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Theory Question 1

How do we differentiate between the inliers and the outliers when using RANSAC for
solving the homography estimation problem using the interest points extracted from
two different photos of the same scene?

We differentiate between the inliers and the outliers using the decision threshold. For each data
point, we compute its projection using the estimated homography matrix, if the distance between
the actual data point and the projected point is less than the threshold, we call it an inlier else an
outlier.

Mathematically, let xi and x′
i be the corresponding points in the two images, andH be the estimated

homography matrix. We project xi using H as:

x′
i ∼ Hxi

We then calculate the distance di between the actual point x′
i and the projected point Hxi as:

di =
∥∥x′

i −Hxi

∥∥
If di is less than the threshold δ, the point is classified as an inlier:

di < δ =⇒ inlier

Otherwise, it is classified as an outlier:

di ≥ δ =⇒ outlier

Theory Question 2

Explain in your own words how the Levenberg-Marquardt (LM) algorithm combines
the best of GD and GN to give us a method that is reasonably fast and numerically
stable at the same time.

LM can switch from GN to GD using the damping coefficient(µ). If the parameter is close to local
minima, LM switches to GN and when it is far from local minima, it switches to GD.

- When the solution is far from the local minimum, the damping parameter µ is large, and the
LM algorithm behaves like GD. In this regime, it takes smaller steps, focusing on stabilizing the
optimization process.
- As the solution approaches the local minimum, µ becomes smaller, causing the LM algorithm to
behave more like GN. In this case, it takes larger, more efficient steps that converge faster.
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Task 1: Automated Homography Estimation using RANSAC and
Nonlinear Least-Squares Refinement

The objective of this homework is to implement a fully automated approach for robust homogra-
phy estimation between two images using RANSAC and refine it using a Nonlinear Least-Squares
minimization approach, specifically the Levenberg-Marquardt (LM) algorithm.

The following steps outline the automation of homography estimation between two images:

Step 1: Interest Point Detection and Descriptor Extraction Interest points and their
corresponding descriptors are extracted from both images and compared using a similarity criterion.
The following techniques can be used for interest point extraction and descriptor computation:

• Harris Corner Detector: Detect interest points using the Harris corner detector. Then,
for each interest point, compute a gray-level descriptor using a W ×W window around the
point. The similarity between corresponding points can be calculated using either:

– Sum of Squared Differences (SSD)

– Normalized Cross-Correlation (NCC) (preferred for improved robustness)

• SIFT, SURF, or SuperPoint+SuperGlue: Alternatively, we can use more advanced
techniques such as SIFT, SURF, or SuperPoint+SuperGlue to extract both interest points
and their descriptors. In these cases, the similarity between interest points is calculated
using the Euclidean distance between the descriptor vectors(SuperPoint+SuperGlue gave
best results in this homework).

Step 2: Linear least square minimization to obtain the initial homography

Given a point X in a planar scene and its corresponding pixel X ′ in the image plane, for most
cameras, we can express the relationship between them as:

X ′ = HX

where both X and X ′ are expressed in homogeneous coordinates:

X =

x1
x2
x3

 , X ′ =

x′1
x′2
x′3


and H is the 3× 3 homography matrix, given by:

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33


Expanding the matrix multiplication for X ′ = HX, we obtain the following equations for the
components of X ′:

x′1 = h11x1 + h12x2 + h13x3
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x′2 = h21x1 + h22x2 + h23x3

x′3 = h31x1 + h32x2 + h33x3

Denoting the physical scene coordinates by (x, y) and the physical pixel coordinates by (x′, y′), we
have the following relationships:

x =
x1
x3

, y =
x2
x3

x′ =
x′1
x′3

, y′ =
x′2
x′3

Thus, we can express the physical coordinates of the image pixel as:

x′ =
h11x+ h12y + h13
h31x+ h32y + h33

y′ =
h21x+ h22y + h23
h31x+ h32y + h33

These expressions for the physical pixel coordinates can be rewritten in the homogeneous equation
form:

xh11 + yh12 + h13 − xx′h31 − yx′h32 − x′h33 = 0

xh21 + yh22 + h23 − xy′h31 − yy′h32 − y′h33 = 0

Converting this into a matrix format and in-homogeneous form with h33 = 1 with 1 point gives
below system of in-homogeneous equations:

