Homework 6

Alexandre Olivé Pellicer
aolivepe@purdue.edu

1 Theory Question

Lecture 15 presented two very famous algorithms for image segmentation: The Otsu
Algorithm and the Watershed Algorithm. These algorithms are as different as night and
day. Present in your own words the strengths and the weaknesses of each. (Note that
the Watershed algorithm uses the morphological operators that we discussed in Lecture
14.)

Otsu Algorithm

Strengths

e [t is simple and computationally efficient.

e Works well when the image has a clear bimodal histogram, meaning two distinct regions (fore-
ground and background) with different intensity levels. In a bimodal histogram the gray level
values concentrate around two major peaks which are clearly separated by a valley. In this
valley is where the Otsu algorithm will try to set the threshold to differentiate background and
foreground.

e [t automatically calculates the threshold to segment the image without need of markers.

Weaknesses

e Struggles with images where the foreground and background have overlapping grayscale values.
The Otsu algorithm bases the segmentation on the gray values of the image, it does not consider
the spatial information. Thus, if a part of the background and a part from the foreground have
the same gray level value, they will both be labeled as background or foreground leading to a
bad segmentation.

e It is sensitive to noise and uneven illumination. They can shift the histogram so that it is not
a clear bimodal histogram and it can result in a bad selection of the threshold and therefore, a
bad segmentation.

Watershed Algorithm

Strengths

e A pre-processing of the image that we want to segment with morphological operators, such as
gradient, can emphasize edges and smooth out noise, making the watershed algorithm more
effective in finding the boundaries between regions.

e Handles gradual intensity changes better and is less affected by noise compared to Otsu. This is
in part achieved thanks to pre-processing the image as mentioned in the previous bullet point.

e It is controlled by markers. A good selection of the markers can led to a good segmentation of
the image.

mailto:aolivepe@purdue.edu

Weaknesses
e It is prone to over-segmentation, where small intensity variations create too many regions.
e Often requires a lot of markers to reduce over-segmentation.

e It is sensitive to the initial markers. If the markers are not selected accurately, the segmentation
will not be accurate.

2 Description of Implementations

Otsu’s Algorithm:

The Otsu algorithm is an algorithm used to segment an image in foreground and background. It auto-
matically determines the threshold that divides the pixels of an image in background and foreground
based on their gray level value. The threshold is found by maximizing the inter-class variance which
is defined as:

o (t) = wo(t)wr (t) (o (t) — ()] (1)
where:

e wo(t) and wq(t) represent the probabilities of the two classes Cy and C; (background and fore-
ground or viceversa), separated by threshold ¢. Cy denotes pixels with levels [1, 2, ..., t] and Cy
denotes pixels with levels [t+1, t+2, ..., L], where the gray levels in the image are [1, 2, ..., L].

e 1o(t) and pq(t) represent the mean of the classes.

These elements are computed as:

L1 . 4.
Zi:t+12p(1)

M1 (t) = Wi (t)

where:
e N is the total number of pixels in the image,
e n; denotes the number of pixels at gray level i,

e p(i) is the probability of each gray level value in the image and it is computed as p(i) = .

Task 1.1: Image Segmentation Using RGB Values

These are the steps that we follow for our approach of segmenting an image by applying the Otsu
algorithm to each of the channels of the image:

1. We take the three color channels (RGB) of the image that we want to segment.

2. Each color channel is individually processed using the Otsu algorithm to determine the threshold
that separates the channel into foreground and background. The number of iterations that the
Otsu algorithm is run is empirically determined and controlled by the variable it.

3. The thresholds are used to generate masks for the foreground in each channel. In some cases, the
Otsu algorithm will create the mask for the background (understanding the mask as the values
equal to 1 in the binary image). In those cases, we invert the mask. This is empirically done, and
for the channels where it is necessary to swap Os and 1s, we set the variable inv to 1. Otherwise
it is 0.

