
ECE 661 - Assignment 6

Ali Almuallem, aalmuall@purdue.edu

October 2024

1 Theory Questions

1.1 Watershed v.s. Otsu Strengths and Weakeness

The Watershed algorithm treats the image as a topographic surface with valleys using the gradient of
the image to represent the elevation where water will flow into low-elevation basins and the watershed
lines (ridges) are the boundary that separate regions. Therefore it is a region-based algorithm. The Otsu
algorithm on the other hand computes a global threshold to separate foreground and background based
on the intensity and by maximizing the variance between classes and minimizing the variance within
each class. The main strengths of the watershed method are that it performs well with overlapping or
touching objects, and produces good continuous segmentation boundaries (ridges). However, it is prone
to noise in the gradients and is sensitive to local minima which may lead to over-segmentation, and can
be expensive computationally. The Otsu algorithm on the other hand is simple and does not require user
input as much as the Watershed algorithm and works with the intensities instead of the gradients which
makes it good for segmentation tasks that can be achieved using a global threshold. However, in other
scenarios, it can be limited due to its bimodal intensity distribution assumption which may not always
apply to all images and therefore may produce poor results for images with multimodal histograms.
Moreover, since it works with intensities, it is sensitive to noise and illumination in the image.

2 Programming Tasks

(a) Dog (b) Flowers

Figure 1: The original images to work with

2.1 Image Segmentation using Otsu with RGB values

The Otsu algorithm searches for a threshold that minimizes the intra-class variance (the variance within
each class) which also can be seen as maximizing the inter-class variances (the variance between classes).

1

σ2
w(t) = ω0(t)σ

2
0(t) + ω1(t)σ

2
1(t) (1)

Where ω0, ω1 are the probabilities of each class separated by a threshold (t) and their variances are
σ2
0 and σ2

1 respectively. The class probability is computed from the histogram bins.
In this task, I calculate the Otsu threshold for each channel (R, G, B) independently and present it

below. We then combine the three channels as follows:

I(x, y) =

{
1, if R(x, y) = 1 and G(x, y) = 1 and B(x, y) = 1

0, otherwise
(2)

Where I(x, y) is the image after combining the Otsu results for the three channels (R, G, B) and
R(x, y), G(x, y), B(x, y) are the Otsu results of the (R, G, B) channels respectively. So only the values
that are present in the Otsu results for three channels will be preserved.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 2: Dog picture: The Otsu result (1 iteration) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 3: Flower picture: The Otsu result (1 iteration) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

Notice how the results are not perfect and have lots of noise. They can be further improved using
Otsu in an iterative fashion. I present the results with different iteration values below.

2

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 4: Dog picture: The Otsu result (10 iterations) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 5: Flower picture: The Otsu result (10 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 6: Dog picture: The Otsu result (30 iterations) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

3

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 7: Flower picture: The Otsu result (30 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 8: Dog picture: The Otsu result (50 iterations) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 9: Flower picture: The Otsu result (50 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

Notice how increasing the number of iterations resulted in either better or worse segmentation. In
the case of the flower image, the segmentation got more accurate (at least perceptually), but in the dof
image, we got the background and the dog mixed up as we increased the iterations.

2.2 Texture-based Image Segementation

While there are myriad methods to determine and measure the texture in a given image, we utilized a
simple approach here where we slid a window of size N ×N on each pixel, subtracted the mean of the
window, and computed the mean and variance as a texture measure. We experimented with windows
of size 3× 3, 5× 5, and 7× 7. We also combined the result of all those windows in a similar fashion to
what we did with the R, G, B channels in the previous section.

To obtain better results, we also ran the Otsu algorithm on the resulting images.

4

(a) 3× 3 (b) 5× 5 (c) 7× 7 (d) Combined

Figure 10: Dog picture: The texture-based image segmentation results with a window of size (a) 3 times3,
(b) 5× 5, (c) 7× 7, and (d) all the results combined.

