
ECE 661 - Computer Vision
Homework 5

Arnav Singh

Contents
1 Theory Questions 2

1.1 Question 1 . 2
1.2 Question 2 . 2

2 Panoramic Stitches or Image Mosaics 3
2.1 Overall Pipeline . 3
2.2 Mathematical Background and Python Implementation . 3

2.2.1 Linear Least-Squares Minimization (using SVD) . 3
2.2.2 RANdom SAmpling Consensus (RANSAC) . 4
2.2.3 Nonlinear Least-Squares Minimization (using LM) . 7
2.2.4 Panoramic Stitching . 9

3 Programming Task - 1 12
3.1 Input Images . 12
3.2 Correspondences - Inliers and Outliers . 13
3.3 Panoramic stitching . 14

4 Programming Task - 2 17
4.1 Input Images . 17
4.2 Correspondences - Inliers and Outliers . 18
4.3 Panoramic Stitching . 19

5 Extra Credit - LM algorithm implementation 22

6 Source Code 23
6.1 main.py . 23
6.2 homography_estimation.py . 24
6.3 LM_optim.py . 30
6.4 panorama.py . 32
6.5 superglue_wrapper.py . 36

1

1 Theory Questions
1.1 Question 1
Conceptually speaking, how do we differentiate between the inliers and the outliers when using the RANSAC for
solving the homography estimation problem using the interest points extracted from two different photos of the
same scene?

In each trial of the RANSAC algorithm, after we have randomly chosen n correspondences, we calculate the
Linear Least-Squares (LLS) estimate of the homography H. Based on this homography H we find what is
called the re-projection error for both the domain and range points. A correspondence is an inlier (outlier) if
the re-projection error was less than or equal to (greater than) a certain user-defined threshold δ.

Let the ith correspondence be (xi, x′
i) and H be the LLS estimate of this particular trial.

The estimate of the range point would be
x̂′

i = Hxi.

And the corresponding estimate of the domain point would be

x̂i = H−1x′
i.

The overall re-projection or geometric error associated with this correspondence is (after converting them from
HC to physical coordinates)

di = 1
2

√
||xi − x̂i||2 + ||x′

i − x̂′
i||2.

The factor of 1/2 is a matter of convention, since we are considering errors on both domain and range planes.

The threshold δ is calculated based on the expected deviation of the locations of the keypoints in the scene. If
we consider the accuracy of finding the exact location of the keypoint at (x, y) has a Gaussian behaviour, i.e.,
maximum at (x, y) and falls away with standard deviation σ at the point (x + ∆x, y + ∆y), we are interested
in the distribution of d2 = (∆x)2 + (∆y)2. We find that it has a χ2 distribution with 2 d.o.f. The threshold δ
is chosen so that 90% of the inliers are accepted. Based on c.d.f. tables of χ2 distribution, we arrive at δ = 3σ.

1.2 Question 2
The Gradient-Descent (GD) is a reliable method for minimizing a cost function, but it can be excruciatingly
slow. At the other extreme, we have the much faster Gauss-Newton (GN) method but it can be numerically
unstable. Explain in your words how the Levenberg-Marquardt (LM) algorithm combines the best of GD and GN
to give us a method that is reasonably fast and is numerically stable at the same time.

The Levenberg-Marquardt (LM) algorithm uses a damping coefficient µ which dictates if we take a Gradient
Descent (GD) step or a Gauss-Newton (GN) step. At the kth iteration, the “update” term δp is the solution of
the following linear equation:

(J⊤
f Jf + µI)δp = J⊤

f ϵ(pk)

where, Jf is the Jacobian of the vector predictor function f(pk), I is the Identity matrix, and ϵ(pk) is the
prediction residual at the kth iteration.
If the value of µ is much larger compared to the diagonal of J⊤

f Jf , the solution of the “update” term is closer
to GD. Similarly, if µ = 0, the we get the GN solution.
We know that the GD algorithm is numerically stable but is slow to convergence because the gradient approaches
0 near the minimum of the cost function. The “update” term becomes smaller and smaller. On the the other
hand, GN can reach the solution within minimal number of iterations, but is highly unstable because in most
cases, the Jacobian matrices are not full rank and it gets difficult to find its pseudo-inverse.
In the LM algorithm, we start with a high value of µ to exploit the numerical stability of the GD algorithm. At
each iteration, we perform a check to see if we are close enough to take the GN jump to the minima. The value
of µ in each iteration is updated based on the ratio of the actual change in the cost function to the predicted
value of the change in the cost function based on the current choice of µ.

2

2 Panoramic Stitches or Image Mosaics
2.1 Overall Pipeline
The overall pipeline to create a panorama of a given set of images is -

1. For every consecutive pairs of images, automatically estimate the homography by -

(a) Using an interest point detector and matcher like SIFT or SuperPoint+SuperGlue to find correspon-
dences between the two images.

(b) Using an outlier ejection algorithm like RANSAC to differentiate between the noisy (inliers) and false
(outliers) correspondences.

(c) Using Linear Least-Squares minimization to find the homography based on the inliers that have the
best inlier support.

(d) Using Nonlinear Least-Squares minimization to refine the homography.

2. Calculate the homography w.r.t to the reference image (will be placed at the center of the canvas).

3. From left to right, apply the homographies to the image and place it on the canvas.

2.2 Mathematical Background and Python Implementation
2.2.1 Linear Least-Squares Minimization (using SVD)

Given a set of K point-to-point correspondences (x, x′), we can find the Linear Least-Squares (LLS) estimate
of the homography H using two methods. One of those methods involves using a homogeneous set of equations
followed by a Singular Value Decomposition (SVD).
For a correspondence, using homogeneous coordinates representation, we can say that the rows of H denoted
by (h1, h2, h3) satisfy

0⊤h1−w′x⊤h2+y′x⊤h3=0
w′x⊤h1 +0⊤h2−x′x⊤h3=0

Collecting all the equations using the K correspondences gives us

Ah = 0

where,

A =



0 0 0 −w′
1x1 −w′

1y1 −w′
1w1 y′

1x1 y′
1y1 y′

1w1
w′

1x1 w′
1y1 w′

1w1 0 0 0 −x′
1x1 −x′

1y1 −x′
1w1

...

0 0 0 −w′
KxK −w′

KyK −w′
KwK y′

KxK y′
KyK y′

KwK

w′
KxK w′

KyK w′
KwK 0 0 0 −x′

KxK −x′
KyK −x′

KwK


h =

[
h11 h12 h13 h21 h22 h23 h31 h32 h33

]⊤

The matrix A is of dimension 2K × 9 and therefore, we have 2K equations. Here, 2K far exceeds the number
of variables (9) and thus is an over-determined system of equations. Often, this system of equations does not
have a solution.
To obtain a solution is this very scenario, we apply an constrained minimization of ||Ah||, subject to the
constraint ||h|| = 1.
The way to solve this constrained minimization problem is by using SVD. The value of h that satisfies this
constraint is the vector associated with smallest singular value.

3

1 def H_p_to_p (pts1:np.ndarray , pts2:np. ndarray):
2

3 """
4 Function to estimate Linear Least Squares fit of the homography matrix H such that pts2 =

H * pts1.
5

6 Args:
7 pts1 (np. ndarray): Set of points on domain plane . Must be in homogeneous coordinates .
8 pts2 (np. ndarray): Set of matching points on range plane . Must be in homogeneous

coordinates .
9

10 Returns :
11 np. ndarray : Homography matrix such that pts2 = H * pts1
12 """
13

14 assert len(pts1) == len(pts2)
15

16 assert len(pts1) >= 4
17

18 A = []
19

20 for (x, y, w), (xp , yp , wp) in zip(pts1 , pts2):
21 A. append ([0 , 0, 0, -wp*x, -wp*y, -wp*w, yp*x, yp*y, yp*w])
22 A. append ([wp*x, wp*y, wp*w, 0, 0, 0, -xp*x, -xp*y, -xp*w])
23

24 A = np. array (A)
25 _, _, vt = np. linalg .svd(A)
26

27 h = vt.T[:, -1]
28

29 H = np. reshape (h, (3, 3))
30

31 H /= H[2, 2] + eps
32

33 return H

Listing 1: Python implementation to find the LLS estimate of the homography H.

2.2.2 RANdom SAmpling Consensus (RANSAC)

Once we obtain a set of correspondences, we must be able to remove any false correspondences or outliers to
get a correct estimate of the homography H. A single outlier can give incorrect results of H. One method to
remove the outliers is using the RANSAC algorithm, it returns a set of inliers that has the maximum inlier
support.
In a trial, we consider a set of n (typically 4 < n < 10) correspondences to calculate the LLS estimate of
the homography. Then we calculate the re-projection error both in the domain points and range points and
threshold it by δ = 3σ. Correspondences that have re-projection error less than or equal to the threshold are
considered as the inliers and once with re-projection error greater than the threshold are considered as outliers.
This was further discussed in the answer of the theory question. We conduct N trials that is determined using
an adaptive algorithm based on the outlier probability (ϵ) and based on the probability that at least one of
those trials only contain inliers (p).

