ECE 661 - Computer Vision
Homework 5

Arnav Singh

Contents
1 Theory Questions
1.1 Question 1. o e e e
1.2 Question 2. e
2 Panoramic Stitches or Image Mosaics
2.1 Ovwerall Pipeline 0 0
2.2 Mathematical Background and Python Implementation
2.2.1 Linear Least-Squares Minimization (using SVD)
2.2.2 RANdom SAmpling Consensus (RANSAC),
2.2.3 Nonlinear Least-Squares Minimization (using LM)
2.2.4 Panoramic Stitching
3 Programming Task - 1
3.1 Input Images L e e
3.2 Correspondences - Inliers and Outliers L L
3.3 Panoramic stitching L e
4 Programming Task - 2
4.1 Input Images o e e e
4.2 Correspondences - Inliers and Outliers L L
4.3 Panoramic Stitching L e
5 Extra Credit - LM algorithm implementation
6 Source Code
6.1 main.py e
6.2 homography_estimation.py
6.3 LM_optim.py e
6.4 Panorama.pyo i e e e e e e e e e e
6.5 superglue_WrappPer .DY . . . « « v« o e vt e e e e e e e e e e e

12
12
13
14

17
17
18
19

22

1 Theory Questions

1.1 Question 1

Conceptually speaking, how do we differentiate between the inliers and the outliers when using the RANSAC for
solving the homography estimation problem using the interest points extracted from two different photos of the
same scene?

In each trial of the RANSAC algorithm, after we have randomly chosen n correspondences, we calculate the
Linear Least-Squares (LLS) estimate of the homography H. Based on this homography H we find what is
called the re-projection error for both the domain and range points. A correspondence is an inlier (outlier) if
the re-projection error was less than or equal to (greater than) a certain user-defined threshold 6.

Let the i'" correspondence be (x;,x!) and H be the LLS estimate of this particular trial.
The estimate of the range point would be
x';, = Hx;.

And the corresponding estimate of the domain point would be
Zi?i = H_lil?;.

The overall re-projection or geometric error associated with this correspondence is (after converting them from
HC to physical coordinates)

1 ~
o a2 r_ ot ||2
dﬁ*Q\/”‘Dz | |? +] — a3,
The factor of 1/2 is a matter of convention, since we are considering errors on both domain and range planes.

The threshold 0 is calculated based on the expected deviation of the locations of the keypoints in the scene. If
we consider the accuracy of finding the exact location of the keypoint at (x,y) has a Gaussian behaviour, i.e.,
maximum at (z,y) and falls away with standard deviation o at the point (z + Az, y + Ay), we are interested
in the distribution of d? = (Ax)? + (Ay)?. We find that it has a x? distribution with 2 d.o.f. The threshold §
is chosen so that 90% of the inliers are accepted. Based on c.d.f. tables of x? distribution, we arrive at § = 3o.

1.2 Question 2

The Gradient-Descent (GD) is a reliable method for minimizing a cost function, but it can be excruciatingly
slow. At the other extreme, we have the much faster Gauss-Newton (GN) method but it can be numerically
unstable. Explain in your words how the Levenberg-Marquardt (LM) algorithm combines the best of GD and GN
to give us a method that is reasonably fast and is numerically stable at the same time.

The Levenberg-Marquardt (LM) algorithm uses a damping coefficient p which dictates if we take a Gradient
Descent (GD) step or a Gauss-Newton (GN) step. At the k'™ iteration, the “update” term 4, is the solution of
the following linear equation:

(I 5+ nD)dy = JF (pr)

where, Jg is the Jacobian of the vector predictor function f(pg), I is the Identity matrix, and €(pg) is the
prediction residual at the k" iteration.

If the value of p is much larger compared to the diagonal of J;J f, the solution of the “update” term is closer
to GD. Similarly, if 4 = 0, the we get the GN solution.

We know that the GD algorithm is numerically stable but is slow to convergence because the gradient approaches
0 near the minimum of the cost function. The “update” term becomes smaller and smaller. On the the other
hand, GN can reach the solution within minimal number of iterations, but is highly unstable because in most
cases, the Jacobian matrices are not full rank and it gets difficult to find its pseudo-inverse.

In the LM algorithm, we start with a high value of u to exploit the numerical stability of the GD algorithm. At
each iteration, we perform a check to see if we are close enough to take the GN jump to the minima. The value
of 1 in each iteration is updated based on the ratio of the actual change in the cost function to the predicted
value of the change in the cost function based on the current choice of p.

2 Panoramic Stitches or Image Mosaics

2.1 Overall Pipeline

The overall pipeline to create a panorama of a given set of images is -
1. For every consecutive pairs of images, automatically estimate the homography by -

(a) Using an interest point detector and matcher like SIFT or SuperPoint+SuperGlue to find correspon-
dences between the two images.

(b) Using an outlier ejection algorithm like RANSAC to differentiate between the noisy (inliers) and false
(outliers) correspondences.