[
x1 y1 1 0 0 0 −x1x′1 −y1x′1
0 0 0 x1 y1 1 −x1y′1 −y1y′1

]


h11
h12
h13
h21
h22
h23
h31
h32


=

(
x′1
y′1

)

This system can be represented in the general form as Ah = b, where A is a 2× 8 matrix of known
values based on the coordinates of the point (x1, y1) and the corresponding transformed point
(x′1, y

′
1), h is the vector of unknown homography parameters, and b is a 2 × 1 vector representing

the coordinates of the transformed point.

System of Equations for Multiple Correspondences

For N point correspondences (xi, yi) ↔ (x′i, y
′
i), where i = 1, 2, . . . , N , we can write a system of

equations for each correspondence (Xi, X
′
i), represented as Aih = bi for the i-th correspondence.

By stacking the equations for all N correspondences, we obtain a system of 2N inhomogeneous
equations that can be expressed as:
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Ah = b

where A is a 2N × 8 matrix of known values, b is a 2N × 1 vector of known values, and h is an
8× 1 vector of unknown homography parameters.

Solving the Overdetermined System

In general, for N ≥ 4, the system is overdetermined (i.e., more equations than unknowns), and we
solve it using the pseudo-inverse of A. The solution is given by:

h = (ATA)−1AT b

This provides the least-squares solution for the homography parameters, minimizing the error
between the projected and actual points in the target image.

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

Figure 1: Given Input Images

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

Figure 2: Collected Input Images
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Step 3: RANSAC Algorithm for Homography Estimation and outlier rejection(Pseudocode)

Algorithm 1: RANSAC for Homography Estimation

Input: Matched keypoints between two images, δ, ϵ, N , M
Output: Best homography matrix Hbest, list of inliers

Initialize:
Hbest ← None
best inliers← 0
best inliers list← None
ntotal ← number of matched keypoints
p← 0.99
n← minimum number of points to estimate homography
max iters← log(1−p)

log(1−(1−ϵ)n)

M ← (1− ϵ)× ntotal

max iters all← ntotal!
n!(ntotal−n)!

while iterations < max iters all do
Step 1: Randomly select n correspondences
Step 2: Compute homography matrix H from the selected points
Step 3: Compute inliers by calculating error for each correspondence
for each correspondence j do

Compute p1 ← (xj , yj , 1)
T

Compute p2 ← (x′j , y
′
j , 1)

T

error← ||p2 −H · p1||2
if error < δ then

Increment the inliers count
Add correspondence j to inliers list

end

end

if inliers count > M then
if inliers count > best inliers then

Update Hbest ← H
Update best inliers list← current inliers list

end
Break

end

end

Return: Hbest, best inliers list

In this implementation, the number of iterations exceeded the theoretical value log(1−p)
log(1−(1−ϵ)n) , as

the keypoints detected by SIFT contained a significant number of outliers, which prevented the
algorithm from finding the best homography matrix. In contrast, the iterations required for Super-
Point+SuperGlue were considerably fewer compared to SIFT. Additionally, the threshold δ used
for SuperPoint+SuperGlue (25) was smaller than that for SIFT (75) in order to achieve the desired
number of inliers. Once the best homography matrix Hbest and the corresponding list of inliers
were identified, the homography was refined using all the inliers found. The homography was then
further optimized using the ’lm’ from least squares method from scipy.optimize.
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Extracted correspondences using SuperPoint+SuperGlue between given input images