Algorithm 1 Adaptive algorithm to determine the number of RANSAC samples
N ←∞
sample_count← 0
e← 1
while (N > sample_count) do

sample_count← sample_count + 1
Choose a sample of n correspondences and count the number of inliers
ϵ← 1− n_inliers

n_total

N ← log (1− p)
log (1− (1− ϵ)n)

end while

4

Algorithm 2 RANSAC(domain points x. range points x′, σ, p, n)
n_total← (len(pts1))
δ ← 3σ
ϵ← 1
N ←∞
sample_count← 0
inliers, outliers, len_inliers← []
while N > sample_count do

sample_count← sample_count + 1
randomly select n correspondences
H ← LLS estimate of the homography H ▷ Using SVD discussed previously
sample_inliers, sample_outliers← []
len_sample_inliers← 0
for (ith correspondence (xi, x′

i)) do
x̂′

i ← Hxi

x̂i ← H−1x′
i

di ←
1
2

√
||xi − x̂i||22 + ||x′

i − x̂′
i||22 ▷ Re-projection error

if di ≤ δ then
add (xi, x′

i) to sample_inliers
len_sample_inliers← len_sample_inliers + 1

else
add (xi, x′

i) to sample_outliers
end if

end for
ϵ← 1− len_sample_inliers

n_total

N ← log (1− p)
log (1− (1− ϵ)n)

add sample_inliers to inliers
add sample_outliers to outliers
add len_sample_inliers to len_inliers

end while
largest_set← arg max(len_inliers)
best_inliers← inliers[largest_set]
best_ouliers← outliers[largest_set]
return best_inliers, best_outliers

1 def RANSAC (pts1:np.ndarray , pts2:np.ndarray , sigma :float , p:float , n:int , e: float =None):
2

3 """
4 Function to apply the RANSAC algorithm to find inliers and outliers of matching set of

points pts1 and pts2.
5

6 Args:
7 pts1 (np. ndarray): Set of points on domain plane . Must be in regular coordinates .
8 pts2 (np. ndarray): Set of matching points on range plane . Must be in regular

coordinates .
9 sigma (float): Estimate of noise induced on the noisy matches .

10 p (float): Probability that atleast 1 trial will be free of outliers . ‘‘0 <= p <= 1‘‘
11 n (int): Number of correspondences used to find the LLS estimate of homography H. ‘‘4

< n < 10‘‘
12 e (float , optional): Probability that chosen correspondence is an outlier . Defaults to

‘‘None ‘‘ as it is adaptively calculated . ‘‘0 <= e <= 1‘‘
13

14 Returns :
15 (np.ndarray , np. ndarray): Tuple consisting of the inliers and outliers with the

maximum inlier support . Each row is a correspondence in the order (domain .x, domain .y,
range .x, range .y)

16 """
17

18 assert len(pts1) == len(pts2)
19

20 n_total = len(pts1)
21

5

22 if (p < 0) or (p > 1):
23 raise ValueError (f" Invalid value of p={p}. ‘p‘ must be within [0, 1].")
24

25 if (n < 4) or (n > 10):
26 raise ValueError (f" Invalid value of n={n}. ‘n‘ must be within (4, 10).")
27

28 if e is None:
29 e = 1
30 else:
31 if (e < 0) or (e > 1):
32 raise ValueError (f" Invalid value of e={e}. ‘e‘ must be within [0, 1].")
33

34 correspondences = np. hstack ((pts1 , pts2))
35

36 delta = 3 * sigma
37

38 N = np.inf
39 sample_count = 0
40

41 M = np. floor ((1 - e) * n_total). astype (np. int32)
42

43 pts1_hc = np. hstack ((pts1 , np.ones ((n_total , 1))))
44 pts2_hc = np. hstack ((pts2 , np.ones ((n_total , 1))))
45

46 outliers = []
47 inliers = []
48 len_inliers = []
49

50 while (N > sample_count):
51 sample_count += 1
52 sample_idx = np. random . permutation (np. arange (n_total))[:n]
53

54 pts1_selected = pts1_hc [sample_idx]
55 pts2_selected = pts2_hc [sample_idx]
56

57 H = H_p_to_p (pts1_selected , pts2_selected)
58

59 pts1_estimate = np. linalg .inv(H) @ pts2_hc .T
60 pts1_estimate /= pts1_estimate [2] + eps
61 pts1_estimate = pts1_estimate .T
62 dist1 = np.sum(np. power (pts1_estimate [:, :2] - pts1 , 2) , 1)
63

64 pts2_estimate = H @ pts1_hc .T
65 pts2_estimate /= pts2_estimate [2] + eps
66 pts2_estimate = pts2_estimate .T
67 dist2 = np.sum(np. power (pts2_estimate [:, :2] - pts2 , 2) , 1)
68

69 dists = np.sqrt(dist1 + dist2) / 2
70

71 inlier_idx = np. where (dists <= delta)[0]
72 outlier_idx = np. where (dists > delta)[0]
73

74 inlier = correspondences [inlier_idx , :]
75 outlier = correspondences [outlier_idx , :]
76

77 e = 1 - len(inlier)/ n_total
78 N = np.log (1-p) / (np.log (1 -(1 -e)**n))
79 M = np. floor ((1 - e) * n_total). astype (np. int32)
80

81 inliers . append (inlier)
82 outliers . append (outlier)
83 len_inliers . append (len(inlier))
84

85 largest_set_idx = np. argmax (len_inliers)
86 if len_inliers [largest_set_idx] < M:
87 warnings .warn(f" Largest inlier set size = { len_inliers [largest_set_idx]} < {M}. Relax

constraints by changing params ")
88

89 best_inliers = np. array (inliers [largest_set_idx])
90 best_outliers = np. array (outliers [largest_set_idx])
91

92 return (best_inliers , best_outliers)

Listing 2: Python implementation of the RANSAC algorithm.

6

2.2.3 Nonlinear Least-Squares Minimization (using LM)

Once we obtain a LLS estimate of the homography H, we must refine it using Nonlinear Least-Squares (NLLS)
to get a better estimate of H between two scenes. A common NLLS strategy used is Levenberg-Marquardt
(LM) algorithm. It combines the numerical stability of Gradient Descent (GD) and the speed of Gauss-Newton
(GN). The following pseudo-code is from here. The maximum number of iterations and other tolerance levels
(ε1, ε2, ε3) are user inputs. The scaling factor τ for the damping coefficient µ is also an user input. The Jacobian
is calculated using finite differences.

Algorithm 3 LM(Vector prediction function f , measurement vector x, Initial guess p0)
n_iter ← 0
ν ← 2
p← p0
A← J⊤

f Jf

ϵp ← x− f(p)
g ← J⊤

f ϵp

stop← ||g||∞ ≤ ε1
µ← τ ×maxi=1,...,m(Aii)
while (not stop) and (n_iter < max_iter) do

n_iter ← n_iter + 1
Solve (A + µI)δp = g
if ||δp||2 ≤ ε2||p||2 then

stop← True
else

pnew ← p + δp

ρ← (||ϵp||22 − ||x− f(p)||22)
δ⊤

p (µδp + g)
if ρ > 0 then

p← pnew

A← J⊤
f Jf

ϵp ← x− f(p)
g ← J⊤

f ϵp

stop← (||g||∞ ≤ ε1) or (||ϵp||22 ≤ ε3)
µ← µ×max

(
1/3, 1− (2ρ− 1)3)

ν ← 2
else

µ← µν
ν ← 2ν

end if
end if

end while
return p

1 def LM_optim (fun:callable , x0:np.ndarray , tau:float =1e-3, eps1:float =1e -15 , eps2:float =1e -15 ,
eps3: float =1e -15 , max_iter :int =100 , args =() , kwargs ={}):

2

3 """
4 Function to implement Levenberg - Marquardt optimization algorithm . Implementation follows

pseudocode in https :// users .ics. forth .gr /~ lourakis / levmar / levmar .pdf.
5 Jacobian is estimated using a 2-pt finite difference method .
6

7 Args:
8 fun (callable): Callable function which computes the residuals . Function signature and

usage : ‘‘fun(x, *args , ** kwargs) ‘‘. Minimization proceeds w.r.t first argument .
9 x0 (np. ndarray): Initial guess for the independent variables .

10 tau (float): Scaling factor for the damping parameter mu. ‘‘0 < tau <= 1‘‘. Defaults
to ‘‘1e-3‘‘.

11 eps1 (float): Termination threshold for the inf -norm of the gradient . Termination
condition : ‘‘norm(grad , inf) <= eps1 ‘‘. Defaults to ‘‘1e -15 ‘ ‘.

12 eps2 (float): Relative termination threshold for delta . Termination condition : ‘‘norm(
delta) <= eps2 * norm(x) ‘‘. Defaults to ‘‘1e -15 ‘ ‘.

