ECE 66100: Computer Vision Fall 2024 — Purdue University

Homework 5

Sravani Ramishetty(sramishe@purdue.edu)

Theory Question 1

How do we differentiate between the inliers and the outliers when using RANSAC for
solving the homography estimation problem using the interest points extracted from
two different photos of the same scene?

We differentiate between the inliers and the outliers using the decision threshold. For each data
point, we compute its projection using the estimated homography matrix, if the distance between
the actual data point and the projected point is less than the threshold, we call it an inlier else an
outlier.

Mathematically, let x; and x; be the corresponding points in the two images, and H be the estimated
homography matrix. We project x; using H as:

/
x; ~ Hx;

We then calculate the distance d; between the actual point x; and the projected point Hx; as:

= x,— Fix

If d; is less than the threshold ¢, the point is classified as an inlier:

d; <6 = inlier

Otherwise, it is classified as an outlier:

d; > 6 — outlier

Theory Question 2

Explain in your own words how the Levenberg-Marquardt (LM) algorithm combines
the best of GD and GN to give us a method that is reasonably fast and numerically
stable at the same time.

LM can switch from GN to GD using the damping coefficient(u). If the parameter is close to local
minima, LM switches to GN and when it is far from local minima, it switches to GD.

- When the solution is far from the local minimum, the damping parameter p is large, and the
LM algorithm behaves like GD. In this regime, it takes smaller steps, focusing on stabilizing the
optimization process.

- As the solution approaches the local minimum, p becomes smaller, causing the LM algorithm to
behave more like GN. In this case, it takes larger, more efficient steps that converge faster.

ECE 66100: Computer Vision Fall 2024 — Purdue University

Task 1: Automated Homography Estimation using RANSAC and
Nonlinear Least-Squares Refinement

The objective of this homework is to implement a fully automated approach for robust homogra-
phy estimation between two images using RANSAC and refine it using a Nonlinear Least-Squares
minimization approach, specifically the Levenberg-Marquardt (LM) algorithm.

The following steps outline the automation of homography estimation between two images:

Step 1: Interest Point Detection and Descriptor Extraction Interest points and their
corresponding descriptors are extracted from both images and compared using a similarity criterion.
The following techniques can be used for interest point extraction and descriptor computation:

e Harris Corner Detector: Detect interest points using the Harris corner detector. Then,
for each interest point, compute a gray-level descriptor using a W x W window around the
point. The similarity between corresponding points can be calculated using either:

— Sum of Squared Differences (SSD)
— Normalized Cross-Correlation (NCC) (preferred for improved robustness)

e SIFT, SURF, or SuperPoint+SuperGlue: Alternatively, we can use more advanced
techniques such as SIFT, SURF, or SuperPoint+SuperGlue to extract both interest points
and their descriptors. In these cases, the similarity between interest points is calculated
using the Euclidean distance between the descriptor vectors(SuperPoint+SuperGlue gave
best results in this homework).

Step 2: Linear least square minimization to obtain the initial homography

Given a point X in a planar scene and its corresponding pixel X’ in the image plane, for most
cameras, we can express the relationship between them as:

X' =HX

where both X and X’ are expressed in homogeneous coordinates:

X=|z], X =|4d
x3 xh

and H is the 3 x 3 homography matrix, given by:

hii hi2 his
H = | ha1 ha has
h31 hsza hs3

Expanding the matrix multiplication for X’ = HX, we obtain the following equations for the
components of X':

/
x] = h1121 + h1awe + hizxs

ECE 66100: Computer Vision Fall 2024 — Purdue University

/
Ty = hgll‘l + hggxg + h23.733

/
T3 = hg1x1 + h3oxo + h3zzs

Denoting the physical scene coordinates by (x,y) and the physical pixel coordinates by (z,y'), we
have the following relationships:

Thus, we can express the physical coordinates of the image pixel as:

o = hi1z + hi2y + his
haix + h3oy + h33

J = ho1x + hooy + hes
h31x + h3ay + ha3

These expressions for the physical pixel coordinates can be rewritten in the homogeneous equation
form:

zhi1 + yhia + his — x2'hgy — ya'hgo — 2'hgz3 = 0
zhat + yhao + hoz — xy'hg1 — yy'hse — y'hsg = 0