(a) Image 1 and 2 correspondences (b) Image 2 and 3 correspondences

Figure 3: Correspondences using SuperPoint+SuperGlue

Sets of outliers(red) and inliers(green) for given input images

(a) outliers-inliers for Image 1 and 2 (b) outliers-inliers for Image 2 and 3

Figure 4: outliers-inliers after applying RANSAC

Panoramic view obtained after stitching given input images

(a) Panoramic view after applying RANSAC

(b) Panoramic view after applying RANSAC and LM
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Extracted correspondences using SuperPoint+SuperGlue between collected input im-
ages

(a) Image 1 and 2 correspondences (b) Image 2 and 3 correspondences

Figure 6: Correspondences using SuperPoint+SuperGlue

Sets of outliers (red) and inliers (green) for collected input images

(a) outliers-inliers for Image 1 and 2 (b) outliers-inliers for Image 2 and 3

Figure 7: outliers-inliers after applying RANSAC

Panoramic view obtained after stitching collected input images

(a) Panoramic view after applying RANSAC

(b) Panoramic view after applying RANSAC and LM

Step 4: Extra Credit (Pseudocode)
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Algorithm 1: Levenberg-Marquardt for Homography Refinement

Input: Initial homography matrix H, set of inliers
Output: Refined homography matrix Hrefined

Initialize:
ϵ1, ϵ2, ϵ3 ← 10−15,max iterations← 100
ν ← 2, τ ← 0.5
h← H flattened into a 9D vector
iterations← 0

while iterations < max iterations do
Step 1: Compute residuals and Jacobian matrix J ← Jacobian(H, inliers)
Compute cost function e← cost function(h, inliers)
Step 2: Compute gradient and approximate Hessian
g ← −JT · e
A← JT · J
Step 3: Check for convergence based on gradient
if ||g||∞ < ϵ1 then

break
end
Step 4: Compute λ and update step
I ← identity matrix of size 9
λ← τ ×max(diag(A))
while True do

Solve for ∆h:
∆h← (A+ λ · I)−1 · g
if ||∆h|| ≤ ϵ2 · (||h||+ ϵ2) then

break
end
hnew ← h+∆h
enew ← cost function(hnew, inliers)
Compute ρ:

ρ← ||e||2−||enew||2
∆hT ·(λ·∆h+g)

if ρ > 0 then
h← hnew
λ← λ ·max

(
1
3 , 1− (2ρ− 1)3

)
ν ← 2
break

end
else

λ← λ · ν
ν ← 2 · ν

end

end
if ||e||2 ≤ ϵ3 then

break
end
iterations← iterations + 1

end
return hnew
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Images Inliers M Iterations Best Inliers

0 1 224 202 1086 208

1 2 318 286 5627 292

2 3 258 232 4012 251

3 4 128 115 4844 117

Table 1: Comparison of Inliers, Minimum Inliers to Accept(M), Iterations, and Best Inliers between Image Pairs

(a) Panoramic view after applying RANSAC and Own LM

Images RANSAC Cost Own LM Cost

0 1 2443 1128

1 2 1530 753

2 3 1776 871

3 4 846 390

Table 2: Comparison of RANSAC and LM Cost between given input Image Pairs

Images Inliers M Iterations Best Inliers

0 1 768 692 529 721

1 2 875 788 513 789

2 3 687 619 770 626

3 4 871 784 37 802

Table 3: Comparison of Inliers, Minimum Inliers to Accept(M), Iterations, and Best Inliers between Collected Pairs

(a) Panoramic view after applying RANSAC and Own LM



ECE 66100: Computer Vision Fall 2024 – Purdue University

Images RANSAC Cost Own LM Cost

0 1 56765 27667

1 2 47086 23287

2 3 78634 37355

3 4 58491 29108

Table 4: Comparison of RANSAC and LM Cost between collected input Image Pairs

Programming

1 import numpy as np

2 import cv2

3 import matplotlib.pyplot as plt

4 from skimage.feature import corner_harris , corner_peaks

5 from scipy.optimize import least_squares

6 import random

7 import os

8 import math

9

10 #SIFT to get the keypoints and descriptors

11 def sift_feature_matching(img1 , img2):