13 eps3 (float): Termination threshold for the square of the norm of residuals . ‘‘norm(
fun(x))**2 <= eps3 ‘‘. Defaults to ‘‘1e -15 ‘ ‘.

14 max_iter (int): Maximum number of iterations .
15

7

https://users.ics.forth.gr/~lourakis/levmar/levmar.pdf

16 Returns :
17 solution (OptimizeSolution): The solution to the optimization problem . ‘‘

OptimizeSolution ‘‘ has the following fields -
18 1. x (np. ndarray): Solution to the optimization problem .
19 2. errors (list): Values of the cost function (C) at every iteration . C = norm(fun(x,

*args , ** kwargs), 2) ^2
20 3. mu (float): Final value fo the damping parameter used in the algorithm .
21 4. jac (np. ndarray): Value of the Jacobian at the end of optimization .
22 5. hess (np. ndarray): Value of the Hessian at the end of optimization .
23 6. n_iter (int): Number of iteration taken to reach termination conditions .
24 """
25

26 print (" ---------------------------- Starting LM optimization ...
---------------------------- \n")

27

28 m = len(x0)
29 errors = []
30

31 n_iter = 0
32 nu = 2
33 x = x0
34

35 residual = fun(x, *args , ** kwargs)
36

37 jac = -approx_fprime (x, fun , 1e-8, *args) # ’-’ sign because taking jacobian of residual
vector .

38

39 hess = jac.T @ jac
40 grad = jac.T @ residual
41

42 stop = (norm(grad , np.inf) <= eps1)
43 mu = tau * np.max(np.diag(hess))
44

45 while (not stop) and (n_iter < max_iter):
46 n_iter += 1
47 errors . append (norm(residual , 2) **2)
48

49 delta = solve (hess + mu*np.eye(m), grad)
50

51 if (norm(delta , 2) <= eps2*norm(x, 2)):
52 stop = True
53

54 else:
55 x_new = x + delta
56 rho = (norm(residual , 2) **2 - norm(fun(x_new , *args , ** kwargs), 2) **2) / (delta .T

@ (mu* delta + grad))
57

58 if rho > 0:
59 x = x_new
60

61 residual = fun(x, *args , ** kwargs)
62 jac = -approx_fprime (x, fun , 1e-8, *args)
63

64 hess = jac.T @ jac
65 grad = jac.T @ residual
66

67 stop = (norm(grad , np.inf) <= eps1) or (norm(residual , 2) **2 <= eps3)
68 mu *= max (1/3 , 1 -(2* rho - 1) **3)
69 nu = 2
70

71 else:
72 mu *= nu
73 nu *= 2
74 else:
75 if stop:
76 print (f" Stopped on reaching termination conditions in { n_iter } iteration (s). \n")
77 print ("

---")
78 else:
79 print (" Stopped on reaching maximum iteration (s). \n")
80 print ("

---")
81

82 class OptimizeSolution :
83 def __init__ (self):
84 self.x = None

8

85 self. errors = None
86 self.mu = None
87 self.jac = None
88 self.hess = None
89 self. n_iter = None
90

91 def set_solution (self , x, errors , mu , jac , hess , n_iter):
92 self.x = x
93 self. errors = errors
94 self.mu = mu
95 self.jac = jac
96 self.hess = hess
97 self. n_iter = n_iter
98

99

100 solution = OptimizeSolution ()
101 solution . set_solution (x, errors , mu , jac , hess , n_iter)
102

103 return solution

Listing 3: Python implementation of Levenberg-Marquardt optimization algorithm.

2.2.4 Panoramic Stitching

To be able to place all projections on a single canvas to create a panorama, we must first decide a reference
image with respect to whom we will find the homography H. We will choose the middle image as the reference
that is placed at the center of the canvas. In case of odd number of images, the middle is well defined. But if
there were even number of images, we can just choose the middle be (M

2 − 1).
Now we must calculate the homography with respect to this reference image.
Let Hi→j represent the homography that takes domain plane i to range plane j. Therefore,

Hj→i = H−1
i→j

In our case, i and j are the indices of the images. I will demonstrate this for the case of 5 images. The reference
index would be 3. We can find H1→2, H2→3, H3→4, H4→5 using the automatic homography estimation pipeline
discussed previously. We must find Hi→3 for all i.

H1→3 = H1→2 ×H2→3

H2→3 = H2→3

H3→3 = I

H4→3 = H−1
3→4

H5→3 = H5→4 ×H4→3 = H−1
4→5 ×H−1

3→4

Once we have this we must find out the size of canvas which will help us to place the reference image in the
middle of the canvas. I found this by projecting the corners of the ith image using Hi→3 and

Height of canvas = max(height of projected image using the corners)

Width of canvas =
∑

(width of image)

Of course, there will be some overlap between the projected images. This will be taken care by trimming away
all the zeros along the borders after all images are placed on the canvas.
To place the reference image at the center of the canvas, we define

tx = Width of canvas - Width of reference image
2

ty = Height of canvas - Height of reference image
2

and

Htranslation =

1 0 tx

0 1 ty

0 0 1

 .

Now we must multiply every Hi→3 by this translation homography to obtain the final homography that needs
to be applied to the ith image.

9

The homography can be applied using two interpolation strategies - nearest neighbors and bi-linear interpolation.
Bi-linear interpolation gives us a better quality of image because it interpolates for a pixel at (x, y) using all
four of its nearest neighbors. The nearest neighbor interpolation just picks the pixel value at (⌊x⌋, ⌊y⌋) as the
value of the pixel at (x, y).

1 def generate_pano (image_filenames :list , matcher :str=" SP_SG ", optimizer :str=" scipy_lm ", interp :
str=" bilinear "):

2

3 """
4 Function to create a panorama given a set of images . The middle image is placed at the

center of the canvas and then homographies are found relative to the middle image .
5

6 Args:
7 image_filenames (list): List that contains the paths to all images to create a

panorama .
8 matcher (str): Select which feature detection and matching algorithm to use. If ‘‘

matcher ‘‘ is "sift", correspondence are found using Scale - Invariant Feature Transform (
SIFT) algorithm . If ‘‘matcher ‘‘ is " SP_SG ", correspondence are found using SuperPoint +
SuperGlue deep learning pre - trained network . Defaults to " SP_SG ". Check ‘‘
superglue_wrapper .py ‘‘ for more information to run the SuperPoint + SuperGlue pre - trained
network .

9 optimizer (str): Select if homography should be refined using the LM algorithm . If ‘‘
optimizer ‘‘ is ‘‘None ‘‘, the homography is not refined . If ‘‘optimizer ‘‘ is " scipy_lm ",
the homography is refined using the in - built SciPy implementation of the LM algorithm . If
‘‘optimizer ‘‘ is "lm", the homography is refined using my implementation of the LM
algorithm .

10 interp (str): Select which interpolation strategy to use when applying the homogrpahy .
If ‘‘interp ‘‘ is " n_neighbors ", uses nearest neighbors interpolation . If ‘‘interp ‘‘ is "

bilinear ", uses bi - linear interpolation . Defaults to " bilinear ".
11

12 Returns :
13 canvas (np. ndarray): The canvas that contains the panorama .
14 """
15

16 H_all = []
17 n_images = len(image_filenames)
18

19 for i in range (0, n_images -1):
20

21 img1 = image_filenames [i]
22 img2 = image_filenames [i+1]
23 H = auto_estimate_homography (img1 , img2 , matcher , optimizer).H
24 H_all . append (H)
25

26 ref_idx = ((n_images +1) //2) - 1
27

28 H_wrt_ref_all = [np.eye (3, dtype =np. float64)]*(len(H_all)+1)
29

30 H_wrt_ref = np.eye (3, dtype =np. float64)
31 for i in range(ref_idx +1, n_images):
32 H_wrt_ref = H_wrt_ref @ np. linalg .inv(H_all [i -1])
33 H_wrt_ref_all [i] = H_wrt_ref
34

35 H_wrt_ref = np.eye (3, dtype =np. float64)
36 for i in range(ref_idx -1, -1, -1):
37 H_wrt_ref = H_wrt_ref @ H_all [i]
38 H_wrt_ref_all [i] = H_wrt_ref
39

40 image_all = [cv. imread (image_filenames [i]) for i in range(n_images)]
41

42 temp = [find_projected_corner_h (image_all [i], H_wrt_ref_all [i]) for i in range(n_images)]
43

44 canvas_h = np.max(temp)
45

46 canvas_w = np.sum ([image_all [i]. shape [1] for i in range(n_images)])
47

48 canvas = np. zeros ((canvas_h , canvas_w , 3) , dtype =np. uint8)
49

50 tx = (canvas_w - image_all [ref_idx]. shape [1]) // 2
51

52 ty = (canvas_h - image_all [ref_idx]. shape [0]) // 2
53

54

55 H_tr = np. array ([1 , 0, tx , 0, 1, ty , 0, 0, 1])
56 H_tr = np. reshape (H_tr , (3, 3))
57

10

58 for i in range(n_images):
59 H_wrt_ref_all [i] = H_tr @ H_wrt_ref_all [i]
60

61 for i in range (0, n_images):
62 canvas = apply_homography (image_all [i], canvas , H_wrt_ref_all [i], interp)
63

64 ## If want to view the panorama after every iteration
65

66 # cv. namedWindow (" canvas ", cv. WINDOW_NORMAL)
67 # cv. resizeWindow (" canvas ", 600 , 600)
68 # cv. imshow (" canvas ", canvas)
69 # cv. waitKey (0)
70 # cv. destroyAllWindows ()
71

72 canvas = trim_zeros (canvas)
73 return canvas

Listing 4: Python implementation to create a panorama.

