed algorithm and works with the intensities instead of the gradients which
makes it good for segmentation tasks that can be achieved using a global threshold. However, in other
scenarios, it can be limited due to its bimodal intensity distribution assumption which may not always
apply to all images and therefore may produce poor results for images with multimodal histograms.
Moreover, since it works with intensities, it is sensitive to noise and illumination in the image.

2 Programming Tasks

Figure 1: The original images to work with

2.1 Image Segmentation using Otsu with RGB values

The Otsu algorithm searches for a threshold that minimizes the intra-class variance (the variance within
each class) which also can be seen as maximizing the inter-class variances (the variance between classes).



(1) = wo(t)og (t) +wi (H)oi (1) (1)

Where wg, wy are the probabilities of each class separated by a threshold (¢) and their variances are
2 and o? tively. The cl bability i ted f the hist bi
og and of respectively. The class probability is computed from the histogram bins.
In this task, I calculate the Otsu threshold for each channel (R, G, B) independently and present it
below. We then combine the three channels as follows:

2)

I(2,9) 1, if R(z,y)=1and G(z,y) =1 and B(z,y) =1
x’ = .
4 0, otherwise

Where I(xz,y) is the image after combining the Otsu results for the three channels (R, G, B) and
R(z,y),G(x,y), B(x,y) are the Otsu results of the (R, G, B) channels respectively. So only the values
that are present in the Otsu results for three channels will be preserved.

(a) R Channel (b) G Channel (¢) B Channel (d) All Channels

Figure 2: Dog picture: The Otsu result (1 iteration) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

\ . ‘ . P ;J ‘« ’ J{» ‘ d §’ Jt
' [ N : t: ; j;‘P /: ji‘P
X {4?” .o | e :}{ ?, \n\ 4,( c’.l; - v\‘ 44 1?{

AR voen | L Sy *"" i Rk
N ‘. . ' . “‘ v e "( u‘ v e "(

(a) R Channel (b) G Channel (¢) B Channel (d) All Channels

Figure 3: Flower picture: The Otsu result (1 iteration) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

Notice how the results are not perfect and have lots of noise. They can be further improved using
Otsu in an iterative fashion. I present the results with different iteration values below.



(a) R Channel (b) G Channel (¢) B Channel (d) All Channels

Figure 4: Dog picture: The Otsu result (10 iterations) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (¢) B Channel

Figure 5: Flower picture: The Otsu result (10 iterations) for the (a) Red channel, (b) Green channel,
(¢) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (¢) B Channel (d) All Channels

Figure 6: Dog picture: The Otsu result (30 iterations) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.



i

(a) R Channel (b) G Channel (¢) B Channel (d) All Channels

Figure 7: Flower picture: The Otsu result (30 iterations) for the (a) Red channel, (b) Green channel,
(¢) Blue channel, and (d) all channels combined.

i A

(a) R Channel (b) G Channel (c¢) B Channel (d) All Channels

Figure 8: Dog picture: The Otsu result (50 iterations) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

(a) R Channel (c¢) B Channel (d) All Channels

Figure 9: Flower picture: The Otsu result (50 iterations) for the (a) Red channel, (b) Green channel,
(¢) Blue channel, and (d) all channels combined.

Notice how increasing the number of iterations resulted in either better or worse segmentation. In
the case of the flower image, the segmentation got more accurate (at least perceptually), but in the dof
image, we got the background and the dog mixed up as we increased the iterations.

2.2 Texture-based Image Segementation

While there are myriad methods to determine and measure the texture in a given image, we utilized a
simple approach here where we slid a window of size N x N on each pixel, subtracted the mean of the
window, and computed the mean and variance as a texture measure. We experimented with windows
of size 3 x 3, 5 x 5, and 7 x 7. We also combined the result of all those windows in a similar fashion to
what we did with the R, G, B channels in the previous section.

To obtain better results, we also ran the Otsu algorithm on the resulting images.



(a) 3x3 (b) 5x5 () 7Tx7 (d) Combined

Figure 10: Dog picture: The texture-based image segmentation results with a window of size (a) 3 times3,
(b) 5x 5, (¢) 7x 7, and (d) all the results combined.