(a) 3× 3 (b) 5× 5 (c) 7× 7 (d) Combined

Figure 11: Flower picture: The texture-based image segmentation results with a window of size (a)
3 times3, (b) 5× 5, (c) 7× 7, and (d) all the results combined.

2.3 Contour Extraction

To extract the contour, I needed to ”clean up” the binary images first. I selected the dog binary image
after applying Otsu for 1 iteration, and the flower binary image after applying Otsu for 50 iterations, as
they represented the ”cleanest” looking binary images to work with.

For the dog image, I applied a closing operation which is a series of two morphologies: dilation
followed by erosion. For the flower image, I applied an opening operation: erosion followed by dilation.
In both cases, I selected a kernel of size 3 times3, and ran the closing algorithm for 1 iteration, and the
opening algorithm for 3 iterations. The resulting images can be seen in Fig. 12

5

(a) Dog image after closing (b) Flower image after opening

Figure 12: Intermediate results before contour extraction: The dog image (a) after applying the closing
operation on its Otsu result, and the flower image (b) after applying the opening operation on its Otsu
50 iterations result

After obtaining the result from Fig. 12, and inspired by some previous submissions, I ran a contour
extraction algorithm as follows:

• Slide a window of size N ×N , in my case it was 3× 3 over the images resulting from the opening
or closing operations.

• If the center pixel is zero, skip and slide the window further, else continue to the following step.

• Calculate the sum of the window. If it is less than the number of pixels (N × N , i.e.: 9 in this
case), that is if not all the pixels in the window are 1s, then assign this pixel to be a contour pixel.
Otherwise, if the pixels in the window are all 1s, then ignore the pixel and don’t assign it as a
contour pixel.

The result after applying the contour extraction algorithm above can be seen in Fig. 13

6

(a) Dog contour image (b) Flower contour image

Figure 13: The final contour images after applying the closing operation on the image (a), then followed
by the contour windowing, and by applying opening operation on the image (b), followed by the contour
windowing and dilation to improve the visibility of the contour

7

2.4 Results on my own image

The foreground objects in my images are the white shoe and the tent, while the background is the grass
and trees, and sky respectively. As with the dog and flowers, there was a certain threshold that worked
for one image that did not work for the other. The shoe image for example required more iterations of
the Otsu algorithm for it to produce something meaningful.

(a) Shoes (b) Tent

Figure 14: My own images to work with. (a) casual photo of a shoe pair, and (b) my tent in Mount
Kilimanjaro, Tanzania, 2019.

2.4.1 Otsu RGB segmentation with 1 iteration

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 15: Shoe picture: The Otsu result (1 iteration) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

8

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 16: Tent picture: The Otsu result (1 iteration) for the (a) Red channel, (b) Green channel, (c)
Blue channel, and (d) all channels combined.

2.4.2 Otsu RGB segmentation with 10, 30, and 50 iterations

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 17: Shoe picture: The Otsu result (10 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 18: Tent picture: The Otsu result (10 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 19: Shoe picture: The Otsu result (30 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

9

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 20: Tent picture: The Otsu result (30 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 21: Shoe picture: The Otsu result (50 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

(a) R Channel (b) G Channel (c) B Channel (d) All Channels

Figure 22: Tent picture: The Otsu result (50 iterations) for the (a) Red channel, (b) Green channel,
(c) Blue channel, and (d) all channels combined.

2.4.3 Texture-based Image segementation

(a) 3× 3 (b) 5× 5 (c) 7× 7 (d) Combined

Figure 23: Shoe picture: The texture-based image segmentation results with a window of size (a)
3 times3, (b) 5× 5, (c) 7× 7, and (d) all the results combined.

10

(a) 3× 3 (b) 5× 5 (c) 7× 7 (d) Combined

Figure 24: Tent picture: The texture-based image segmentation results with a window of size (a)
3 times3, (b) 5× 5, (c) 7× 7, and (d) all the results combined.