11

3 Programming Task - 1
3.1 Input Images

(a) 1.jpg (b) 2.jpg (c) 3.jpg

(d) 4.jpg (e) 5.jpg

Figure 1: Input images to create a panorama.

Paramaters for RANSAC Value
δ for SIFT 30

δ for SP+SG 2
p 0.99
n 8

Parameters for LM Value
τ 10−3

ε1 10−15

ε2 10−15

ε3 10−15

max_iter 100
δ used in Jacobian 10−8

12

3.2 Correspondences - Inliers and Outliers

(a) Image 1 and 2. (b) Image 2 and 3.

(c) Image 3 and 4. (d) Image 4 and 5.

Figure 2: Using SuperPoint+SuperGlue (SP+SG) feature detector and matcher.

(a) Image 1 and 2. (b) Image 2 and 3.

(c) Image 3 and 4. (d) Image 4 and 5.

Figure 3: Using SIFT feature detector and matcher.

13

3.3 Panoramic stitching
I will show the results using the SP+SG feature matcher because it is more robust as it detects higher number
of inliers used to find the homography between the two scenes.

Figure 4: Stitching using no nonlinear least-squares optimization and bi-linear interpolation when applying H.

Figure 5: Stitching using no nonlinear least-squares optimization and nearest neighbors interpolation when
applying H.

14

Figure 6: Stitching using SciPy’s LM optimization and bi-linear interpolation when applying H.

Figure 7: Stitching using SciPy’s LM optimization and nearest neighbors interpolation when applying H.

15

Figure 8: Stitching using my implementation of LM optimization and bi-linear interpolation when applying H.

Figure 9: Stitching using my implementation of LM optimization and nearest neighbors interpolation when
applying H.

16

4 Programming Task - 2
4.1 Input Images

(a) 1.jpg (b) 2.jpg (c) 3.jpg

(d) 4.jpg (e) 5.jpg

Figure 10: Input images to create a panorama.

Paramaters for RANSAC Value
δ for SIFT 1

δ for SP+SG 2
p 0.99
n 8

Parameters for LM Value
τ 10−3

ε1 10−15

ε2 10−15

ε3 10−15

max_iter 100
δ used in Jacobian 10−8

17

4.2 Correspondences - Inliers and Outliers

(a) Image 1 and 2. (b) Image 2 and 3.

(c) Image 3 and 4. (d) Image 4 and 5.

Figure 11: Correspondences found using SuperPoint+SuperGlue (SP+SG) feature detector and matcher.

(a) Image 1 and 2. (b) Image 2 and 3.

(c) Image 3 and 4. (d) Image 4 and 5.

Figure 12: Correspondences found using SIFT feature detector and matcher.

18

4.3 Panoramic Stitching
We see that SIFT performs well in detecting and matching the keypoints, so I will only show results using SIFT
as the matcher function.

Figure 13: Stitching using no nonlinear least-squares optimization and bi-linear interpolation when applying H.

Figure 14: Stitching using no nonlinear least-squares optimization and nearest neighbors interpolation when
applying H.

19

Figure 15: Stitching using SciPy’s LM optimization and bi-linear interpolation when applying H.

Figure 16: Stitching using SciPy’s LM optimization and nearest neighbors interpolation when applying H.

20

Figure 17: Stitching using my implementation of LM optimization and bi-linear interpolation when applying
H.

Figure 18: Stitching using my implementation of LM optimization and nearest neighbors interpolation when
applying H.

21

5 Extra Credit - LM algorithm implementation
I implemented the Levenberg-Marquardt algorithm and we can visualize the reduction in the cost function using
the following graphs -

0 10 20 30 40
Iterations

1535

1540

1545

1550

1555

1560

1565

Co
st

(a) Between images 1 and 2

0 10 20 30 40
Iterations

1460

1470

1480

1490

1500

Co
st

(b) Between images 2 and 3

0 10 20 30 40
Iterations

1320

1325

1330

1335

1340

Co
st

(c) Between images 3 and 4

0 10 20 30 40
Iterations

700

705

710

715

720

725

Co
st

(d) Between images 4 and 5

Figure 19: LM iterations between the fountain images using the SP+SG matcher

0 10 20 30 40
Iterations

125.90

125.92

125.94

125.96

125.98

126.00

126.02

126.04

126.06

Co
st

(a) Between images 1 and 2

0 10 20 30 40
Iterations

148.70

148.75

148.80

148.85

148.90

Co
st

(b) Between images 2 and 3

0 10 20 30 40 50
Iterations

358.8

359.0

359.2

359.4

359.6

Co
st

(c) Between images 3 and 4

0 10 20 30 40 50
Iterations

390.6

390.8

391.0

391.2

391.4

391.6

391.8

Co
st

(d) Between images 4 and 5

Figure 20: LM iterations between the hill images using the SIFT matcher

22

6 Source Code
6.1 main.py

1 import cv2 as cv
2 import os
3 import matplotlib . pyplot as plt
4

5 from homography_estimation import auto_estimate_homography , draw_inliers_outliers
6 from panorama import generate_pano
7

8 if __name__ == ’__main__ ’:
9

10 img_dir = "pics"
11 names = [" fountain ", " building ", "hill"]
12 out_dir = "outs"
13

14 optimizers = [None , " scipy_lm ", "lm"]
15

16 interps = [" bilinear ", " n_neighbors "]
17

18 matchers = [" SP_SG ", "sift"]
19

20 for name in names [-1:]:
21 n_images = 5
22 images = [os.path.join(img_dir , name , f"{i}. jpg") for i in range (1, n_images +1)]
23

24 for optimizer in optimizers [:]:
25 for matcher in matchers :
26 for i in range (1, n_images):
27

28 img1 = images [i -1]
29 img2 = images [i]
30 homography_sol = auto_estimate_homography (img1 , img2 , matcher , optimizer)
31

32 H = homography_sol .H
33 inliers = homography_sol . inliers
34 outliers = homography_sol . outliers
35

36 in_out_filename = os.path.join(out_dir , name , f"{name}_{ optimizer }_{
matcher } _in_out_ {i}_{i+1}. pdf")

37 draw_inliers_outliers (img1 , img2 , inliers , outliers , in_out_filename)
38

39 if optimizer == "lm":
40 errors = homography_sol . optim_solution . errors
41 n_iter = homography_sol . optim_solution . n_iter
42 plt. scatter (range (1, n_iter +1) , errors)
43 plt.grid ()
44 plt. xlabel (" Iterations ")
45 plt. ylabel ("Cost")
46 error_filename = os.path.join(out_dir , name , f"{name}_{ matcher } _error_

{i}_{i+1}. pdf")
47 plt. savefig (error_filename , bbox_inches =" tight ", dpi =300)
48 plt. close ()
49

50

51 for optimizer in optimizers :
52 for matcher in matchers :
53 for interp in interps :
54 pano_img = generate_pano (images , matcher =matcher , optimizer =optimizer ,

interp = interp)
55 pano_filename = os.path.join(out_dir , name , f"{name} _pano_ { optimizer }_{

matcher }_{ interp }. pdf")
56 plt. imshow (cv. cvtColor (pano_img , cv. COLOR_BGR2RGB))
57 plt.axis(’off ’)
58 plt. savefig (pano_filename , bbox_inches =’tight ’, pad_inches =0, dpi =300)
59 plt. close ()

23

6.2 homography_estimation.py

1 import cv2 as cv
2 import numpy as np
3 import matplotlib . pyplot as plt
4 from scipy . optimize import least_squares
5 import warnings
6

7 from superglue_wrapper import SuperGlue
8

9 from LM_optim import LM_optim
10

11 eps = np. finfo (float).eps
12

13 def draw_inliers_outliers (img1:str , img2:str , inliers :np.ndarray , outliers :np.ndarray ,
filename :str):

14 """
15 Function to draw the inliers and outliers after RANSAC .
16

17 Args:
18 img1 (str): Path to image 1.
19 img2 (str): Path to image 2.
20 inliers (np. ndarray): Set of inliers .
21 outliers (np. ndarray): Set of outliers .
22 filename (str): Filename to save the figure .
23 """
24