Converting this into a matrix format and in-homogeneous form with hss = 1 with 1 point gives
below system of in-homogeneous equations:

z1 y1 1 0 0 0 —xa) —wyal| | haa x
0 0 0 = wi 1 —x:yy —wniyy

This system can be represented in the general form as Ah = b, where A is a 2 X 8 matrix of known
values based on the coordinates of the point (z1,y1) and the corresponding transformed point
(},91), h is the vector of unknown homography parameters, and b is a 2 x 1 vector representing
the coordinates of the transformed point.

System of Equations for Multiple Correspondences

For N point correspondences (z;,y;) <> (x},y.), where i = 1,2,..., N, we can write a system of
equations for each correspondence (X;, X/), represented as A;h = b; for the i-th correspondence.

By stacking the equations for all N correspondences, we obtain a system of 2/N inhomogeneous
equations that can be expressed as:

ECE 66100: Computer Vision Fall 2024 — Purdue University

Ah=1b
where A is a 2N x 8 matrix of known values, b is a 2N x 1 vector of known values, and A is an
8 x 1 vector of unknown homography parameters.
Solving the Overdetermined System

In general, for N > 4, the system is overdetermined (i.e., more equations than unknowns), and we
solve it using the pseudo-inverse of A. The solution is given by:

h=(ATA)"1ATY

This provides the least-squares solution for the homography parameters, minimizing the error
between the projected and actual points in the target image.

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

Figure 1: Given Input Images

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

Figure 2: Collected Input Images

ECE 66100: Computer Vision Fall 2024 — Purdue University

Step 3: RANSAC Algorithm for Homography Estimation and outlier rejection(Pseudocode)

Algorithm 1: RANSAC for Homography Estimation
Input: Matched keypoints between two images, §, €, N, M
Output: Best homography matrix Hpest, list of inliers

Initialize:
Hypest <+ None
best_inliers < 0
best _inliers_list <~ None
Nitotal <— Number of matched keypoints
p <+ 0.99
n < minimum number of points to estimate homography
max_iters « —ogl=p)__
log(1—(1-¢€)™)
M «+ (1 - 6) X Ntotal

max_iters_all < —total’__
n (ntotal *n)~

while iterations < max_iters_all do
Step 1: Randomly select n correspondences
Step 2: Compute homography matrix H from the selected points
Step 3: Compute inliers by calculating error for each correspondence
for each correspondence j do
Compute p; + (x;,y;,1)T
Compute py < (7, y;, nT
error <— ||p2 — H - p1l|2
if error < § then
Increment the inliers count

Add correspondence j to inliers list

end

end

if inliers count > M then
if inliers count > best_inliers then
Update Hyet +— H
Update best_inliers_list <— current inliers list
end

Break
end

end

Return: Hiy, best_inliers_list

In this implementation, the number of iterations exceeded the theoretical value %, as

the keypoints detected by SIFT contained a significant number of outliers, which prevented the
algorithm from finding the best homography matrix. In contrast, the iterations required for Super-
Point+SuperGlue were considerably fewer compared to SIFT. Additionally, the threshold § used
for SuperPoint+SuperGlue (25) was smaller than that for SIFT (75) in order to achieve the desired
number of inliers. Once the best homography matrix Hypes; and the corresponding list of inliers
were identified, the homography was refined using all the inliers found. The homography was then
further optimized using the ’1m’ from least_squares method from scipy.optimize.