4. The resulting masks from each of the three channels are combined using a logical “AND” oper-
ation.

Task 1.2: Texture-based Segmentation

These are the steps that we follow for our approach of segmenting an image by applying the Otsu
algorithm to three different feature maps of the image:

1. We convert the image that we want to segment to grayscale.

2. Given the grayscale image, we use a sliding window of shape N x N to create a feature map.
The sliding window is moved around the grayscale image and the feature map is created by
computing the intensity variance of the pixels inside the sliding window. By doing this, we are
extracting the texture feature for the center pixel of the sliding window. Three different values
of N are used so that we end up with three different feature maps. A padding of Os is added to
the grayscale image to deal with the pixels in the border of the image.

3. Subsequently, each of the feature maps is passed through the Otsu algorithm to segment the
image into foreground and background, following the same approach used for each of the color
channels of an image from Task 1.1.

4. The resulting masks from each of the three feature maps are combined using a logical “AND”
operation.

Task 1.3: Contour Extraction

These are the steps that we follow for our approach of contour extraction once we have already
computed a segmentation mask:

1. After obtaining the masks using the RGB approach and the feature texture maps approach, we
apply an opening to the image. An opening consists on applying first erosion and then dilation
and it is useful for removing small-scale noise (i.e. small elements from the mask that do not
correspond to the foreground).

2. Erosion is a morphological operation that calculates the minimum intensity of the pixels inside
a structure that goes across the entire image. In our case, the structure used is a 3 x 3 square.
Dilation is a morphological operation that is the opposite of erosion, it calculates the maximum
of the pixels inside the structure. We have used the same structure for the erosion and for the
dilation.

3. Once applied an opening to the binary mask we use a contour extraction technique to get the
contour. We use a 3 x 3 sliding window which is centered on each pixel with a value of 1 (pixel
of the mask). If any of the pixels within the window have a value of 0, the center pixel is copied
to the contour mask. The contour mask will end up containing the contour of the foreground
object.

3 Obtained Results
3.1 Task 1

Figure 1 shows the input images that I have used given in the instructions. For the dog image the
intended foreground is the dog while the background is the grass. For the flower image the intended
foreground is the flower while the background is the rest of the leaves of the plant.

(a) Image of a dog

(b) Image of a flower

Figure 1: Images used for task 1 provided in the instructions

Tables 1 and 2 show the parameters used to solve tasks 1.1, 1.2 and 1.3 for the images provided in
the instructions: the dog and the flower

Method

Parameter

Value

RGB

Iterations (B, G, R)
Inverse (B, G, R)

==
[\

Texture

Window (N)
Tterations (N7, Na, N3)
Inverse (N1, Na, N3)

~ A~
= o Ut

— W |~ N
— W O~
S N N N N

Table 1: Parameters used to get the dog image from Tasks 1.1, 1.2 and 1.3

Method

Parameter

Value

RGB

Iterations (B, G, R)
Inverse (B, G, R)

(1,2,2)
(0,0, 0)

Texture

Window (N)
Iterations (Nl, NQ, Ng)

Inverse (N1, Na, N3)

(13, 15, 17)
(1,1, 1)
(0,0, 0)

Table 2: Parameters used to get the flower image from Tasks 1.1, 1.2 and 1.3

3.1.1 Task 1.1

Figure 2 shows the binary masks obtained from each channel RGB of the dog image and the resulting
binary mask of combining the 3 masks using the ” AND” operator.

P

(b) Mask from channel green

(d) Result of combining the 3 masks using and
(c) Mask from channel red ”AND” operator

Figure 2: Dog images from Task 1.1.

Figure 3 shows the binary masks obtained from each channel RGB of the flower image and the
resulting binary mask of combining the 3 masks using the ”AND” operator.

; (d) Result of combining the 3 masks using and
(¢) Mask from channel red ? AND” operator

Figure 3: Flower images from Task 1.1.