12 # Convert images to grayscale

13 gray1 = cv2.cvtColor(img1 , cv2.COLOR_BGR2GRAY)

14 gray2 = cv2.cvtColor(img2 , cv2.COLOR_BGR2GRAY)

15

16 # Initialize the SIFT detector

17 sift = cv2.SIFT_create ()

18

19 # Detect keypoints and compute descriptors for both images

20 keypoints1 , descriptors1 = sift.detectAndCompute(gray1 , None)

21 keypoints2 , descriptors2 = sift.detectAndCompute(gray2 , None)

22

23 # Use BFMatcher with default params (L2 norm , as it’s good for SIFT)

24 bf = cv2.BFMatcher ()

25

26 # Match descriptors using KNN (k=2 for ratio test)

27 matches = bf.knnMatch(descriptors1 , descriptors2 , k=2)

28

29 # Apply the ratio test to retain good matches (Lowe’s ratio test)

30 good_matches = []

31 for m, n in matches:

32 if m.distance < 0.75 * n.distance:

33 good_matches.append(m)

34

35 # Draw the matches

36 img_matches = cv2.drawMatches(img1 , keypoints1 , img2 , keypoints2 ,

good_matches , None , flags=cv2.

DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)

37

38 #save the output image

39

40 cv2.imwrite(’sift_sample.jpg’, img_matches)
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41 print("done!")

42

43 return img_matches , keypoints1 , keypoints2 , good_matches

44

45

46 #Code to find solution using Linear Least -Squares Ah = b

47 #How to construct A? Construct A from the correspondences

48

49 def homography_eq(p1 , p2):

50 A_eq = np.zeros ((2 ,8))

51 A_eq [0] = [p1[0], p1[1], 1, 0, 0, 0, -p1[0]*p2[0], -p1[1]*p2[0]]

52 A_eq [1] = [0, 0, 0, p1[0], p1[1], 1, -p1[0]*p2[1], -p1[1]*p2[1]]

53 return A_eq

54

55 #create a function to find the homography matrix H using the

matched_keypoints where the matched points can be more than 4

56 def find_homography(matched_keypoints):

57 A = []

58 b = []

59 for i in range(len(matched_keypoints)):

60 A.append(homography_eq(matched_keypoints[i][0], matched_keypoints[

i][1]))

61 b.append(matched_keypoints[i][1][0])

62 b.append(matched_keypoints[i][1][1])

63 A = np.array(A)

64 b = np.array(b)

65 #Change A to 2n x 8

66 A = A.reshape(-1, 8)

67 #Change b to column vector

68 b = b.reshape(-1, 1)

69 #Solve for h using pseudo -inverse

70 h = np.linalg.pinv(A) @ b

71 H = np.reshape(np.append(h,1) ,(3,3))

72 return H

73

74 #find_homography(matched_keypoints)

75

76 #Implement RANSAC to find the best homography matrix

77 #parameters are delta , epsilon , N(number of trails to conduct) and M(

Minimum number of inliers to accept a model)

78

79 def ransac_homography(matched_keypoints , delta= 12, epsilon= 0.1 , n= 20):

80 # Initialize the best homography matrix

81 best_H = None

82 best_inliers = 0

83 best_inliers_list = None

84

85 # Number of correspondences

86 n_total = len(matched_keypoints)

87 #print(" n_total:", n_total)

88

89 # Probability that atleast one of the max_iters will be free of

outliers is p

90 p = 0.99



ECE 66100: Computer Vision Fall 2024 – Purdue University

91

92 # The minimum set of correspondences used to estimate the homography

matrix be n

93

94 # The maximum number of trails to conduct

95 max_iters = int((np.log(1-p))/(np.log(1-(1- epsilon)**n)))

96 #max_iters = 30

97 #print(" max_iters :", max_iters)

98 # The minimum number of inliers to accept a model

99 M = int((1- epsilon)*n_total)

100 print("Minimum␣inliers␣to␣accept:", M)

101

102 max_iters_all = (math.factorial(n_total)/(math.factorial(n)*math.