(c) 7Tx7 (d) Combined

(a) 3>< 3

Figure 11: Flower picture: The texture-based image segmentation results with a window of size (a)
3 times3, (b) 5 x5, (¢) 7x 7, and (d) all the results combined.

2.3 Contour Extraction

To extract the contour, I needed to ”clean up” the binary images first. I selected the dog binary image
after applying Otsu for 1 iteration, and the flower binary image after applying Otsu for 50 iterations, as
they represented the ”cleanest” looking binary images to work with.

For the dog image, I applied a closing operation which is a series of two morphologies: dilation
followed by erosion. For the flower image, I applied an opening operation: erosion followed by dilation.
In both cases, I selected a kernel of size 3 times3, and ran the closing algorithm for 1 iteration, and the
opening algorithm for 3 iterations. The resulting images can be seen in Fig.



(a) Dog image after closing (b) Flower image after opening

Figure 12: Intermediate results before contour extraction: The dog image (a) after applying the closing
operation on its Otsu result, and the flower image (b) after applying the opening operation on its Otsu
50 iterations result

After obtaining the result from Fig. and inspired by some previous submissions, I ran a contour
extraction algorithm as follows:

e Slide a window of size N x N, in my case it was 3 x 3 over the images resulting from the opening
or closing operations.

e If the center pixel is zero, skip and slide the window further, else continue to the following step.

e Calculate the sum of the window. If it is less than the number of pixels (N x N, i.e.: 9 in this
case), that is if not all the pixels in the window are 1s, then assign this pixel to be a contour pixel.
Otherwise, if the pixels in the window are all 1s, then ignore the pixel and don’t assign it as a
contour pixel.

The result after applying the contour extraction algorithm above can be seen in Fig.



(a) Dog contour image (b) Flower contour image

Figure 13: The final contour images after applying the closing operation on the image (a), then followed
by the contour windowing, and by applying opening operation on the image (b), followed by the contour
windowing and dilation to improve the visibility of the contour



2.4 Results on my own image

The foreground objects in my images are the white shoe and the tent, while the background is the grass
and trees, and sky respectively. As with the dog and flowers, there was a certain threshold that worked
for one image that did not work for the other. The shoe image for example required more iterations of
the Otsu algorithm for it to produce something meaningful.

(a) Shoes (b) Tent

Figure 14: My own images to work with. (a) casual photo of a shoe pair, and (b) my tent in Mount
Kilimanjaro, Tanzania, 2019.

2.4.1 Otsu RGB segmentation with 1 iteration

!

(a) R Channel (b) G Channel (¢) B Channel (d) All Channels

Figure 15: Shoe picture: The Otsu result (1 iteration) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.



~

LT e L S (T B TR el
(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 16: Tent picture: The Otsu result (1 iteration) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

2.4.2 Otsu RGB segmentation with 10, 30, and 50 iterations

S AL

(a) R Channel (b) G Channel (¢) B Channel (d) All Channels

Figure 17: Shoe picture: The Otsu result (10 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

S

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 18: Tent picture: The Otsu result (10 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 19: Shoe picture: The Otsu result (30 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.



(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 20: Tent picture: The Otsu result (30 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 21: Shoe picture: The Otsu result (50 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (¢) B Channel (d) All Channels

Figure 22: Tent picture: The Otsu result (50 iterations) for the (a) Red channel, (b) Green channel,
(¢) Blue channel, and (d) all channels combined.

2.4.3 Texture-based Image segementation

(a) 3x3 : (b) 5>< 5 » (0)7 x 7 (d) Combined

Figure 23: Shoe picture: The texture-based image segmentation results with a window of size (a)
3 times3, (b) 5 x 5, (¢) 7x 7, and (d) all the results combined.

10



s

(d) Combined

Figure 24: Tent picture: The texture-based image segmentation results with a window of size (a)
3 times3, (b) 5 x 5, (¢) 7x 7, and (d) all the results combined.

2.4.4 Contour Extraction

(a) Shoes image after closing (b) Tent image after opening

Figure 25: Intermediate results before contour extraction: The shoe image (a) after applying the opening
operation on its Otsu 50 iterations result, and the tent image (b) after applying the opening operation
on its Otsu 10 iterations result

11



(a) Shoes contour image (b) Tent contour image

Figure 26: The final contour images after applying the opening operation on the image (a), then followed
by the contour windowing of size 7 x 7, and by applying the opening operation on the image (b), followed
by the contour windowing of size 5 x 5.