25 img1 = cv. imread (img1)
26 img2 = cv. imread (img2)
27

28 ms = 3
29 lw = 0.5
30

31 h1 , w1 = img1. shape [:2]
32 h2 , w2 = img2. shape [:2]
33

34 result = np. zeros ((np.max ([h1 , h2]) , w1 + w2 , 3) , dtype =np. uint8)
35 result [:h1 , :w1] = img1
36 result [:h2 , w1 :] = img2
37 result = cv. cvtColor (result , cv. COLOR_BGR2RGB)
38

39 in_pts1_x = inliers [:, 0]
40 in_pts1_y = inliers [:, 1]
41 in_pts2_x = inliers [:, 2] + w1
42 in_pts2_y = inliers [:, 3]
43

44 out_pts1_x = outliers [:, 0]
45 out_pts1_y = outliers [:, 1]
46 out_pts2_x = outliers [:, 2] + w1
47 out_pts2_y = outliers [:, 3]
48

49 plt. imshow (result)
50 c_g = [0, 1, 0]
51 c_r = [1, 0, 0]
52 plt.plot ([in_pts1_x , in_pts2_x], [in_pts1_y , in_pts2_y], color =c_g , linestyle =’--’,

linewidth =lw , marker =".", ms=ms , markerfacecolor =c_g)
53 plt.plot ([out_pts1_x , out_pts2_x], [out_pts1_y , out_pts2_y], color =c_r , linestyle =’--’,

linewidth =lw , marker =".", ms=ms , markerfacecolor =c_r)
54

55 plt.axis(’off ’)
56 plt. savefig (filename , bbox_inches =’tight ’, pad_inches =0, dpi =300)
57 plt. close ()
58

59 return
60

61 def _SP_SG_feature_match (img1:str , img2:str):
62

63 """
64 Wrapper function to use SuperPoint + SuperGlue pre - trained network to detect and match

features .
65

66 Args:
67 img1 (str): Path to image 1.
68 img2 (str): Path to image 2.
69

70 Returns :

24

71 tuple : Returns in order
72 1. Matched keypoints of image 1
73 2. Matched keypoints of image 2
74 3. All keypoints of image 1
75 4. All keypoints of image 2
76 5. Desciptor vector associated to all keypoints of image 1
77 6. Desciptor vector associated to all keypoints of image 2
78 """
79

80 detector = SuperGlue . create ()
81 kp0 , descriptor0 = detector . detect_and_compute (img1)
82 kp1 , descriptor1 = detector . detect_and_compute (img2)
83

84 mkpts0 , mkpts1 = detector . match (img1 , img2)
85

86 return (mkpts0 , mkpts1 , kp0 , kp1 , descriptor0 , descriptor1)
87

88 def _SIFT_feature_match (img1:str , img2:str):
89

90 """
91 Wrapper function to use Scale - Invariant Feature Transform (SIFT) to detect and match

features .
92

93 Args:
94 img1 (str): Path to image 1.
95 img2 (str): Path to image 2.
96

97 Returns :
98 tuple : Returns in order
99 1. Matched keypoints of image 1

100 2. Matched keypoints of image 2
101 3. All keypoints of image 1
102 4. All keypoints of image 2
103 5. Desciptor vector associated to all keypoints of image 1
104 6. Desciptor vector associated to all keypoints of image 2
105 """
106

107 img1_gray = cv. imread (img1 , cv. IMREAD_GRAYSCALE)
108 img2_gray = cv. imread (img2 , cv. IMREAD_GRAYSCALE)
109

110

111 sift = cv. SIFT_create ()
112 kp0 , descriptor0 = sift. detectAndCompute (img1_gray , None)
113 kp1 , descriptor1 = sift. detectAndCompute (img2_gray , None)
114

115 bf = cv. BFMatcher (cv.NORM_L2 , True)
116 matches = bf. match (descriptor0 , descriptor1)
117

118 matches = sorted (matches , key= lambda x: x. distance)
119

120 mkpts0 = np. array ([kp0[match . queryIdx]. pt for match in matches if match . distance <= 100])
121 mkpts1 = np. array ([kp1[match . trainIdx]. pt for match in matches if match . distance <= 100])
122

123 return (mkpts0 , mkpts1 , kp0 , kp1 , descriptor0 , descriptor1)
124

125 def H_p_to_p (pts1:np.ndarray , pts2:np. ndarray):
126

127 """
128 Function to estimate Linear Least Squares fit of the homography matrix H such that pts2 =

H * pts1.
129

130 Args:
131 pts1 (np. ndarray): Set of points on domain plane . Must be in homogeneous coordinates .
132 pts2 (np. ndarray): Set of matching points on range plane . Must be in homogeneous

coordinates .
133

134 Returns :
135 np. ndarray : Homography matrix such that pts2 = H * pts1
136 """
137

138 assert len(pts1) == len(pts2)
139

140 assert len(pts1) >= 4
141

142 A = []
143

25

144 for (x, y, w), (xp , yp , wp) in zip(pts1 , pts2):
145 A. append ([0 , 0, 0, -wp*x, -wp*y, -wp*w, yp*x, yp*y, yp*w])
146 A. append ([wp*x, wp*y, wp*w, 0, 0, 0, -xp*x, -xp*y, -xp*w])
147

148 A = np. array (A)
149 _, _, vt = np. linalg .svd(A)
150

151 h = vt.T[:, -1]
152

153 H = np. reshape (h, (3, 3))
154

155 H /= H[2, 2] + eps
156

157 return H
158

159 def RANSAC (pts1:np.ndarray , pts2:np.ndarray , sigma :float , p:float , n:int , e: float =None):
160

161 """
162 Function to apply the RANSAC algorithm to find inliers and outliers of matching set of

points pts1 and pts2.
163

164 Args:
165 pts1 (np. ndarray): Set of points on domain plane . Must be in regular coordinates .
166 pts2 (np. ndarray): Set of matching points on range plane . Must be in regular

coordinates .
167 sigma (float): Estimate of noise induced on the noisy matches .
168 p (float): Probability that atleast 1 trial will be free of outliers . ‘‘0 <= p <= 1‘‘
169 n (int): Number of correspondences used to find the LLS estimate of homography H. ‘‘4

< n < 10‘‘
170 e (float , optional): Probability that chosen correspondence is an outlier . Defaults to

‘‘None ‘‘ as it is adaptively calculated . ‘‘0 <= e <= 1‘‘
171

172 Returns :
173 (np.ndarray , np. ndarray): Tuple consisting of the inliers and outliers with the

maximum inlier support . Each row is a correspondence in the order (domain .x, domain .y,
range .x, range .y)

174 """
175

176 assert len(pts1) == len(pts2)
177

178 n_total = len(pts1)
179

180 if (p < 0) or (p > 1):
181 raise ValueError (f" Invalid value of p={p}. ‘p‘ must be within [0, 1].")
182

183 if (n < 4) or (n > 10):
184 raise ValueError (f" Invalid value of n={n}. ‘n‘ must be within (4, 10).")
185

186 if e is None:
187 e = 1
188 else:
189 if (e < 0) or (e > 1):
190 raise ValueError (f" Invalid value of e={e}. ‘e‘ must be within [0, 1].")
191

192

193 correspondences = np. hstack ((pts1 , pts2))
194

195 delta = 3 * sigma
196

197 N = np.inf
198 sample_count = 0
199

200

201 M = np. floor ((1 - e) * n_total). astype (np. int32)
202

203

204 pts1_hc = np. hstack ((pts1 , np.ones ((n_total , 1))))
205 pts2_hc = np. hstack ((pts2 , np.ones ((n_total , 1))))
206

207 outliers = []
208 inliers = []
209 len_inliers = []
210

211 while (N > sample_count):
212 sample_count += 1
213 sample_idx = np. random . permutation (np. arange (n_total))[:n]

26

214

215 pts1_selected = pts1_hc [sample_idx]
216 pts2_selected = pts2_hc [sample_idx]
217

218 H = H_p_to_p (pts1_selected , pts2_selected)
219

220 pts1_estimate = np. linalg .inv(H) @ pts2_hc .T
221 pts1_estimate /= pts1_estimate [2] + eps
222 pts1_estimate = pts1_estimate .T
223 dist1 = np.sum(np. power (pts1_estimate [:, :2] - pts1 , 2) , 1)
224

225 pts2_estimate = H @ pts1_hc .T
226 pts2_estimate /= pts2_estimate [2] + eps
227 pts2_estimate = pts2_estimate .T
228 dist2 = np.sum(np. power (pts2_estimate [:, :2] - pts2 , 2) , 1)
229

230 dists = np.sqrt(dist1 + dist2) / 2
231

232 inlier_idx = np. where (dists <= delta)[0]
233 outlier_idx = np. where (dists > delta)[0]
234

235 inlier = correspondences [inlier_idx , :]
236 outlier = correspondences [outlier_idx , :]
237

238 e = 1 - len(inlier)/ n_total
239 N = np.log (1-p) / (np.log (1 -(1 -e)**n))
240 M = np. floor ((1 - e) * n_total). astype (np. int32)
241

242

243 inliers . append (inlier)
244 outliers . append (outlier)
245 len_inliers . append (len(inlier))
246