ECE 66100: Computer Vision Fall 2024 — Purdue University

Extracted correspondences using SuperPoint+SuperGlue between given input images

(a) Image 1 and 2 correspondences (b) Image 2 and 3 correspondences

Figure 3: Correspondences using SuperPoint+SuperGlue

Sets of outliers(red) and inliers(green) for given input images

(a) outliers-inliers for Image 1 and 2 (b) outliers-inliers for Image 2 and 3

Figure 4: outliers-inliers after applying RANSAC

Panoramic view obtained after stitching given input images

(a) Panoramic view after applying RANSAC

(b) Panoramic view after applying RANSAC and LM

ECE 66100: Computer Vision Fall 2024 — Purdue University

Extracted correspondences using SuperPoint+SuperGlue between collected input im-
ages

(a) Image 1 and 2 correspondences (b) Image 2 and 3 correspondences

Figure 6: Correspondences using SuperPoint+SuperGlue

Sets of outliers (red) and inliers (green) for collected input images

(a) outliers-inliers for Image 1 and 2 (b) outliers-inliers for Image 2 and 3

Figure 7: outliers-inliers after applying RANSAC

Panoramic view obtained after stitching collected input images

i I e i
L R

(b) Panoramic view after applying RANSAC and LM

Step 4: Extra Credit (Pseudocode)

ECE 66100: Computer Vision Fall 2024 — Purdue University

Algorithm 1: Levenberg-Marquardt for Homography Refinement

Input: Initial homography matrix H, set of inliers
Output: Refined homography matrix Hcfined

Initialize:

€1,€2,€3 < 10715, max_iterations < 100
v+ 2,71+ 0.5

h <+ H flattened into a 9D vector
iterations < 0

while iterations < max_iterations do
Step 1: Compute residuals and Jacobian matrix J <— Jacobian(H, inliers)

Compute cost function e < cost_function(h, inliers)
Step 2: Compute gradient and approximate Hessian
g+ —JT e
A—Jr.J
Step 3: Check for convergence based on gradient
if ||g]loc < €1 then
| break
end
Step 4: Compute A and update step
I < identity matrix of size 9
A < 7 x max(diag(A))

while True do
Solve for Ah:

Ah (A+X-I)"1.g
if [|AR|| < - (|[A]| + e2) then

| break
end
hnew < h + Ah
enew < cost_function(hyey, inliers)
Compute p:

lle]]*—|lenew][*
P S ART-(\Ah+g)

if p > 0 then
h < hnew
A+ A-max (3,1—(2p—1)3)
V<2
break
nd
Ise
A=AV

v+2-v
end

o O

end

if ||e||? < e3 then
| break

end

iterations < iterations + 1
end

return hpey

ECE 66100: Computer Vision

Fall 2024 — Purdue University

Images | Inliers | M | Iterations | Best Inliers
01 224 202 1086 208
12 318 286 5627 292
23 258 232 4012 251
34 128 115 4844 117

Table 1: Comparison of Inliers, Minimum Inliers to Accept(M), Iterations, and Best Inliers between Image Pairs

(a) Panoramic view after applying RANSAC and Own LM

Images | RANSAC Cost | Own LM Cost
01 2443 1128
12 1530 753
23 1776 871
34 846 390

Table 2: Comparison of RANSAC and LM Cost between given input Image Pairs

Images | Inliers | M | Iterations | Best Inliers
01 768 692 529 721
12 875 788 513 789
23 687 619 770 626
34 871 784 37 802

Table 3: Comparison of Inliers, Minimum Inliers to Accept(M), Iterations, and Best Inliers between Collected Pairs

(a) Panoramic view after applying RANSAC and Own LM

ECE 66100: Computer Vision Fall 2024 — Purdue University

Table 4: Comparison of RANSAC and LM Cost between collected input Image Pairs

Programming

ECE 66100: Computer Vision Fall 2024 — Purdue University

ECE 66100: Computer Vision Fall 2024 — Purdue University

ECE 66100: Computer Vision Fall 2024 — Purdue University

ECE 66100: Computer Vision Fall 2024 — Purdue University

ECE 66100: Computer Vision Fall 2024 — Purdue University

ECE 66100: Computer Vision Fall 2024 — Purdue University

ECE 66100: Computer Vision Fall 2024 — Purdue University

ECE 66100: Computer Vision Fall 2024 — Purdue University

ECE 66100: Computer Vision Fall 2024 — Purdue University

Listing 1: Python Code