12



Baw N

3

code

impo
impo
impo
impo

#Get
def

#Get
def

#Get
def

rt cv2

rt numpy as np

rt matplotlib.pyplot as plt
rt os

otsu threshold
get_otsu(image):
This function computes the Otsu’s threshold given a flatten grayscale image.
Compute Otsu’s threshold for the given grayscale image.
#Compute the histogram
histogram, bins = np.histogram(image, bins = 256, range = (0, 255))

histogram = histogram.astype(’float’) / image.size #Normalize

maxVar = 0
threshold = 0

#Cumulative sum and mean for the background
cumSumBackground = 0

cumMeanBackground = 0

#print ((np.arange (256)) .shape)

imageMean = np.dot(np.arange (256), histogram)

for level in range (256):
cumSumBackground += histogram[levell]
cumSumBackground += level * histogram[levell

#If it is the background
if (cumSumBackground == 0):

continue

#The ramining is the foreground
cumSumForeground = 1 - cumSumBackground

#Check if it is O

if (cumSumForeground == 0):
break
cumMeanForeground = (imageMean - cumMeanBackground) / cumSumForeground

#Calculate the inter class variance, Otsu tries to maximize this
interClassVar = (cumSumBackground * cumSumBackground * (cumMeanBackground /
cumSumBackground - cumMeanForeground) **2)

if interClassVar > maxVar:
maxVar = interClassVar
threshold = level
return threshold

Thresholded image

getThresholdedImage (srcImage, threshold):
binaryImg = np.zeros_like(srcImage,dtype=np.uint8)
binaryImg[srcImage>threshold] = 255
binaryImg[srcImage <=threshold] = 0

return binaryImg

iterative Otsu threshold and image
get_iterative_Otsu(srcImage, iterations= 10, diff = 1le-3):

previousThreshold = -1
currentImage = srclmage.copy ()

for iteration in range(iteratiomns):

currentThreshold = get_otsu(currentImage)

foreGroundMask = getThresholdedImage (srcImage, currentThreshold)
currentImage = srclImage[foreGroundMask > 0]

currentDiff = abs(currentThreshold - previousThreshold)

13




90

def

def

def

def

if (currentDiff < diff):

break
previousThreshold = currentThreshold
segmentedImage = getThresholdedImage (srcImage, currentThreshold)

return segmentedImage, currentThreshold

get_seg_RGB(srcImage, iterations = 10, diff = 1e-3):
rChannel, gChannel, bChannel = cv2.split(srcImage)

segmentedR, currentRThreshold = get_iterative_Otsu(rChannel, iterations =

, diff = diff)

segmentedG, currentGThreshold = get_iterative_Otsu(gChannel, iterations =

, diff = diff)

segmentedB, currentBThreshold = get_iterative_Otsu(bChannel, iterations =

, diff = diff)

allSegmented = np.zeros_like(rChannel)
allSegmented [(segmentedR>0) & (segmentedG>0) & (segmentedB>0)] = 1

return segmentedR, segmentedG, segmentedB, allSegmented

apply_opening (segmentedImage, kernelSize = 3, iterations = 1):
kernel = np.ones((kernelSize, kernelSize), np.uint8)
returnedImage = segmentedImage.copy ()
for i in range(iterations):
erodedImage = cv2.erode(returnedImage, kernel = kernel, iterations =
returnedImage = cv2.dilate(erodedImage, kernel = kernel, iterations =
return returnedImage
apply_closing(segmentedImage, kernelSize = 3, iterations = 1):
kernel = np.ones((kernelSize, kernelSize), np.uint8)
returnedImage = segmentedImage.copy ()
dilatedImage = cv2.dilate(returnedImage, kernel = kernel, iterations = it
returnedImage = cv2.erode(dilatedImage, kernel = kernel, iterations =

return returnedImage

compute_texture_var (srcImage, N):

padding = N//2

iterations

iterations

iterations

1)
1)

erations)

iterations)

paddedImage = np.pad(srcImage, padding, mode = ’constant’, constant_values= 0)

varianceMap = np.zeros_like(srcImage, dtype = np.float32)

for height in range(padding, paddedImage.shape[0] - padding):
for width in range(padding, paddedImage.shape[1] - padding):
currentWindow = paddedImage[height - padding: height+padding +
padding: width + padding + 1]
currentWindowMean = np.mean(currentWindow)