247 largest_set_idx = np. argmax (len_inliers)
248 if len_inliers [largest_set_idx] < M:
249 warnings .warn(f" Largest inlier set size = { len_inliers [largest_set_idx]} < {M}. Relax

constraints by changing params ")
250

251 best_inliers = np. array (inliers [largest_set_idx])
252 best_outliers = np. array (outliers [largest_set_idx])
253

254 return (best_inliers , best_outliers)
255

256 def cost_fun (p, inliers):
257 """
258 Cost function to return the residuals used in the LM algorithm .
259 """
260

261 X = []
262 F = []
263

264 for (x, y, xp , yp) in inliers :
265 X. append (xp)
266 X. append (yp)
267

268 F. append ((p[0]*x + p[1]*y + p[2]) / (p[6]*x + p[7]*y + p[8]))
269 F. append ((p[3]*x + p[4]*y + p[5]) / (p[6]*x + p[7]*y + p[8]))
270

271 X = np. array (X)
272 F = np. array (F)
273

274 return X - F
275

276 def _scipy_lm_wrapper (cost_fun , H, inliers):
277 """
278 Wrapper function to execute SciPy ’s LM algorithm .
279 """
280 return least_squares (cost_fun , H, method =’lm ’, args =[inliers])
281

282 def _LM_optim_wrapper (cost_fun , H, inliers):
283 """
284 Wrapper function to execute my implementation of LM algorithm .
285 """
286 return LM_optim (cost_fun , H, args =[inliers])
287

288

27

289 def auto_estimate_homography (img1:str , img2:str , matcher :str=" SP_SG ", optimizer :str=" scipy_lm "
):

290

291 """
292 Function to automatically estimate the homography between two images using
293 feature detection and matching algorithms followed by the application of the
294 RAndom SAmpling Consensus (RANSAC) algorithm to remove false correspondences . If ‘‘

optimizer ‘‘ is not ‘‘None ‘‘, the homography is refined using Levenberg - Marquardt (LM) non -
linear least squares optimization algorithm .

295

296 Args:
297 img1 (str): Path to image 1.
298 img2 (str): Path to image 2.
299 matcher (str): Select which feature detection and matching algorithm to use. If ‘‘

matcher ‘‘ is "sift", correspondence are found using Scale - Invariant Feature Transform (
SIFT) algorithm . If ‘‘matcher ‘‘ is " SP_SG ", correspondence are found using SuperPoint +
SuperGlue deep learning pre - trained network . Defaults to " SP_SG ". Check ‘‘
superglue_wrapper .py ‘‘ for more information to run the SuperPoint + SuperGlue pre - trained
network .

300 optimizer (str): Select if homography should be refined using the LM algorithm . If ‘‘
optimizer ‘‘ is None , the homography is not refined . If ‘‘optimizer ‘‘ is " scipy_lm ", the
homography is refined using the in - built SciPy implementation of the LM algorithm . If ‘‘
optimizer ‘‘ is "lm", the homography is refined using my implementation of the LM algorithm
.

301

302 Returns :
303 (Homography_sol): The solution of the automatic homography estimation . ‘‘

Homography_sol ‘‘ has the following fields -
304 1. H (np. ndarray): Estimated homography .
305 2. solution : If ‘‘optimizer ‘‘ is not ‘‘None ‘‘, this is set as the solution field

retured from either SciPy LM optimization or my implementation of the LM optimization
algorithm . Else is ‘‘None ‘‘.

306 3. inliers (np. ndarray): Set of inliers with the best inlier support .
307 4. outlier (np. ndarray): Corresponding set of outliers .
308 5. kp1 (np. ndarray): Keypoints of image 1.
309 6. kp2 (np. ndarray): Keypoints of image 2.
310 7. desc1 (np. ndarray): Descriptor vector of the keypoints of image 1.
311 8. desc2 (np. ndarray): Descriptor vector of the keypoints of image 2.
312

313 """
314

315 val_matcher = {"sift": _SIFT_feature_match ,
316 " SP_SG ": _SP_SG_feature_match }
317

318 try:
319 matcher_fun = val_matcher [matcher]
320

321 except KeyError :
322 raise ValueError (f" Invalid matcher function . Choose from {list(val_matcher .keys ())}")
323

324 default_matcher_params = {"sift": [1, 0.99 , 8, None],
325 " SP_SG ": [2, 0.99 , 8, None]}
326

327 val_optimzer = [None , " scipy_lm ", "lm"]
328

329 if optimizer not in val_optimzer :
330 raise ValueError (f" Invalid optimizer method . Chose from { val_optimzer }")
331

332

333 (mkpts1 , mkpts2 , kp1 , kp2 , desc1 , desc2) = matcher_fun (img1 , img2)
334

335 r_params = default_matcher_params [matcher]
336

337 inliers , outliers = RANSAC (mkpts1 , mkpts2 , r_params [0] , r_params [1] , r_params [2] , r_params
[3])

338

339 inliers_1_hc = np. hstack ((inliers [:, :2] , np.ones ((inliers . shape [0] , 1))))
340 inliers_2_hc = np. hstack ((inliers [:, 2:] , np.ones ((inliers . shape [0] , 1))))
341

342 H = H_p_to_p (inliers_1_hc , inliers_2_hc)
343

344 if optimizer is None:
345 print ("No optimization applied . \n")
346

347 else:
348

28

349 if optimizer == " scipy_lm ":
350 print (" Using scipy LM optimization . \n")
351 optim_fun = _scipy_lm_wrapper
352 else:
353 print (" Using implemented LM optimization . \n")
354 optim_fun = _LM_optim_wrapper
355

356 H = np. reshape (H, (1, 9))[0]
357

358 optimize_solution = optim_fun (cost_fun , H, inliers)
359

360 H = np. reshape (optimize_solution .x, (3, 3))
361

362 H /= H[2, 2] + eps
363

364 class Homography_sol ():
365 def __init__ (self):
366 self.H = None
367 self. optim_solution = None
368 self. inliers = None
369 self. outliers = None
370 self.kp1 = None
371 self.kp2 = None
372 self. desc1 = None
373 self. desc2 = None
374

375 def _set_solution (self , H, optim_solution , inliers , outliers , kp1 , kp2 , desc1 , desc2):
376 self.H = H
377 self. optim_solution = optim_solution
378 self. inliers = inliers
379 self. outliers = outliers
380 self.kp1 = kp1
381 self.kp2 = kp2
382 self. desc1 = desc1
383 self. desc2 = desc2
384

385 solution = Homography_sol ()
386 if optimizer is None:
387 solution . _set_solution (H, None , inliers , outliers , kp1 , kp2 , desc1 , desc2)
388 else:
389 solution . _set_solution (H, optimize_solution , inliers , outliers , kp1 , kp2 , desc1 , desc2

)
390

391 return solution

29

6.3 LM_optim.py

1 import numpy as np
2 from scipy . optimize import approx_fprime
3

4 from numpy . linalg import norm , solve
5

6 def LM_optim (fun:callable , x0:np.ndarray , tau:float =1e-3, eps1:float =1e -15 , eps2:float =1e -15 ,
eps3: float =1e -15 , max_iter :int =100 , args =() , kwargs ={}):

7

8 """
9 Function to implement Levenberg - Marquardt optimization algorithm . Implementation follows

pseudocode in https :// users .ics. forth .gr /~ lourakis / levmar / levmar .pdf.
10 Jacobian is estimated using a 2-pt finite difference method .
11

12 Args:
13 fun (callable): Callable function which computes the residuals . Function signature and

usage : ‘‘fun(x, *args , ** kwargs) ‘‘. Minimization proceeds w.r.t first argument .
14 x0 (np. ndarray): Initial guess for the independent variables .
15 tau (float): Scaling factor for the damping parameter mu. ‘‘0 < tau <= 1‘‘. Defaults

to ‘‘1e-3‘‘.
16 eps1 (float): Termination threshold for the inf -norm of the gradient . Termination

condition : ‘‘norm(grad , inf) <= eps1 ‘‘. Defaults to ‘‘1e -15 ‘ ‘.
17 eps2 (float): Relative termination threshold for delta . Termination condition : ‘‘norm(

delta) <= eps2 * norm(x) ‘‘. Defaults to ‘‘1e -15 ‘ ‘.
18 eps3 (float): Termination threshold for the square of the norm of residuals . ‘‘norm(

fun(x))**2 <= eps3 ‘‘. Defaults to ‘‘1e -15 ‘ ‘.
19 max_iter (int): Maximum number of iterations .
20

21 Returns :
22 solution (OptimizeSolution): The solution to the optimization problem . ‘‘

OptimizeSolution ‘‘ has the following fields -
23 1. x (np. ndarray): Solution to the optimization problem .
24 2. errors (list): Values of the cost function (C) at every iteration . C = norm(fun(x,

*args , ** kwargs), 2) ^2
25 3. mu (float): Final value fo the damping parameter used in the algorithm .
26 4. jac (np. ndarray): Value of the Jacobian at the end of optimization .
27 5. hess (np. ndarray): Value of the Hessian at the end of optimization .
28 6. n_iter (int): Number of iteration taken to reach termination conditions .
29 """
30

31 print (" ---------------------------- Starting LM optimization ...
---------------------------- \n")

32

33 m = len(x0)
34 errors = []
35

36 n_iter = 0
37 nu = 2
38 x = x0
39

40 residual = fun(x, *args , ** kwargs)
41

42 jac = -approx_fprime (x, fun , 1e-8, *args) # ’-’ sign because taking jacobian of residual
vector .