factorial(n_total -n)))

103

104 # RANSAC

105 #for i in range(max_iters):

106 interations = 0

107 while interations < max_iters_all:

108 # Randomly select n correspondences

109 random_indices = random.sample(range(n_total), n)

110 #print(" random_indices :", random_indices)

111 random_points = [matched_keypoints[i] for i in random_indices]

112 #print(" random_points :", random_points)

113

114 # Compute the homography matrix

115 H = find_homography(random_points)

116

117 # Compute the inliers

118 inliers = 0

119 inliers_list = []

120 for j in range(n_total):

121 # Compute the error

122 p1 = np.append(matched_keypoints[j][0], 1)

123 p2 = np.append(matched_keypoints[j][1], 1)

124 error = np.linalg.norm(p2 - H @ p1)

125 #print ("error:", error)

126 # Check if the error is less than the delta

127 if error < delta:

128 inliers += 1

129 inliers_list.append(j)

130

131 # *************** check if the number of inliers are greater than

minimum set M ***************

132 if inliers > M:

133 if inliers > best_inliers:

134 best_inliers = inliers

135 best_inliers_list = inliers_list

136 print("interations:", interations)

137 break

138 else:

139 interations += 1

140 continue

141
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142

143 print("best_inliers:", best_inliers)

144 #print (" best_inliers_list :", best_inliers_list)

145

146 best_points = [matched_keypoints[i] for i in best_inliers_list]

147 best_H = find_homography(best_points)

148 #print (" best_H:", best_H)

149

150 return best_H , best_inliers_list

151

152 # Define the cost function (updated)

153 def cost_function(h, points):

154 h = np.reshape(h, (3, 3))

155 p1 = np.array([ point [0] + [1] for point in points ]) # Homogeneous

coordinates

156 p2 = np.array([ point [1] for point in points ]) # Actual 2D points

157

158 # Apply the homography transformation

159 f = (h @ p1.T).T

160 f = f[:, :2] / f[:, 2][:, np.newaxis] # Normalize homogeneous

coordinates to get (x, y)

161

162 # Compute error for both x and y coordinates (2N length)

163 error = (p2 - f).flatten () # Flatten to make it a 1D array of length

2N

164 return error

165

166 #Implement Jacobian from best_points and the homography matrix

167 def Jacobian(h, points):

168 h = np.reshape(h, (3, 3))

169 J = []

170 # Calculate the error without using a for loop

171 p1 = np.array([ point [0] + [1] for point in points ])

172 p2 = np.array([ point [1] + [1] for point in points ])

173 X = p2

174 f = (h @ p1.T).T

175 for i in range(len(points)):

176 x = p1[i][0]

177 y = p1[i][1]

178 J.append ([x, y, 1, 0, 0, 0, -x*f[i][0], -y*f[i][0], -f[i][0]])

179 J.append ([0, 0, 0, x, y, 1, -x*f[i][1], -y*f[i][1], -f[i][1]])

180 J = np.array(J)

181 return J

182

183 def Leven_Marqua(H, inliers):

184 epsilon1 = 1e-15

185 epsilon2 = 1e-15

186 epsilon3 = 1e-15

187 max_iterations = 100

188 nu = 2

189 tau = 0.5

190 h = H.flatten ()

191 iterations = 0

192 while iterations < max_iterations:
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193

194 # Calculate residuals and Jacobian

195 J = Jacobian(H, inliers)

196 error = cost_function(h, inliers)

197

198 # Calculate gradient and approximate Hessian

199 g = J.T @ error

200 A = J.T @ J

201

202 # Check for convergence

203 if np.linalg.norm(g, ord=np.inf) < epsilon1:

204 break

205

206 # Compute lambda and update step

207 I = np.eye(9)

208 lambda_ = tau * np.max(np.diag(A))

209

210 while True:

211 # Solve the augmented normal equations

212 delta_h = np.linalg.solve(A + lambda_ * I, g)