3.1.2 Task 1.2

Figure 4 shows the feature maps after computing the variance of windows of shape NxNN and the binary
mask of each of the features map obtained with the Otsu algorithm. It also shows the resulting binary
mask of combining the 3 masks using the " AND” operator. All this from the dog image

(a) Feature map using a window (b) Feature map using a window (¢) Feature map using a window
of 5x5 of Tx7 of 9x9

(d) Binary mask obtained from (e) Binary mask obtained from (f) Binary mask obtained from
feature map 5x5 feature map 7x7 feature map 9x9

(g) Result of combining the 3
masks using and "AND” opera-
tor

Figure 4: Dog images from Task 1.2.

Figure 5 shows the feature maps after computing the variance of windows of shape NxN and the
binary mask of each of the features map obtained with the Otsu algorithm. It also shows the resulting
binary mask of combining the 3 masks using the ” AND” operator. All this from the flower image.

(a) Feature map using a window (b) Feature map using a window (c) Feature map using a window
of 13x13 of 15x15 of 17x17

(d) Binary mask obtained from (e) Binary mask obtained from (f) Binary mask obtained from
feature map 13x13 feature map 15x15 feature map 17x17

(g) Result of combining the 3
masks using and "AND” opera-
tor

Figure 5: Flower images from Task 1.2.

3.1.3 Task 1.3

Figure 6 shows the resulting binary mask after applying erosion and dilation with a 3x3 mask to the
resulting binary mask of the dog computed in task 1.1 using the RGB approach. It also shows the
resulting image containing the contours of the dog.

(a) Binary mask after erosion and dilation (b) Contours

Figure 6: Dog images from Task 1.3.

Figure 7 shows the resulting binary mask after applying erosion and dilation with a 3x3 mask to
the resulting binary mask of the flower computed in task 1.1 using the RGB approach. It also shows
the resulting image containing the contours of the flower.

.
LN

(a) Binary mask after erosion and dilation (b) Contours

Figure 7: Flower images from Task 1.3.

Figure 8 shows the resulting binary mask after applying erosion and dilation with a 3x3 mask to
the resulting binary mask of the dog computed in task 1.2 using the feature texture maps approach.
It also shows the resulting image containing the contours of the dog.

(a) Binary mask after erosion and dilation (b) Contours

Figure 8: Dog images from Task 1.3.

Figure 9 shows the resulting binary mask after applying erosion and dilation with a 3x3 mask to
the resulting binary mask of the flower computed in task 1.2 using the feature texture maps approach.
It also shows the resulting image containing the contours of the flower.

(a) Binary mask after erosion and dilation (b) Contours

Figure 9: Flower images from Task 1.3.

10

3.2 Task 2

Figure 10 shows the input images that I have used that I have selected. For the car image the intended
foreground is the car while the background is the floor and the trees. For the squirrel image the
intended foreground is the squirrel while the background is the plants.

(a) Image of a car (b) Image of a squirrel

Figure 10: Images used for task 2 that I have selected

Tables 3, 4 show respectively the parameters used to solve tasks 2.1, 2.2 and 2.3 for the images
that I have selected: the car and the squirrel

Method Parameter Value
RGB Iterations (B, G, R) (2,1, 1)
Inverse (B, G, R) (0, 0, 0)
Texture Window (N) (7,9, 11)
Iterations (N7, No, N3) | (1,1, 1)
Inverse (N1, Na, N3) (0, 0, 0)

Table 3: Parameters used to get the car images from Tasks 2.1, 2.2 and 2.3

Method Parameter Value
RGB Iterations (B, G, R) (1,1, 1)
Inverse (B, G, R) (0, 0, 0)
Texture Window (N) (7,9, 11)
Iterations (Nl, NQ, Ng) (1, 1, 1)
Inverse (N1, N3, N3) (0, 0, 0)

Table 4: Parameters used to get the squirrel images from Tasks 2.1, 2.2 and 2.3

11

3.2.1 Task 2.1

Figure 11 shows the binary masks obtained from each channel RGB of the car image and the resulting
binary mask of combining the 3 masks using the ” AND” operator.

(b) Mask from channel green

(d) Result of combining the 3 masks using and
(c) Mask from channel red ” AND” operator

Figure 11: Car images from Task 2.1.