2.4.4 Contour Extraction

(a) Shoes image after closing (b) Tent image after opening

Figure 25: Intermediate results before contour extraction: The shoe image (a) after applying the opening
operation on its Otsu 50 iterations result, and the tent image (b) after applying the opening operation
on its Otsu 10 iterations result

11

(a) Shoes contour image (b) Tent contour image

Figure 26: The final contour images after applying the opening operation on the image (a), then followed
by the contour windowing of size 7×7, and by applying the opening operation on the image (b), followed
by the contour windowing of size 5× 5.

12

3 code

1

2 import cv2

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import os

6

7 #Get otsu threshold

8 def get_otsu(image):

9 """

10 This function computes the Otsu’s threshold given a flatten grayscale image.

11 Compute Otsu’s threshold for the given grayscale image.

12 """

13 #Compute the histogram

14 histogram , bins = np.histogram(image , bins = 256, range = (0, 255))

15

16 histogram = histogram.astype(’float’) / image.size #Normalize

17

18 maxVar = 0

19 threshold = 0

20

21 #Cumulative sum and mean for the background

22 cumSumBackground = 0

23 cumMeanBackground = 0

24 #print ((np.arange (256)).shape)

25 imageMean = np.dot(np.arange (256), histogram)

26

27 for level in range (256):

28 cumSumBackground += histogram[level]

29 cumSumBackground += level * histogram[level]

30

31 #If it is the background

32 if (cumSumBackground == 0):

33 continue

34

35 #The ramining is the foreground

36 cumSumForeground = 1 - cumSumBackground

37

38 #Check if it is 0

39 if (cumSumForeground == 0):

40 break

41 cumMeanForeground = (imageMean - cumMeanBackground) / cumSumForeground

42

43 #Calculate the inter class variance , Otsu tries to maximize this

44 interClassVar = (cumSumBackground * cumSumBackground * (cumMeanBackground /

cumSumBackground - cumMeanForeground)**2)

45

46 if interClassVar > maxVar:

47 maxVar = interClassVar

48 threshold = level

49 return threshold

50

51 #Get Thresholded image

52 def getThresholdedImage(srcImage , threshold):

53 binaryImg = np.zeros_like(srcImage ,dtype=np.uint8)

54 binaryImg[srcImage >threshold] = 255

55 binaryImg[srcImage <= threshold] = 0

56 return binaryImg

57

58

59 #Get iterative Otsu threshold and image

60 def get_iterative_Otsu(srcImage , iterations= 10, diff = 1e-3):

61

62 previousThreshold = -1

63 currentImage = srcImage.copy()

64

65 for iteration in range(iterations):

66 currentThreshold = get_otsu(currentImage)

67 foreGroundMask = getThresholdedImage(srcImage , currentThreshold)

68 currentImage = srcImage[foreGroundMask > 0]

69

70 currentDiff = abs(currentThreshold - previousThreshold)

13

71

72 #If we reached a certain loss threshold , break

73 if (currentDiff < diff):

74 break

75

76 #Update the preiouvs threshold

77 previousThreshold = currentThreshold

78

79 segmentedImage = getThresholdedImage(srcImage , currentThreshold)

80

81 return segmentedImage , currentThreshold

82

83

84 #Get RGB segmented image

85 def get_seg_RGB(srcImage , iterations = 10, diff = 1e-3):

86 rChannel , gChannel , bChannel = cv2.split(srcImage)#Image is in CV2 RGB channels.

87

88 segmentedR , currentRThreshold = get_iterative_Otsu(rChannel , iterations = iterations

, diff = diff)

89 segmentedG , currentGThreshold = get_iterative_Otsu(gChannel , iterations = iterations

, diff = diff)

90 segmentedB , currentBThreshold = get_iterative_Otsu(bChannel , iterations = iterations

, diff = diff)

91

92 allSegmented = np.zeros_like(rChannel)

93 allSegmented [(segmentedR >0) & (segmentedG >0) & (segmentedB >0)] = 1

94

95 return segmentedR , segmentedG , segmentedB , allSegmented

96

97

98 #Opening morphology. Filling gaps

99 def apply_opening(segmentedImage , kernelSize = 3, iterations = 1):