1,

width -

currentWindowVar = np.mean((currentWindow - currentWindowMean) *%*2)

varianceMap [height - padding, width - padding] = currentWindowVar

return varianceMap

14




156

157

159
160
161
162
163
164

165

166
167
168
169

170

def apply_otsu_on_texture(srcImage, N = 3, iterations = 10):

varMap = compute_texture_var(srcImage = srcImage, N = N)
segmentedImage , = get_iterative_Otsu(varMap, iterations = iterations)

return segmentedImage

def get_averaged_texture_segmented_image (srcImage, windowSizes = [3, 5, 7], iterations =
10):
segmentedImages = [apply_otsu_on_texture(srcImage= srcImage, N = window, iterations=

iterations) for window in windowSizes]

allSegmtned = np.zeros_like(segmentedImages [0])
allSegmtned [(segmentedImages [0]1>0) & (segmentedImages[1] > 0) & (segmentedImages [2]
> 0] =1

return allSegmtned

def get_average_from_textured_images (texturedImages):
allSegmtned = np.zeros_like(texturedImages [0])
allSegmtned [(texturedImages [0]>0) & (texturedImages[1] > 0) & (texturedImages[2] >
0l =1

return allSegmtned

def save_images (outputDirectory, images, names):

try:

os.makedirs (outputDirectory)
except FileExistsError:

pass

for i in range(len(images)):
currentImage = images[i]
currentName = names[i]
currentOutputPath = os.path.join(outputDirectory, f"{currentNamel}.png")
plt.imsave (currentOutputPath, currentImage, cmap=’gray’)
print ("Image_ ", currentName, ".png is saved")

dog = cv2.imread(’pics/dog_small.jpg’)
dog = cv2.cvtColor(dog, cv2.COLOR_BGR2RGB)
dogGrayscale = cv2.cvtColor(dog, cv2.COLOR_RGB2GRAY)

flower = cv2.imread(’pics/flower_small.jpg’)
flower = cv2.cvtColor (flower, cv2.COLOR_BGR2RGB)
flowerGrayscale = cv2.cvtColor (flower, cv2.COLOR_RGB2GRAY)

shoes = cv2.imread(’pics/shoes. jpg’)

shoes = cv2.cvtColor (shoes, cv2.COLOR_BGR2RGB)
shoesGrayscale = cv2.cvtColor (shoes, cv2.COLOR_RGB2GRAY)
tent = cv2.imread(’pics/tent.jpg’)

tent = cv2.cvtColor(tent, cv2.COLOR_BGR2RGB)
tentGrayscale = cv2.cvtColor(tent, cv2.COLOR_RGB2GRAY)

rDog, gDog, bDog, rgbDog = get_seg_RGB(dog, iterations = 1, diff = 1le-3)
rFlower , gFlower, bFlower, rgbFlower = get_seg_RGB(flower, iterations = 1, diff = 1le-3)

rShoes, gShoes, bShoes, rgbShoes = get_seg_RGB(shoes, iterations = 1, diff = 1le-3)

15




209

rTent, gTent, bTent, rgbTent = get_seg_RGB(tent, iterations = 1, diff = 1e-3)

#Iterative Otsu

rDogl10, gDogl0, bDoglO0, rgbDogl0 = get_seg_RGB(dog, iterations = 10, diff = 1e-3)

rFlower10, gFlower10, bFlowerl10, rgbFlower10 = get_seg_RGB(flower, iterations = 10, diff
= 1e-3)

rDog30, gDog30, bDog30, rgbDog30 = get_seg_RGB(dog, iterations = 30, diff = 1le-3)
rFlower30, gFlower30, bFlower30, rgbFlower30 = get_seg_RGB(flower, iterations = 30, diff
= 1le-3)

rDogb0, gDogh0, bDogh0, rgbDogh0 = get_seg_RGB(dog, iterations = 50, diff = 1le-3)
rFlower50, gFlower50, bFlower50, rgbFlower50 = get_seg_RGB(flower, iterations = 50, diff
= 1e-3)