12

Figure 12 shows the binary masks obtained from each channel RGB of the squirrel image and the
resulting binary mask of combining the 3 masks using the ”AND” operator.

(d) Result of combining the 3 masks using and
(c) Mask from channel red ” AND” operator

Figure 12: Squirrel images from Task 2.1.

13

3.2.2 Task 2.2

Figure 13 shows the feature maps after computing the variance of windows of shape NxN and the
binary mask of each of the features map obtained with the Otsu algorithm. It also shows the resulting
binary mask of combining the 3 masks using the ”AND” operator. All this from the car image

(b) Feature map using a window (c) Feature map using a window
of Tx7 of 9x9 of 11x11

(d) Binary mask obtained from (e) Binary mask obtained from (f) Binary mask obtained from
feature map 7x7 feature map 9x9 feature map 11x11

(g) Result of combining the 3
masks using and "AND” opera-
tor

Figure 13: Car images from Task 2.2.

14

Figure 14 shows the feature maps after computing the variance of windows of shape NxN and the
binary mask of each of the features map obtained with the Otsu algorithm. It also shows the resulting
binary mask of combining the 3 masks using the ” AND” operator. All this from the squirrel image.

(a) Feature map using a window (b) Feature map using a window (c) Feature map using a window
of 7x7 of 9x9 of 11x11

(d) Binary mask obtained from (e) Binary mask obtained from (f) Binary mask obtained from
feature map 7x7 feature map 9x9 feature map 11x11

(g) Result of combining the 3
masks using and "AND” opera-
tor

Figure 14: Squirrel images from Task 2.2.

15

3.2.3 Task 2.3

Figure 15 shows the resulting binary mask after applying erosion and dilation with a 3x3 mask to the
resulting binary mask of the car computed in task 2.1 using the RGB approach. It also shows the
resulting image containing the contours of the car.

(a) Binary mask after erosion and dilation (b) Contours

Figure 15: Car images from Task 2.3.

Figure 16 shows the resulting binary mask after applying erosion and dilation with a 3x3 mask to
the resulting binary mask of the squirrel computed in task 2.1 using the RGB approach. It also shows
the resulting image containing the contours of the squirrel.

(a) Binary mask after erosion and dilation (b) Contours

Figure 16: Squirrel images from Task 2.3.

16

Figure 17 shows the resulting binary mask after applying erosion and dilation with a 3x3 mask to
the resulting binary mask of the car computed in task 2.2 using the feature texture maps approach. It
also shows the resulting image containing the contours of the car.

(a) Binary mask after erosion and dilation (b) Contours

Figure 17: Car images from Task 2.3.

Figure 18 shows the resulting binary mask after applying erosion and dilation with a 3x3 mask to
the resulting binary mask of the squirrel computed in task 2.2 using the feature texture maps approach.
It also shows the resulting image containing the contours of the squirrel.

(a) Binary mask after erosion and dilation (b) Contours

Figure 18: Squirrel images from Task 2.3.

17

4 Observations

Doing a qualitative evaluation of the binary masks estimated from the three color channels and the
binary masks estimated from the feature maps, we can conclude that the best performance is achieved
when applying the Otsu algorithm over the three color channels. These are some comments for each
of the four images used in this report:

e Dog image: The result obtained with both approaches are quite decent. In both cases, big
part of the dog is labeled as foreground. We can also see that in both cases the shadow of the
dog because of sun is labeled as foreground, which is an error in the segmentation. We already
mentioned that the Otsu algorithm is sensitive to light variations. In both cases there are some
parts of the grass that are incorrectly taken as foreground. It must be mentioned that for the
RGB approach more iterations of the Otsu algorithm could have been used to remove the parts of
the mask that label the grass as foreground. Nevertheless, this would have also reduced the mask
of the dog. Since the mask obtained from the RGB approach is later used for contour extraction
and before extracting the contour we apply and opening, we decided to kept those white points
from the grass while conserving most of the shape of the dog since the opening operation will
remove the white points of the grass so that they do not affect in getting the correct contour of
the dog.