100 kernel = np.ones((kernelSize , kernelSize), np.uint8)

101

102 returnedImage = segmentedImage.copy()

103 for i in range(iterations):

104 erodedImage = cv2.erode(returnedImage , kernel = kernel , iterations = 1)

105 returnedImage = cv2.dilate(erodedImage , kernel = kernel , iterations = 1)

106

107 return returnedImage

108

109 #Closing morphology. Removing noise

110 def apply_closing(segmentedImage , kernelSize = 3, iterations = 1):

111 kernel = np.ones((kernelSize , kernelSize), np.uint8)

112 returnedImage = segmentedImage.copy()

113 #for i in range(iterations):

114 # dilatedImage = cv2.dilate(returnedImage , kernel = kernel , iterations = 1)

115 # returnedImage = cv2.erode(dilatedImage , kernel = kernel , iterations = 1)

116 dilatedImage = cv2.dilate(returnedImage , kernel = kernel , iterations = iterations)

117 returnedImage = cv2.erode(dilatedImage , kernel = kernel , iterations = iterations)

118 return returnedImage

119

120

121 #Compute the variance in a window to determine texture.

122 def compute_texture_var(srcImage , N):

123 """

124 srcImage = image in grayscale

125 N = window size. E.g.: 3, 5, 7

126 """

127

128 padding = N//2 #To ensure output.shape = srcImage.shape

129 paddedImage = np.pad(srcImage , padding , mode = ’constant ’, constant_values= 0)

130 varianceMap = np.zeros_like(srcImage , dtype = np.float32)

131

132 for height in range(padding , paddedImage.shape [0] - padding):

133 for width in range(padding , paddedImage.shape [1] - padding):

134 currentWindow = paddedImage[height - padding: height+padding + 1, width -

padding: width + padding + 1]

135 currentWindowMean = np.mean(currentWindow)

136 currentWindowVar = np.mean((currentWindow - currentWindowMean) **2)

137 varianceMap[height - padding , width - padding] = currentWindowVar

138 return varianceMap

139

14

140 #Apply Otsu threshold to the textured map

141 def apply_otsu_on_texture(srcImage , N = 3, iterations = 10):

142 """

143 srcImage = image in grayscale

144 N = window size. E.g.: 3, 5, 7

145 """

146

147 varMap = compute_texture_var(srcImage = srcImage , N = N)

148 segmentedImage , _ = get_iterative_Otsu(varMap , iterations = iterations)

149

150 return segmentedImage

151

152 #Get the combined Texture for R, G, B channels

153 def get_averaged_texture_segmented_image(srcImage , windowSizes = [3, 5, 7], iterations =

10):

154

155 segmentedImages = [apply_otsu_on_texture(srcImage= srcImage , N = window , iterations=

iterations) for window in windowSizes]

156

157 allSegmtned = np.zeros_like(segmentedImages [0])

158 allSegmtned [(segmentedImages [0]>0) & (segmentedImages [1] > 0) & (segmentedImages [2]

> 0)] = 1

159

160 return allSegmtned

161

162 #Given a set of textured images (from R, G, B channels), combine them

163 def get_average_from_textured_images(texturedImages):

164 allSegmtned = np.zeros_like(texturedImages [0])

165 allSegmtned [(texturedImages [0] >0) & (texturedImages [1] > 0) & (texturedImages [2] >

0)] = 1

166

167 return allSegmtned

168

169 #Save images

170 def save_images(outputDirectory , images , names):

171 #Create the output directory

172 try:

173 os.makedirs(outputDirectory)

174 except FileExistsError:

175 pass # Folder already exists

176

177 for i in range(len(images)):

178 currentImage = images[i]

179 currentName = names[i]

180 currentOutputPath = os.path.join(outputDirectory , f"{currentName }.png")

181 plt.imsave(currentOutputPath , currentImage , cmap=’gray’)

182 print ("Image␣", currentName , ".png␣is␣saved")

183

184

185 #Reading an image

186 dog = cv2.imread(’pics/dog_small.jpg’)