#Iterative Otsu on my own image

rShoes10, gShoes10, bShoes10, rgbShoesl0 = get_seg_RGB(shoes, iterations = 10, diff = 1le
-3)

rTent10, gTentl10, bTentl0, rgbTentl0 = get_seg_RGB(tent, iterations = 10, diff = 1e-3)

rShoes30, gShoes30, bShoes30, rgbShoes30 = get_seg_RGB(shoes, iterations = 30, diff = 1le
-3)
rTent30, gTent30, bTent30, rgbTent30 = get_seg_RGB(tent, iterations = 30, diff = 1le-3)

rShoes50, gShoes50, bShoes50, rgbShoes50 = get_seg_RGB(shoes, iterations = 50, diff = 1le
-3)
rTent50, gTent50, bTent50, rgbTent50 = get_seg_RGB(tent, iterations = 50, diff = 1le-3)

#Save images

save_images ("output", [rDog, gDog, bDog, rgbDogl, ["rDog", "gDog", "bDog", "allDog"l)

save_images ("output", [rFlower, gFlower, bFlower, rgbFlower], ["rFlower", "gFlower", "
bFlower", "rgbFlower"])

save_images ("output", [rDogl0, gDoglO, bDoglO, rgbDoglOl, ["rDoglO", "gDoglO", "bDoglO",
"rgbDogl10"])
save_images ("output", [rFlower10, gFlower10, bFlowerl10, rgbFlower10], ["rFloweriO", "
gFlower10", "bFlower10", "rgbFlower10"])

save_images ("output", [rDog30, gDog30, bDog30, rgbDog30], ["rDog30", "gDog30", "bDog30",
"rgbDog30"])
save_images ("output", [rFlower30, gFlower30, bFlower30, rgbFlower30], ["rFlower30", "
gFlower30", "bFlower30", "rgbFlower30"])

save_images ("output", [rDog50, gDogh0, bDogh0, rgbDogs0], ["rDogb0", "gDogh0", "bDogh0o",
"rgbDog50"])
save_images ("output", [rFlower50, gFlower50, bFlower50, rgbFlower50], ["rFlower50", "
gFlower50", "bFlower50", "rgbFlower50"])

| #Save my own images

save_images ("output", [rShoes, gShoes, bShoes, rgbShoes], ["rShoes", "gShoes", "bShoes",
"rgbShoes"])
save_images ("output", [rTent, gTent, bTent, rgbTent], ["rTent", "gTent", "bTent", "

rgbTent"])

save_images ("output", [rShoes10, gShoes10, bShoesl10, rgbShoes10], ["rShoesl10", "gShoesl0
", "bShoes10", "rgbShoes10"])

save_images ("output", [rTent10, gTentl0, bTent10, rgbTent10], ["rTent10", "gTentl0", "
bTent10", "rgbTent10"])

save_images ("output", [rShoes30, gShoes30, bShoes30, rgbShoes30], ["rShoes30", "gShoes30
", "bShoes30", "rgbShoes30"])

save_images ("output", [rTent30, gTent30, bTent30, rgbTent30], ["rTent30", "gTent30", "
bTent30", "rgbTent30"])

save_images ("output", [rShoes50, gShoes50, bShoesb50, rgbShoes50], ["rShoes50", "gShoes50
", "bShoes50", "rgbShoes50"])
save_images ("output", [rTent50, gTent50, bTent50, rgbTent50], ["rTent50", "gTent50", "

bTent50", "rgbTent50"])

#Texture segmentation

16




292

293
294

295

textureDog3 = apply_otsu_on_texture(dogGrayscale, N = 3, iterations = 10)
textureFlower3 = apply_otsu_on_texture(flowerGrayscale, N = 3, iterations

10)

textureDogh = apply_otsu_on_texture(dogGrayscale, N = 5, iterations = 10)
textureFlower5 = apply_otsu_on_texture(flowerGrayscale, N = 5, iterations

10)

textureDog7 = apply_otsu_on_texture(dogGrayscale, N = 7, iterations = 10)
textureFlower7 = apply_otsu_on_texture(flowerGrayscale, N = 7, iterations