e Flower image: We clearly see that the best result is obtained with the RGB approach. The
problem of the feature texture maps is that there are not many textures. Big leaves are predom-
inant in the image and they do not have a lot of variation in intensity of pixels. Therefore, the
feature texture maps lack of information in order to allow the Otsu algorithm to correctly mask
the foreground object.

e Car image: Similar conclusions that we obtained from the flower image. Using the RGB
approach we get a much better mask of the foreground car. Also, the image is characterized
by big regions with small variations in pixel intensity. So again, when using the feature texture
maps, the resulting maps is more similar to a contour mask than to an actual mask of the entire
foreground object.

e Squirrel image: In this case, the mask obtained from the RGB approach is still better than
the one obtained using the feature maps and it has a lot of detail. The image is quite simple
since the background is from a very different color compared with the foreground so the Otsu
algorithm does a good job in the segmentation. The mask obtained using the feature texture
maps is quite decent. Since the background is blur and the pixels in the squirrel have a lot of
intensity variance, the feature maps contain enough information to help the Otsu algorithm to
distinguish the foreground squirrel from the background.

Analyzing the contours masks obtained working with the masks obtained from the RGB approach
and from the feature texture maps approach, we see that in both cases we get a good result although
the one obtained from the RGB approach is more realistic. What I mean by more realistic is that
we see that the contours from the feature texture maps are doubled. This can be clearly seen in the
case of the car image. Since the masks obtained when using the feature texture maps seem contour
maps instead of foreground masks, when applying the contour extraction algorithm, we are obtaining
the contour of the lines that seem to actually determine the contours in the foreground masks from
the feature texture maps. This leads to this effect that seems that contours are doubled. Something
very similar happens with the squirrel, mainly with the part of the head where we can also see the
double contours when using the feature texture maps. Nevertheless, in the part of the tail, since there
is a lot of texture, the texture feature map has a lot of information there so when applying the Otsu
algorithm, the tail is partially covered as an entire mask and not only the border. For the case of the
dog image we have a similar behavior as the tail of the squirrel since both objects are rich in textures
and variances. For the flower image we have the same problem as with the car and the head of the
squirrel.

18

5 Code

import matplotlib.pyplot as plt
import pandas as pd

import numpy as np

import cv2

def otsu_thr (masked_image):
Compute histogram and bins
hist, bin_edges = np.histogram(masked_image, bins=256, range=(0, 255),
density=True) #it already returns the prob because den=true
sig_prev = 0
thr = 0

Loop through bin edges
for b in range (256):
b goes from O to 255
k goes from 1 to 256
k = b+l
w0 = np.sum(hist[:b])
wl = np.sum(hist[b:])

Skip if either class weight is O
if wO == 0 or wl == 0:
continue

Compute means
mu0 = np.sum(np.arange(l, k, 1) * hist[:b]) / wO
mul = np.sum(np.arange(k, 257, 1) * hist[b:]) / wil

Compute between-class variance
sig = w0 * wl * (mul - muO)**2

Update thr if better variance found
if sig >= sig_prev:

sig_prev = sig

thr = b

return thr

def gray_otsu(image, it, inv):
Create mask of 1s and later we will substitute to O some values
mask = np.ones(image.shape, dtype=bool)

for i in range(it):
Get the threshold
thr = otsu_thr (masked_image = image [mask])

Apply threshold to update mask. May need to inverse criteria
depending on the colorcomposition of the image

if inv:
mask [image > thr] = 0
else:
mask [image < thr] = 0
return mask
def rgb_otsu(image, it, inv, pic, folder = "rgb"):
Get the binary mask for each channel (B, G, R)
mask = np.zeros(image.shape, dtype=int)

for i in range (image.shape[2]):

19

99

100

101

102

103

104

105

106

107

108

109

def

def

def

image_channel = imagel[:, :, i]
mask[:, :, i] = gray_otsu(image_channel, it[i], inv[i])
cv2.imwrite (f"{folder}/mask_{pic}_{str(i)}.jpg", mask[:, :, i]x*255)