187 dog = cv2.cvtColor(dog , cv2.COLOR_BGR2RGB)

188 dogGrayscale = cv2.cvtColor(dog , cv2.COLOR_RGB2GRAY)

189

190 flower = cv2.imread(’pics/flower_small.jpg’)

191 flower = cv2.cvtColor(flower , cv2.COLOR_BGR2RGB)

192 flowerGrayscale = cv2.cvtColor(flower , cv2.COLOR_RGB2GRAY)

193

194 shoes = cv2.imread(’pics/shoes.jpg’)

195 shoes = cv2.cvtColor(shoes , cv2.COLOR_BGR2RGB)

196 shoesGrayscale = cv2.cvtColor(shoes , cv2.COLOR_RGB2GRAY)

197

198 tent = cv2.imread(’pics/tent.jpg’)

199 tent = cv2.cvtColor(tent , cv2.COLOR_BGR2RGB)

200 tentGrayscale = cv2.cvtColor(tent , cv2.COLOR_RGB2GRAY)

201

202

203 #Apply Otsu with 1 iteration

204 rDog , gDog , bDog , rgbDog = get_seg_RGB(dog , iterations = 1, diff = 1e-3)

205 rFlower , gFlower , bFlower , rgbFlower = get_seg_RGB(flower , iterations = 1, diff = 1e-3)

206

207 #Otsu with 1 iteration on my own images

208 rShoes , gShoes , bShoes , rgbShoes = get_seg_RGB(shoes , iterations = 1, diff = 1e-3)

15

209 rTent , gTent , bTent , rgbTent = get_seg_RGB(tent , iterations = 1, diff = 1e-3)

210

211 #Iterative Otsu

212 rDog10 , gDog10 , bDog10 , rgbDog10 = get_seg_RGB(dog , iterations = 10, diff = 1e-3)

213 rFlower10 , gFlower10 , bFlower10 , rgbFlower10 = get_seg_RGB(flower , iterations = 10, diff

= 1e-3)

214

215 rDog30 , gDog30 , bDog30 , rgbDog30 = get_seg_RGB(dog , iterations = 30, diff = 1e-3)

216 rFlower30 , gFlower30 , bFlower30 , rgbFlower30 = get_seg_RGB(flower , iterations = 30, diff

= 1e-3)

217

218 rDog50 , gDog50 , bDog50 , rgbDog50 = get_seg_RGB(dog , iterations = 50, diff = 1e-3)

219 rFlower50 , gFlower50 , bFlower50 , rgbFlower50 = get_seg_RGB(flower , iterations = 50, diff

= 1e-3)

220

221

222 #Iterative Otsu on my own image

223 rShoes10 , gShoes10 , bShoes10 , rgbShoes10 = get_seg_RGB(shoes , iterations = 10, diff = 1e

-3)

224 rTent10 , gTent10 , bTent10 , rgbTent10 = get_seg_RGB(tent , iterations = 10, diff = 1e-3)

225

226 rShoes30 , gShoes30 , bShoes30 , rgbShoes30 = get_seg_RGB(shoes , iterations = 30, diff = 1e

-3)

227 rTent30 , gTent30 , bTent30 , rgbTent30 = get_seg_RGB(tent , iterations = 30, diff = 1e-3)

228

229 rShoes50 , gShoes50 , bShoes50 , rgbShoes50 = get_seg_RGB(shoes , iterations = 50, diff = 1e

-3)

230 rTent50 , gTent50 , bTent50 , rgbTent50 = get_seg_RGB(tent , iterations = 50, diff = 1e-3)

231

232 #Save images

233 save_images("output", [rDog , gDog , bDog , rgbDog], ["rDog", "gDog", "bDog", "allDog"])

234 save_images("output", [rFlower , gFlower , bFlower , rgbFlower], ["rFlower", "gFlower", "

bFlower", "rgbFlower"])

235

236 save_images("output", [rDog10 , gDog10 , bDog10 , rgbDog10], ["rDog10", "gDog10", "bDog10",