43

44 hess = jac.T @ jac
45 grad = jac.T @ residual
46

47 stop = (norm(grad , np.inf) <= eps1)
48 mu = tau * np.max(np.diag(hess))
49

50 while (not stop) and (n_iter < max_iter):
51 n_iter += 1
52 errors . append (norm(residual , 2) **2)
53

54 delta = solve (hess + mu*np.eye(m), grad)
55

56 if (norm(delta , 2) <= eps2*norm(x, 2)):
57 stop = True
58

59 else:
60 x_new = x + delta
61 rho = (norm(residual , 2) **2 - norm(fun(x_new , *args , ** kwargs), 2) **2) / (delta .T

@ (mu* delta + grad))
62

30

63 if rho > 0:
64 x = x_new
65

66 residual = fun(x, *args , ** kwargs)
67 jac = -approx_fprime (x, fun , 1e-8, *args)
68

69 hess = jac.T @ jac
70 grad = jac.T @ residual
71

72 stop = (norm(grad , np.inf) <= eps1) or (norm(residual , 2) **2 <= eps3)
73 mu *= max (1/3 , 1 -(2* rho - 1) **3)
74 nu = 2
75

76 else:
77 mu *= nu
78 nu *= 2
79 else:
80 if stop:
81 print (f" Stopped on reaching termination conditions in { n_iter } iteration (s). \n")
82 print ("

---")
83 else:
84 print (" Stopped on reaching maximum iteration (s). \n")
85 print ("

---")
86

87 class OptimizeSolution :
88 def __init__ (self):
89 self.x = None
90 self. errors = None
91 self.mu = None
92 self.jac = None
93 self.hess = None
94 self. n_iter = None
95

96 def set_solution (self , x, errors , mu , jac , hess , n_iter):
97 self.x = x
98 self. errors = errors
99 self.mu = mu

100 self.jac = jac
101 self.hess = hess
102 self. n_iter = n_iter
103

104

105 solution = OptimizeSolution ()
106 solution . set_solution (x, errors , mu , jac , hess , n_iter)
107

108 return solution

31

6.4 panorama.py

1 import cv2 as cv
2 import numpy as np
3

4 from homography_estimation import auto_estimate_homography
5

6 eps = np. finfo (float).eps
7

8 def generate_pano (image_filenames :list , matcher :str=" SP_SG ", optimizer :str=" scipy_lm ", interp :
str=" bilinear "):

9

10 """
11 Function to create a panorama given a set of images . The middle image is placed at the

center of the canvas and then homographies are found relative to the middle image .
12

13 Args:
14 image_filenames (list): List that contains the paths to all images to create a

panorama .
15 matcher (str): Select which feature detection and matching algorithm to use. If ‘‘

matcher ‘‘ is "sift", correspondence are found using Scale - Invariant Feature Transform (
SIFT) algorithm . If ‘‘matcher ‘‘ is " SP_SG ", correspondence are found using SuperPoint +
SuperGlue deep learning pre - trained network . Defaults to " SP_SG ". Check ‘‘
superglue_wrapper .py ‘‘ for more information to run the SuperPoint + SuperGlue pre - trained
network .

16 optimizer (str): Select if homography should be refined using the LM algorithm . If ‘‘
optimizer ‘‘ is ‘‘None ‘‘, the homography is not refined . If ‘‘optimizer ‘‘ is " scipy_lm ",
the homography is refined using the in - built SciPy implementation of the LM algorithm . If
‘‘optimizer ‘‘ is "lm", the homography is refined using my implementation of the LM
algorithm .

17 interp (str): Select which interpolation strategy to use when applying the homogrpahy .
If ‘‘interp ‘‘ is " n_neighbors ", uses nearest neighbors interpolation . If ‘‘interp ‘‘ is "

bilinear ", uses bi - linear interpolation . Defaults to " bilinear ".
18

19 Returns :
20 canvas (np. ndarray): The canvas that contains the panorama .
21 """
22

23 H_all = []
24 n_images = len(image_filenames)
25

26 for i in range (0, n_images -1):
27

28 img1 = image_filenames [i]
29 img2 = image_filenames [i+1]
30 H = auto_estimate_homography (img1 , img2 , matcher , optimizer).H
31 H_all . append (H)
32

33 ref_idx = ((n_images +1) //2) - 1
34

35 H_wrt_ref_all = [np.eye (3, dtype =np. float64)]*(len(H_all)+1)
36

37 H_wrt_ref = np.eye (3, dtype =np. float64)
38 for i in range(ref_idx +1, n_images):
39 H_wrt_ref = H_wrt_ref @ np. linalg .inv(H_all [i -1])
40 H_wrt_ref_all [i] = H_wrt_ref
41

42 H_wrt_ref = np.eye (3, dtype =np. float64)
43 for i in range(ref_idx -1, -1, -1):
44 H_wrt_ref = H_wrt_ref @ H_all [i]
45 H_wrt_ref_all [i] = H_wrt_ref
46

47 image_all = [cv. imread (image_filenames [i]) for i in range(n_images)]
48

49 temp = [find_projected_corner_h (image_all [i], H_wrt_ref_all [i]) for i in range(n_images)]
50

51 canvas_h = np.max(temp)
52

53 canvas_w = np.sum ([image_all [i]. shape [1] for i in range(n_images)])
54

55 canvas = np. zeros ((canvas_h , canvas_w , 3) , dtype =np. uint8)
56

57 tx = (canvas_w - image_all [ref_idx]. shape [1]) // 2
58

59 ty = (canvas_h - image_all [ref_idx]. shape [0]) // 2
60

32

61

62 H_tr = np. array ([1 , 0, tx , 0, 1, ty , 0, 0, 1])
63 H_tr = np. reshape (H_tr , (3, 3))
64

65 for i in range(n_images):
66 H_wrt_ref_all [i] = H_tr @ H_wrt_ref_all [i]
67

68 for i in range (0, n_images):
69 canvas = apply_homography (image_all [i], canvas , H_wrt_ref_all [i], interp)
70

71 ## If want to view the panorama after every iteration
72

73 # cv. namedWindow (" canvas ", cv. WINDOW_NORMAL)
74 # cv. resizeWindow (" canvas ", 600 , 600)
75 # cv. imshow (" canvas ", canvas)
76 # cv. waitKey (0)
77 # cv. destroyAllWindows ()
78

79 canvas = trim_zeros (canvas)
80 return canvas
81

82 def _bounds_per_dimesion (arr:np. ndarray):
83 return map(lambda e: range(e.min () , e.max () +1) , np. where (arr != 0))
84

85 def trim_zeros (arr:np. ndarray):
86 """
87 Function to trim zeros from multi - dimensional array .
88

89 Args:
90 arr (np. ndarray): array to trim zeros along edges .
91

92 Returns :
93 (nd. array): array with trimmed zeros along edges .
94 """
95 return arr[np.ix_ (* _bounds_per_dimesion (arr))]
96

97 def find_projected_corner_h (img , H):
98 h, w = img. shape [:2]
99

100 source_corners = np. array ([(0 , 0, 1) , (w - 1, 0, 1) , (w - 1, h - 1, 1) , (0, h - 1, 1)
]).T

101 dest_corners = H @ source_corners
102

103 dest_corners /= (dest_corners [2] + eps)
104

105 min_y = np.min(dest_corners [1, :])
106 max_y = np.max(dest_corners [1, :])
107

108 world_h = np.ceil(max_y - min_y). astype (np. int32)
109

110 return (world_h)
111

112 def _n_neighbors (f:np.ndarray , source_coords :np.ndarray , dest_coords :np.ndarray , canvas :np.
ndarray):

113

114 """
115 Function to project using nearest neighbors interpolation .
116

117 Args:
118 f (np. ndarray): Image to be projected or source .
119 source_coords (np. ndarray): Source coordinates in HC.
120 dest_coord (np. ndarray): Destination coordinates in HC.
121 canvas (np. ndarray): Canvas where the image will be projected or destination .
122

123 Returns :
124 (np. ndarray): canvas with the projected image .
125 """
126

127 source_x = source_coords [0] / (source_coords [2] + eps)
128 source_y = source_coords [1] / (source_coords [2] + eps)
129

130 dest_x = dest_coords [0]
131 dest_y = dest_coords [1]
132

133 h, w = f. shape [:2]
134 valid_mask = (source_x >= 0) & (source_x < w) & (source_y >= 0) & (source_y < h)