10)

averageTextureDog = get_average_from_textured_images ([textureDog3, textureDog5,
textureDog7])

averageTextureFlower = get_average_from_textured_images ([textureFlower3, textureFlower5,
textureFlower7])

save_images ("output", [textureDog3, textureDoghb, textureDog7, averageTextureDogl,
["textureDog3", "textureDogh", "textureDog7", "averageTextureDog"])
save_images ("output", [textureFlower3, textureFlower5, textureFlower7,
averageTextureFlower],
["textureFlower3", "textureFlower5", "textureFlower7", "averageTextureFlower

")

3, iterations = 10)
, iterations = 10)

textureShoes3 = apply_otsu_on_texture(shoesGrayscale, N
textureTent3 = apply_otsu_on_texture(tentGrayscale, N

[
w

textureShoes5 = apply_otsu_on_texture(shoesGrayscale, N = 5, iterations = 10)
textureTent5 = apply_otsu_on_texture(tentGrayscale, N , iterations = 10)

]
ol

textureShoes7 = apply_otsu_on_texture(shoesGrayscale, N = 7, iteratioms = 10)
textureTent7 = apply_otsu_on_texture(tentGrayscale, N = 7, iterations = 10)

averagetextureShoes = get_average_from_textured_images ([textureShoes3, textureShoes5,
textureShoes7])

averagetextureTent = get_average_from_textured_images([textureTentS, textureTentb,
textureTent7])

save_images ("output", [textureShoes3, textureShoesb5, textureShoes7, averagetextureShoes
1,
["textureShoes3", "textureShoesb5", "textureShoes7", "averagetextureShoes"])
save_images ("output", [textureTent3, textureTentb, textureTent7, averagetextureTent],
["textureTent3", "textureTent5", "textureTent7", "averagetextureTent"])

def extractContour (binaryImage, kernelSize, iterations, windowSize = 3, operation = "
opening", dilateFinish = False):

cleanedSegmentedImage = None

if (operation == "closing"):
cleanedSegmentedImage = apply_closing(binaryImage, kernelSize= kernelSize,
iterations=iterations)
else:
cleanedSegmentedImage = apply_opening(binaryImage, kernelSize= kernelSize,
iterations=iterations)

contourImage = np.zeros_like(binaryImage, dtype = np.uint8)

maxSum = windowSize * windowSize
windowLimit = windowSize - 1
for height in range(l, cleanedSegmentedImage.shape[0]-1):
for width in range(l, cleanedSegmentedImage.shape[1]-1):
if (cleanedSegmentedImage [height, width] == 0):
continue
currentWindow = cleanedSegmentedImage [height-1: height+windowLimit, width-1:
width+windowLimit]
if (np.sum(currentWindow) < maxSum):
contourImage [height, width] = 1

17




329

if dilateFinish:
contourImage = cv2.dilate(contourImage, np.ones((3,3)), 1)
return contourImage, cleanedSegmentedImage

flowerContour, flowerIntermediate = extractContour (rgbFlower50, kernelSize= 3,
iterations= 3, windowSize= 3, operation = "opening", dilateFinish = True)
dogContour , doglIntermediate = extractContour (rgbDog, kernelSize= 3, iterations= 1,

windowSize= 3, operation = "closing", dilateFinish = False)

save_images ("output", [flowerContour, dogContour], ["flowerContour", "dogContour"])
save_images ("output", [flowerIntermediate, dogIntermediate], ["flowerIntermediate", "
dogIntermediate"])

#Extract contour on my own images

tentContour, tentIntermediate = extractContour (rgbTentl10, kernelSize= 3, iterations= 1,
windowSize= 5, operation = "opening", dilateFinish = False)

shoesContour , shoesIntermediate = extractContour (rgbShoes50, kernelSize= 3, iterations=
1, windowSize= 7, operation = "opening", dilateFinish = False)

save_images ("output", [tentContour, shoesContour], ["tentContour", "shoesContour"])
save_images ("output", [tentIntermediate, shoesIntermediate], ["tentIntermediate", "
shoesIntermediate"])

18




	Theory Questions
	Watershed v.s. Otsu Strengths and Weakeness

	Programming Tasks
	Image Segmentation using Otsu with RGB values
	Texture-based Image Segementation
	Contour Extraction
	Results on my own image
	Otsu RGB segmentation with 1 iteration
	Otsu RGB segmentation with 10, 30, and 50 iterations
	Texture-based Image segementation
	Contour Extraction


	code