Use and operator to combine the 3 masks

full_mask = np.zeros((image.shape[0], image.shape[1]), dtype=int)

full_mask[(mask[:, :, 0] == 1) & (mask([:, :, 1] == 1) & (mask[:, :, 2] ==
1)] =1

return full_mask

normalize_to_255(features_map):

Function to normalize image between O and 255

min_val = np.min(features_map)

max_val = np.max(features_map)

Normalize to [0, 1]

normalized = (features_map - min_val) / (max_val - min_val)
Scale to [0, 255]

normalized_255 = normalized * 255

return normalized_255

texture_otsu(image, ns, it, inv, pic):
texture_arr = []
for i, n in enumerate(mns):
Add a padding of zeros to deal with the case when the filter is in
the borders of the image
padding = n//2
padded_image = np.pad(image, ((padding, padding), (padding,
padding)), ’constant’, constant_values=0)

Create a feature map computing the variance inside the window of
size n x n
features_map = np.zeros((image.shape[0], image.shape[1]))
for r in range(image.shape[0]):
for ¢ in range (image.shape[1]):
var = np.var (padded_image [r:r+2*padding+1, c:c+2*padding+1])

features_map[r, c] = var
features_map = normalize_to_255(features_map)
cv2.imwrite (f"textures/{pic}_features_{n}. jpg", features_map)

texture_arr.append(features_map)

Stack the 3 feature maps and pass it to the rgb_otsu function to
operate as it was done with the B, G, R channels of the original image

texture_image = np.stack(texture_arr, axis=2)
cv2.imwrite(f"textures/{pic}_texture_image.jpg", texture_image)
return rgb_otsu(texture_image, it, inv, pic, folder = "textures")

erosion (image) :

3x3 window as mask

mask = np.ones((3, 3), dtype=np.uint8)
mask_height, mask_width = mask.shape

Create eroded image
eroded_image = np.zeros_like (image)

Add padding to the image to deal with borders
padded_image = np.pad(image, ((mask_height//2, mask_height//2),
(mask_width//2, mask_width//2)), mode=’constant’, constant_values=255)

Perform erosion

for i in range (image.shape [0]):
for j in range (image.shape[1]):

20

114 # roi is the pixels in the mask

115 roi = padded_image[i:i+mask_height, j:j+mask_width]
116 # Apply the mask and take the minimum value

117 eroded_image[i, j] = np.min(roi[mask == 1])

118

119 return eroded_image

121 def dilation(image):

122 # 3x3 window as mask

123 mask = np.ones ((3, 3), dtype=np.uint8)

124 mask_height , mask_width = mask.shape

125

126 # Create dilated image

127 dilated_image = np.zeros_like(image)

128

129 # Add padding to the image to deal with borders

130 padded_image = np.pad(image, ((mask_height//2, mask_height//2),
(mask_width//2, mask_width//2)), mode=’constant’, constant_values=0)

132 # Perform dilation

133 for i in range (image.shape [0]):

134 for j in range(image.shape[1]):

135 # roi is the pixels in the mask

136 roi = padded_image[i:i+mask_height, j:j+mask_width]
137 # Apply the mask and take the maximum value

138 dilated_image[i, j] = np.max(roilmask == 1])

140 return dilated_image

112 def extract_contours(binary_image):

143 contour_mask = np.zeros_like(binary_image)

144 rows, cols = binary_image.shape

145

146 # Iterate through each pixel in the image excluding the borders
147 for i in range(l, rows - 1):

148 for j in range(l, cols - 1):

149 # If the current pixel is part of the object (value 1)
150 if binary_imagel[i, jl == 1:

151 # Check the eight neighbors for at least one O

152 neighborhood = binary_image[i-1:i+2, j-1:j+2]
153 if 0 in neighborhood:
154 contour_mask[i, j] = 1