33

135

136 source_x_valid = np. floor (source_x [valid_mask]). astype (np. int32)
137 source_y_valid = np. floor (source_y [valid_mask]). astype (np. int32)
138

139 dest_x_valid = dest_x [valid_mask]. astype (np. int32)
140 dest_y_valid = dest_y [valid_mask]. astype (np. int32)
141

142 canvas [dest_y_valid , dest_x_valid] = f[source_y_valid , source_x_valid]
143

144 return canvas
145

146 def _bilinear (f:np.ndarray , source_coords :np.ndarray , dest_coords :np.ndarray , canvas :np.
ndarray):

147

148 """
149 Function to project using bi - linear interpolation .
150

151 Args:
152 f (np. ndarray): Image to be projected or source .
153 source_coords (np. ndarray): Source coordinates in HC.
154 dest_coord (np. ndarray): Destination coordinates in HC.
155 canvas (np. ndarray): Canvas where the image will be projected or destination .
156

157 Returns :
158 (np. ndarray): canvas with the projected image .
159 """
160

161 source_x = source_coords [0] / (source_coords [2] + eps)
162 source_y = source_coords [1] / (source_coords [2] + eps)
163

164 dest_x = dest_coords [0]
165 dest_y = dest_coords [1]
166

167 h, w = f. shape [:2]
168 if f.ndim == 3:
169 c = f. shape [2]
170

171 valid_mask = (source_x >= 0) & (source_x < w -1) & (source_y >= 0) & (source_y < h -1)
172

173 source_x_valid = source_x [valid_mask]
174 source_y_valid = source_y [valid_mask]
175

176 x1 , y1 = np. floor (source_x_valid). astype (np. int32), np. floor (source_y_valid). astype (np.
int32)

177 x_diff , y_diff = source_x_valid - x1 , source_y_valid - y1
178 x2 , y2 = x1 + 1, y1 + 1
179

180 dest_x_valid = dest_x [valid_mask]. astype (np. int32)
181 dest_y_valid = dest_y [valid_mask]. astype (np. int32)
182

183 if f.ndim == 2:
184 f11 = f[y1 , x1]
185 f12 = f[y1 , x2]
186 f21 = f[y2 , x1]
187 f22 = f[y2 , x2]
188

189 canvas [dest_y_valid , dest_x_valid] = (f11 * (1 - x_diff) * (1 - y_diff) +
190 f12 * (x_diff) * (1 - y_diff) +
191 f21 * (1 - x_diff) * (y_diff) +
192 f22 * (x_diff) * (y_diff))
193

194 else:
195 for i in range(c):
196 f11 = f[y1 , x1 , i]
197 f12 = f[y1 , x2 , i]
198 f21 = f[y2 , x1 , i]
199 f22 = f[y2 , x2 , i]
200

201 canvas [dest_y_valid , dest_x_valid , i] = (f11 * (1 - x_diff) * (1 - y_diff) +
202 f12 * (x_diff) * (1 - y_diff) +
203 f21 * (1 - x_diff) * (y_diff) +
204 f22 * (x_diff) * (y_diff))
205

206 return canvas
207

208 def apply_homography (img:np.ndarray , canvas :np.ndarray , H:np.ndarray , interp :str=" bilinear "):

34

209

210 """
211 Function to apply the homogrpahy H to img and place it on the canvas .
212

213 Args:
214 img (np. ndarray): Image to which the homography will be applied to.
215 canvas (np. ndarray): Canvas to place the projected image on.
216 H (np. ndarray): The homography to apply .
217 interp (str): Select which interpolation strategy to use when applying the homogrpahy .

If ‘‘interp ‘‘ is " n_neighbors ", uses nearest neighbors interpolation . If ‘‘interp ‘‘ is "
bilinear ", uses bi - linear interpolation . Defaults to " bilinear ".

218

219 Returns :
220 (np. ndarray): Canvas after projecting the image .
221 """
222

223 val_interp = {" n_neighbors ": _n_neighbors , " bilinear ": _bilinear }
224

225 try:
226 interp_fun = val_interp [interp]
227 except KeyError :
228 raise ValueError (f" Invalid interpolation method . Choose from {list(val_interp .keys ())}

")
229

230

231 world_h , world_w = canvas . shape [:2]
232

233 x = np. arange (0, world_w , 1)
234 y = np. arange (0, world_h , 1)
235 x, y = np. meshgrid (x, y)
236 dest_coords = np. vstack ((x. ravel () , y. ravel ()))
237 dest_coords = np. vstack ((dest_coords , np.ones(dest_coords . shape [1])))
238

239 source_coords = np. linalg .inv(H) @ dest_coords
240

241 res = interp_fun (img , source_coords , dest_coords , canvas)
242

243 return res

35

6.5 superglue_wrapper.py

1 import torch
2 import numpy as np
3

4

5 from SuperGluePretrainedNetwork . models . matching import Matching
6 from SuperGluePretrainedNetwork . models . utils import read_image
7

8 class SuperGlue (object):
9 def __init__ (self):

10 super (SuperGlue , self). __init__ ()
11 self. matcher = None
12 self. device = None
13 self. config = None
14 self. resize = None
15

16 @classmethod
17 def create (cls ,
18 force_gpu =False ,
19 nms_radius =4,
20 keypoint_threshold =0.005 ,
21 max_keypoints =-1,
22 superglue_wts =’indoor ’,
23 sinkhorn_iterations =20 ,
24 match_threshold =0.2 ,
25 resize =[640 , 480]) :
26

27 det = cls ()
28 det. set_device_as_gpu (force_gpu = force_gpu)
29 det. set_config (nms_radius ,
30 keypoint_threshold ,
31 max_keypoints ,
32 superglue_wts ,
33 sinkhorn_iterations ,
34 match_threshold)
35

36 det. matcher = Matching (det. config).eval ().to(det. device)
37 det. resize = resize
38 return det
39

40 def set_device_as_gpu (self , force_gpu =True):
41 if torch .cuda. is_available () and force_gpu :
42 device = ’cuda ’
43

44 elif torch . backends .mps. is_available () and torch . backends .mps. is_built ():
45 device = ’mps ’
46

47 else:
48 device = ’cpu ’
49

50 self. device = device
51

52 def set_config (self , nms_radius ,
53 keypoint_threshold ,
54 max_keypoints ,
55 superglue_wts ,
56 sinkhorn_iterations ,
57 match_threshold):
58 self. config = {
59 ’superpoint ’: {
60 ’nms_radius ’: nms_radius ,
61 ’keypoint_threshold ’: keypoint_threshold ,
62 ’max_keypoints ’: max_keypoints
63 },
64 ’superglue ’: {
65 ’weights ’: superglue_wts ,
66 ’sinkhorn_iterations ’: sinkhorn_iterations ,
67 ’match_threshold ’: match_threshold ,
68 }
69 }
70

71 @torch . no_grad ()
72 def detect_and_compute (self , img):
73 inp , scales = self. read_img (img)
74

36

75 data = self. matcher . superpoint ({ ’image ’: inp })
76 kp = data[’keypoints ’][0]. to(’cpu ’). numpy () * np. array (scales)
77 desc = data[’descriptors ’][0]. to(’cpu ’). numpy ()
78

79 return kp , desc
80

81 @torch . no_grad ()
82 def match (self , img1 , img2):
83

84 inp0 , scales0 = self. read_img (img1)
85 inp1 , scales1 = self. read_img (img2)
86

87 pred = self. matcher ({’image0 ’: inp0 , ’image1 ’: inp1 })
88 pred = {k: v[0]. to(’cpu ’). numpy () for k, v in pred. items ()}
89 kpts0 , kpts1 = pred[’keypoints0 ’], pred[’keypoints1 ’]
90 matches , conf = pred[’matches0 ’], pred[’matching_scores0 ’]
91

92 valid = matches > -1
93 mkpts0 = kpts0 [valid]
94 mkpts1 = kpts1 [matches [valid]]
95

96 mkpts0 = np. array (mkpts0) * np. array (scales0)
97 mkpts1 = np. array (mkpts1) * np. array (scales1)
98

99 return mkpts0 , mkpts1
100

101

102 def read_img (self , img_path):
103 _, inp , scale = read_image (img_path , self.device , self.resize , 0, False)
104 return inp , scale

37

	Theory Questions
	Question 1
	Question 2

	Panoramic Stitches or Image Mosaics
	Overall Pipeline
	Mathematical Background and Python Implementation
	Linear Least-Squares Minimization (using SVD)
	RANdom SAmpling Consensus (RANSAC)
	Nonlinear Least-Squares Minimization (using LM)
	Panoramic Stitching

	Programming Task - 1
	Input Images
	Correspondences - Inliers and Outliers
	Panoramic stitching

	Programming Task - 2
	Input Images
	Correspondences - Inliers and Outliers
	Panoramic Stitching

	Extra Credit - LM algorithm implementation
	Source Code
	main.py
	homography_estimation.py
	LM_optim.py
	panorama.py
	superglue_wrapper.py