213

214 if np.linalg.norm(delta_h) <= epsilon2 * (np.linalg.norm(h) +

epsilon2):

215 break

216

217 h_new = h + delta_h

218 error_new = cost_function(h_new , inliers)

219

220 rho = (np.linalg.norm(error)**2 - np.linalg.norm(error_new)

**2) / (delta_h.T @ (lambda_ * delta_h + g))

221

222 if rho > 0:

223 h = h_new

224 lambda_ *= max(1/3, 1 - (2* rho - 1)**3)

225 nu = 2

226 break

227 else:

228 lambda_ *= nu

229 nu *= 2

230

231 if np.linalg.norm(error)**2 <= epsilon3:

232 break

233

234 iterations += 1

235

236 return h_new

237

238 # Write code to read cosequtive images of form 1.jpg , 2.jpg ,...,n.jpg

239 # Extract the keypoints and descriptors for each pair of images using SIFT

function sift_feature_matching above

240 # Use the matched_keypoints to find the homography matrix using

ransac_homography function

241 # Refine the homography using levenberg -marquardt optimization

242 #project all the views onto common reference frame (middle image) using
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the homography matrix

243

244 # Read the images

245 images = []

246 for i in range(1, 6):

247 img = cv2.imread(f’pics/{i}.jpg’)

248 images.append(img)

249

250 # Initialize the feature extractor

251 feature_extractor = "sift"

252 #feature_extractor = "SuperPoint_SuperGlue"

253

254 Homographies = []

255 ransac_error_list = []

256 error_list = []

257 Leven_Marqua_error_list = []

258 for i in range(len(images) -1):

259 print("images:", i , i+1)

260 img1 = images[i]

261 img2 = images[i+1]

262 if feature_extractor == "sift":

263 img_matches , keypoints1 , keypoints2 , good_matches =

sift_feature_matching(img1 , img2)

264

265 # Extract the good_matches for each pair of images

266 good_matches_list = []

267 # Initialize the list of points

268 matched_keypoints = []

269 for match in good_matches:

270 # Get the matching keypoints for each of the images

271 img1_idx = match.queryIdx

272 img2_idx = match.trainIdx

273

274 # x - columns

275 # y - rows

276 (x1, y1) = keypoints1[img1_idx ].pt

277 (x2, y2) = keypoints2[img2_idx ].pt

278

279 matched_keypoints.append ([[x1, y1], [x2, y2]])

280 if feature_extractor == "SuperPoint_SuperGlue":

281 #Write code to read matched_keypoints from .npy file for

SuperPoint+SuperGlue

282 matched_keypoints_np = np.load(f’pics/{i+1} _and_{i+2}

_matched_points.npy’, allow_pickle=True)

283 print(matched_keypoints_np.size)

284

285 #edit matched_keypoints_np to match the format of

matched_keypoints

286 # Initialize the list of points

287 matched_keypoints = []

288 for match in matched_keypoints_np:

289 # Get the matching keypoints for each of the images

290 x1, y1 = match [0]

291 x2, y2 = match [1]
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292

293 matched_keypoints.append ([[x1, y1], [x2, y2]])

294

295 #Apply RANSAC to find the best homography matrix

296 best_H , best_inliers_list = ransac_homography(matched_keypoints ,

delta= 25, epsilon= 0.1 , n= 8)

297

298 best_inliers = [matched_keypoints[i] for i in best_inliers_list]

299 outliers = [matched_keypoints[i] for i in range(len(

matched_keypoints)) if i not in best_inliers_list]

300

301 #Draw the lines connecting inliers as green and outliers as red in

the same image

302 img_matches = np.concatenate ((img1 , img2), axis =1)

303 for inlier in best_inliers:

304 cv2.line(img_matches , (int(inlier [0][0]) , int(inlier [0][1])), (int

(inlier [1][0] + img1.shape [1]), int(inlier [1][1])), (0, 255, 0)

, 1)

305 for outlier in outliers:

306 cv2.line(img_matches , (int(outlier [0][0]) , int(outlier [0][1])), (

int(outlier [1][0] + img1.shape [1]), int(outlier [1][1])), (0, 0,

255), 1)