"rgbDog10"])

237 save_images("output", [rFlower10 , gFlower10 , bFlower10 , rgbFlower10], ["rFlower10", "

gFlower10", "bFlower10", "rgbFlower10"])

238

239 save_images("output", [rDog30 , gDog30 , bDog30 , rgbDog30], ["rDog30", "gDog30", "bDog30",

"rgbDog30"])

240 save_images("output", [rFlower30 , gFlower30 , bFlower30 , rgbFlower30], ["rFlower30", "

gFlower30", "bFlower30", "rgbFlower30"])

241

242 save_images("output", [rDog50 , gDog50 , bDog50 , rgbDog50], ["rDog50", "gDog50", "bDog50",

"rgbDog50"])

243 save_images("output", [rFlower50 , gFlower50 , bFlower50 , rgbFlower50], ["rFlower50", "

gFlower50", "bFlower50", "rgbFlower50"])

244

245

246 #Save my own images

247 save_images("output", [rShoes , gShoes , bShoes , rgbShoes], ["rShoes", "gShoes", "bShoes",

"rgbShoes"])

248 save_images("output", [rTent , gTent , bTent , rgbTent], ["rTent", "gTent", "bTent", "

rgbTent"])

249

250 save_images("output", [rShoes10 , gShoes10 , bShoes10 , rgbShoes10], ["rShoes10", "gShoes10

", "bShoes10", "rgbShoes10"])

251 save_images("output", [rTent10 , gTent10 , bTent10 , rgbTent10], ["rTent10", "gTent10", "

bTent10", "rgbTent10"])

252

253 save_images("output", [rShoes30 , gShoes30 , bShoes30 , rgbShoes30], ["rShoes30", "gShoes30

", "bShoes30", "rgbShoes30"])

254 save_images("output", [rTent30 , gTent30 , bTent30 , rgbTent30], ["rTent30", "gTent30", "

bTent30", "rgbTent30"])

255

256 save_images("output", [rShoes50 , gShoes50 , bShoes50 , rgbShoes50], ["rShoes50", "gShoes50

", "bShoes50", "rgbShoes50"])

257 save_images("output", [rTent50 , gTent50 , bTent50 , rgbTent50], ["rTent50", "gTent50", "

bTent50", "rgbTent50"])

258

259

260 #Texture segmentation

16

261 textureDog3 = apply_otsu_on_texture(dogGrayscale , N = 3, iterations = 10)

262 textureFlower3 = apply_otsu_on_texture(flowerGrayscale , N = 3, iterations = 10)

263

264 textureDog5 = apply_otsu_on_texture(dogGrayscale , N = 5, iterations = 10)

265 textureFlower5 = apply_otsu_on_texture(flowerGrayscale , N = 5, iterations = 10)

266

267 textureDog7 = apply_otsu_on_texture(dogGrayscale , N = 7, iterations = 10)

268 textureFlower7 = apply_otsu_on_texture(flowerGrayscale , N = 7, iterations = 10)

269

270 #Combine Texture images

271 averageTextureDog = get_average_from_textured_images ([textureDog3 , textureDog5 ,

textureDog7])

272 averageTextureFlower = get_average_from_textured_images ([textureFlower3 , textureFlower5 ,

textureFlower7])

273

274 #Save texture images

275 save_images("output", [textureDog3 , textureDog5 , textureDog7 , averageTextureDog],

276 ["textureDog3", "textureDog5", "textureDog7", "averageTextureDog"])

277 save_images("output", [textureFlower3 , textureFlower5 , textureFlower7 ,

averageTextureFlower],

278 ["textureFlower3", "textureFlower5", "textureFlower7", "averageTextureFlower

"])

279

280

281 #Applying the texture on my own image

282 textureShoes3 = apply_otsu_on_texture(shoesGrayscale , N = 3, iterations = 10)

283 textureTent3 = apply_otsu_on_texture(tentGrayscale , N = 3, iterations = 10)