156 return contour_mask

158 ## TASK 1.1 AND 1.3 --------------—--—-——— - — - ————— - ——
150 pic = "dog"

160 image = cv2.imread (f"pics/{pic}_small. jpg")

161 full_mask=rgb_otsu(image, [1, 2, 2], [1,1,1], pic)

162 cv2.imwrite(f"rgb/{pic}. jpg", full_mask *255)

163

164 # Apply opening

165 eroded = erosion(full_mask)

166 dilated = dilation(eroded)

167 cv2.imwrite (f’contour/dilated_{pic}. jpg’, dilated*255)
168 # Extract contours

160 contours = extract_contours(dilated)

170 cv2.imwrite (f’contour/contours_{picl}.jpg’, contours * 255)

172 pic = "flower"

173 image = cv2.imread (f"pics/{pic}_small. jpg")
172 full_mask=rgb_otsu(image, [1, 2, 21, [0, 0, 0], pic)

21

189

190

191

192

193

194

195

196

197

198

199

200

cv2.imwrite(f"rgb/{pic}. jpg", full_mask #*255)

eroded = erosion(full_mask)
dilated = dilation(eroded)
cv2.imwrite (f’contour/dilated_{pic}.jpg’, dilated*255)

contours = extract_contours(dilated)
cv2.imwrite(f’contour/contours_{pic}.jpg’, contours * 255)
pic = "car"

image = cv2.imread(f"pics/{pic}_small. jpg")
full_mask=rgb_otsu(image, [2, 1, 1], [0, O, 0], pic)
cv2.imwrite(f"rgb/{pic}. jpg", full_mask #*255)

eroded = erosion(full_mask)

dilated = dilation(eroded)
cv2.imwrite(f’contour/dilated_{pic}.jpg’, dilated*255)
contours = extract_contours(dilated)

cv2.imwrite (f’contour/contours_{pic}.jpg’, contours * 255)

pic = "squirrel"

image = cv2.imread(f"pics/{pic}_small. jpg")
full_mask=rgb_otsu(image, [1, 1, 1], [0, O, 0], pic)
cv2.imwrite(f"rgb/{pic}. jpg", full_mask *255)

eroded = erosion(full_mask)

dilated = dilation(eroded)
cv2.imwrite(f’contour/dilated_{pic}.jpg’, dilated*255)
contours = extract_contours(dilated)

cv2.imwrite (f’contour/contours_{picl}.jpg’, contours * 255)

TASK 1.2 ——=———=—mmmmmmmm e
pic = "dog"

image = cv2.imread(f"pics/{pic}_small. jpg", cv2.IMREAD_GRAYSCALE)
full_mask=texture_otsu(image, [5 ,7, 91, [3, 3, 31, [1,1,1], pic)
cv2.imwrite (f"textures/{pic}. jpg", full_mask *255)

pic = "flower"
image = cv2.imread (f"pics/{pic}_small.jpg", cv2.IMREAD_GRAYSCALE)

full_mask=texture_otsu(image, [13 ,15, 17], [1, 1, 1], [0, O, O], pic)

cv2.imwrite(f"textures/{pic}.jpg", full_mask *255)

pic = "car"

image = cv2.imread(f"pics/{pic}_small. jpg", cv2.IMREAD_GRAYSCALE)
full_mask=texture_otsu(image, [7 ,9, 111, [1, 1, 11, [0, O, 0], pic)
cv2.imwrite(f"textures/{pic}.jpg", full_mask *255)

pic = "squirrel"

image = cv2.imread(f"pics/{pic}_small. jpg", cv2.IMREAD_GRAYSCALE)
full_mask=texture_otsu(image, [7, 9, 111, [t, 1, 1], [0, O, O], pic)
cv2.imwrite (f"textures/{pic}. jpg", full_mask *255)

22

	Theory Question
	Description of Implementations
	Obtained Results
	Task 1
	Task 1.1
	Task 1.2
	Task 1.3

	Task 2
	Task 2.1
	Task 2.2
	Task 2.3

	Observations
	Code