307 cv2.imwrite(f’pics/{i}_and_{i+1} _ransac.jpg’, img_matches)

308

309 #RANSAC error

310 error = cost_function(best_H.flatten () , best_inliers)

311 #print ("error: ", error)

312 ransac_error = np.sum(error **2)

313 #print (" ransac_error: ",np.sum(error)/len(error))

314 ransac_error_list.append(ransac_error)

315 #Refine the homography using levenberg -marquardt optimization

316 res = least_squares(cost_function , best_H.flatten (), method= ’lm’,

args=( best_inliers ,))

317 H = np.reshape(res.x, (3, 3))

318 Homographies.append(H)

319 #print ("H:", H)

320 #print (" lm_error:", res.cost)

321 error_list.append(res.cost)

322 #Use defined LavMer

323 Leven_Marqua_H = Leven_Marqua(best_H , best_inliers)

324 Leven_Marqua_error = cost_function(Leven_Marqua_H , best_inliers)

325 Leven_Marqua_error_list.append(np.sum(Leven_Marqua_error **2))

326

327 print("error_list:", error_list)

328 print("ransac_error_list:", ransac_error_list)

329 print("Leven_Marqua_error_list:", Leven_Marqua_error_list)

330

331

332

333

334 # Calculate the index of the middle image

335 middle_image_index = len(images)//2

336

337 # Initialize an identity matrix to accumulate transformations for images
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after the middle image

338 transform_to_middle = np.eye(3)

339

340 # Loop through homographies of images after the middle image

341 # The goal is to adjust these homographies to the middle image ’s reference

frame

342 for i in range(middle_image_index , len(Homographies)):

343 # Get the homography matrix

344 H = Homographies[i]

345 # Compute the transformation to the middle image ’s reference frame

346 transform_to_middle = transform_to_middle @ np.linalg.inv(H)

347 Homographies[i] = transform_to_middle

348

349 # Initialize an identity matrix to accumulate transformations for images

before the middle image

350 transform_to_middle = np.eye(3)

351

352 # Loop through homographies of images before the middle image

353 # The goal is to adjust these homographies to the middle image ’s reference

frame

354 for i in range(middle_image_index -1, -1, -1):

355 # Get the homography matrix

356 H = Homographies[i]

357 # Compute the transformation to the middle image ’s reference frame

358 transform_to_middle = transform_to_middle @ H

359 Homographies[i] = transform_to_middle

360

361 # Insert an identity matrix at the index of the middle image , as it doesn ’

t need any transformation

362 # The middle image is the reference frame , so its homography is the

identity matrix

363 Homographies = np.insert(Homographies , middle_image_index , np.eye (3), axis

=0)

364 print("Homographies:", Homographies.shape)

365

366 # Now , all homographies are adjusted relative to the middle image ,

ensuring all images are aligned to a common reference frame

367 #define a function to find the max and min of the transformed image

368 def maxmin(h, w, H):

369 # Define the four corners of the image

370 corners = np.array ([[0, 0, 1], [w, 0, 1], [0, h, 1], [w, h, 1]])

371

372 # Apply the homography matrix to the corners

373 transformed_corners = H @ corners.T

374

375 # Normalize the transformed corners

376 transformed_corners = transformed_corners / transformed_corners [-1]

377

378 # Find the maximum and minimum x and y coordinates

379 max_x = np.max(transformed_corners [0])

380 min_x = np.min(transformed_corners [0])

381 max_y = np.max(transformed_corners [1])

382 min_y = np.min(transformed_corners [1])

383
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384 return max_x , min_x , max_y , min_y

385

386 #define a create_pano(panorama_image , image , homography_matrix) function

to create the panorama image

387 def create_pano(curr_img , new_img , H):