284

285 textureShoes5 = apply_otsu_on_texture(shoesGrayscale , N = 5, iterations = 10)

286 textureTent5 = apply_otsu_on_texture(tentGrayscale , N = 5, iterations = 10)

287

288 textureShoes7 = apply_otsu_on_texture(shoesGrayscale , N = 7, iterations = 10)

289 textureTent7 = apply_otsu_on_texture(tentGrayscale , N = 7, iterations = 10)

290

291 averagetextureShoes = get_average_from_textured_images ([textureShoes3 , textureShoes5 ,

textureShoes7])

292 averagetextureTent = get_average_from_textured_images ([textureTent3 , textureTent5 ,

textureTent7])

293

294 #Save my own texture images

295 save_images("output", [textureShoes3 , textureShoes5 , textureShoes7 , averagetextureShoes

],

296 ["textureShoes3", "textureShoes5", "textureShoes7", "averagetextureShoes"])

297 save_images("output", [textureTent3 , textureTent5 , textureTent7 , averagetextureTent],

298 ["textureTent3", "textureTent5", "textureTent7", "averagetextureTent"])

299

300 #Extract countours

301 def extractContour(binaryImage , kernelSize , iterations , windowSize = 3, operation = "

opening", dilateFinish = False):

302

303 cleanedSegmentedImage = None

304

305 if (operation == "closing"):

306 cleanedSegmentedImage = apply_closing(binaryImage , kernelSize= kernelSize ,

iterations=iterations)

307 else:

308 cleanedSegmentedImage = apply_opening(binaryImage , kernelSize= kernelSize ,

iterations=iterations)

309

310 contourImage = np.zeros_like(binaryImage , dtype = np.uint8)

311

312 #The maximum sum in the window

313 maxSum = windowSize * windowSize

314 windowLimit = windowSize - 1

315 for height in range(1, cleanedSegmentedImage.shape [0] -1):

316 for width in range(1, cleanedSegmentedImage.shape [1]-1):

317 if (cleanedSegmentedImage[height , width] == 0):

318 continue

319 currentWindow = cleanedSegmentedImage[height -1: height+windowLimit , width -1:

width+windowLimit]

320 if (np.sum(currentWindow) < maxSum):

321 contourImage[height , width] = 1

322

17

323 if dilateFinish:

324 contourImage = cv2.dilate(contourImage , np.ones ((3,3)), 1)

325 return contourImage , cleanedSegmentedImage

326

327

328 flowerContour , flowerIntermediate = extractContour(rgbFlower50 , kernelSize= 3,

iterations= 3, windowSize= 3, operation = "opening", dilateFinish = True)

329 dogContour , dogIntermediate = extractContour(rgbDog , kernelSize= 3, iterations= 1,

windowSize= 3, operation = "closing", dilateFinish = False)

330

331

332 save_images("output", [flowerContour , dogContour], ["flowerContour", "dogContour"])

333 save_images("output", [flowerIntermediate , dogIntermediate], ["flowerIntermediate", "

dogIntermediate"])

334

335 #Extract contour on my own images

336 tentContour , tentIntermediate = extractContour(rgbTent10 , kernelSize= 3, iterations= 1,

windowSize= 5, operation = "opening", dilateFinish = False)

337 shoesContour , shoesIntermediate = extractContour(rgbShoes50 , kernelSize= 3, iterations=

1, windowSize= 7, operation = "opening", dilateFinish = False)

338

339 save_images("output", [tentContour , shoesContour], ["tentContour", "shoesContour"])

340 save_images("output", [tentIntermediate , shoesIntermediate], ["tentIntermediate", "

shoesIntermediate"])

18

	Theory Questions
	Watershed v.s. Otsu Strengths and Weakeness

	Programming Tasks
	Image Segmentation using Otsu with RGB values
	Texture-based Image Segementation
	Contour Extraction
	Results on my own image
	Otsu RGB segmentation with 1 iteration
	Otsu RGB segmentation with 10, 30, and 50 iterations
	Texture-based Image segementation
	Contour Extraction

	code