388 # Get dimensions of the current and new images

389 h_curr , w_curr , _ = curr_img.shape

390 h_new , w_new , _ = new_img.shape

391

392 # Invert the homography matrix

393 H_inv = np.linalg.inv(H)

394

395 # Create grid of pixel coordinates (x, y) for the current image

396 x_coords , y_coords = np.meshgrid(np.arange(w_curr), np.arange(h_curr))

397 # Flatten the grids and create homogeneous coordinates (x, y, 1)

398 homogeneous_coords = np.stack ([ x_coords.ravel (), y_coords.ravel (), np.

ones_like(x_coords).ravel ()], axis =1)

399

400 # Apply the inverse homography transformation to the pixel coordinates

401 transformed_coords = H_inv @ homogeneous_coords.T

402 transformed_coords /= transformed_coords [2, :] # Normalize by the

last row

403

404 # Extract the transformed x and y coordinates

405 x_transformed = transformed_coords [0, :]. astype(int)

406 y_transformed = transformed_coords [1, :]. astype(int)

407

408 # Filter out points that are outside the bounds of the new image

409 valid_idx = (x_transformed >= 0) & (x_transformed < w_new) & (

y_transformed >= 0) & (y_transformed < h_new)

410

411 # Get the valid pixel locations in both the current and new images

412 x_curr_valid = homogeneous_coords[valid_idx , 0]. astype(int)

413 y_curr_valid = homogeneous_coords[valid_idx , 1]. astype(int)

414 x_new_valid = x_transformed[valid_idx]

415 y_new_valid = y_transformed[valid_idx]

416

417 # Map the valid pixels from new_img to curr_img

418 curr_img[y_curr_valid , x_curr_valid] = new_img[y_new_valid ,

x_new_valid]

419

420 return curr_img

421

422

423

424 # Initialize translation parameters to calculate total width and height

offsets for images

425 total_translation_x = 0

426 total_translation_y = 0

427

428 for i in range(len(images)//2):

429 image = images[i]

430 total_translation_y += image.shape [0] # Accumulate height for

vertical alignment
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431 total_translation_x += image.shape [1] # Accumulate width for

horizontal alignment

432 print("total_translation_x:", total_translation_x)

433 print("total_translation_y:", total_translation_y)

434

435 # Initial transformation matrix set as an identity matrix with x-

translation offset

436 initial_homography = np.eye(3)

437 #print (" initial_homography :", initial_homography)

438 initial_homography [0, 2] = total_translation_x # Apply translation in x

direction

439 #print (" initial_homography :", initial_homography)

440

441

442 # Calculate the final dimensions of the combined panorama image

443 final_height = 0

444 final_width = 0

445 for idx in range(len(images)):

446 image = images[idx]

447 h, w, _ = image.shape

448 # Get the max and min of the transformed image

449 max_x , min_x , max_y , min_y = maxmin(h, w, Homographies[idx])

450 # Update the final height and width

451 final_height = max(final_height , int(np.ceil(max_y) - np.floor(min_y))

)

452 final_width += w

453 print("final_height:", final_height)

454 print("final_width:", final_width)

455

456 panorama_image = np.zeros((int(final_height), int(final_width), 3), dtype=

np.uint8)

457 #print (" panorama_image :", panorama_image.shape)

458 # Apply transformations to each image and blend them onto the blank canvas

459 for idx in range(len(images)):

460 image = images[idx]

461

462 # Compute the final homography matrix by combining translation and

homography for the image

463 homography_matrix = initial_homography @ Homographies[idx]

464 #print (" homography_matrix :", homography_matrix)

465 print("panorama_image:", panorama_image.shape)

466 # ‘create_panorama ()‘ is a custom function that handles warping and

blending of images using the homography

467 panorama_image = create_pano(panorama_image , image , homography_matrix)

468

469 # Convert the final panorama to RGB format (from BGR) for correct color

representation

470 final_panorama_rgb = cv2.cvtColor(panorama_image , cv2.COLOR_BGR2RGB)

471

472 # Write the final stitched panorama image

473 cv2.imwrite(’panorama.jpg’, final_panorama_rgb)

Listing 1: Python Code