(¢) Using Linear Least-Squares minimization to find the homography based on the inliers that have the
best inlier support.

(d) Using Nonlinear Least-Squares minimization to refine the homography.

2. Calculate the homography w.r.t to the reference image (will be placed at the center of the canvas).

3. From left to right, apply the homographies to the image and place it on the canvas.

2.2 Mathematical Background and Python Implementation
2.2.1 Linear Least-Squares Minimization (using SVD)

Given a set of K point-to-point correspondences (x, '), we can find the Linear Least-Squares (LLS) estimate
of the homography H using two methods. One of those methods involves using a homogeneous set of equations
followed by a Singular Value Decomposition (SVD).

For a correspondence, using homogeneous coordinates representation, we can say that the rows of H denoted
by (h', h2 h3) satisfy

0'h'—w'x"h2+y'x"h3=0
wzTht +0"h2—2'x"h3=0

Collecting all the equations using the K correspondences gives us

Ah =0
where,
0 0 0 —wix —w) —wiw " ! tw
171 141 1W1 Y171 Y11 Y11
/ / / / / !
wiT1 wWiYr wjwp 0 0 0 —xiT —Ty1 —Tiwp
A =
/ / / / / /
0 0 0 —WETK —WEYK —WrWK YrTK Y YK YWk
/ / / ! ! !
|WgTk WYk WKWK 0 0 0 —TRITx —TRYKk —TRWEK |

.
h=[hi1 hiz hiz hoy hay hos hsi hsy hss)

The matrix A is of dimension 2K x 9 and therefore, we have 2K equations. Here, 2K far exceeds the number
of variables (9) and thus is an over-determined system of equations. Often, this system of equations does not
have a solution.

To obtain a solution is this very scenario, we apply an constrained minimization of ||Ah||, subject to the
constraint ||h|| = 1.

The way to solve this constrained minimization problem is by using SVD. The value of h that satisfies this
constraint is the vector associated with smallest singular value.

1 def H_p_to_p(ptsl:np.ndarray, pts2:np.ndarray):

4 Function to estimate Linear Least Squares fit of the homography matrix H such that pts2

H * ptsl.

6 Args:

7 ptsl (np.ndarray): Set of points on domain plane. Must be in homogeneous coordinates.

8 pts2 (np.ndarray): Set of matching points on range plane. Must be in homogeneous

coordinates.

10 Returns:

11 np.ndarray: Homography matrix such that pts2 = H * ptsl
o o

13

14 assert len(ptsl) == len(pts2)

15

16 assert len(ptsl) >= 4

17

18 A =[]

0 for (x, y, w), (xp, yp, wp) in zip(ptsl, pts2):
A.append ([0, O, O, -wp*x, -wp*y, -Wp*w, yp*x, yp*y, yp*wl)
A.append ([wp*x, wp*y, wp*w, O, O, O, -Xp*x, -Xp*y, —-xp*w])

A = np.array(A)
_, _, vt = np.linalg.svd(A)

27 h = vt.T[:, -1]

28

29 H = np.reshape(h, (3, 3))
30

31 H /= H[2, 2] + eps

return H

Listing 1: Python implementation to find the LLS estimate of the homography H.

2.2.2 RANdom SAmpling Consensus (RANSAC)

Once we obtain a set of correspondences, we must be able to remove any false correspondences or outliers to
get a correct estimate of the homography H. A single outlier can give incorrect results of H. One method to
remove the outliers is using the RANSAC algorithm, it returns a set of inliers that has the maximum inlier

support.

In a trial, we consider a set of n (typically 4 < n < 10) correspondences to calculate the LLS estimate of
the homography. Then we calculate the re-projection error both in the domain points and range points and
threshold it by § = 30. Correspondences that have re-projection error less than or equal to the threshold are
considered as the inliers and once with re-projection error greater than the threshold are considered as outliers.
This was further discussed in the answer of the theory question. We conduct IV trials that is determined using
an adaptive algorithm based on the outlier probability (¢) and based on the probability that at least one of

those trials only contain inliers (p).

Algorithm 1 Adaptive algorithm to determine the number of RANSAC samples

N + o0

sample__count < 0

e+1

while (N > sample__count) do
sample__count < sample__count + 1

Choose a sample of n correspondences and count the number of inliers

n__inliers
€e+—1— ———
n_ total

log (1 —p)

log (1—(1—¢€)")
end while

1
2
3
4

16

17

19
20

Algorithm 2 RANSAC(domain points @. range points x’, o, p, n)

n__total < (len(ptsl))
6+ 30
e+ 1
N + o0
sample__count < 0
inliers, outliers, len_inliers < [|
while N > sample__count do
sample__count < sample__count + 1
randomly select n correspondences
H < LLS estimate of the homography H > Using SVD discussed previously
sample_inliers, sample_outliers < [|
len__sample_inliers <+ 0
for (i'" correspondence (z;, %)) do
:l;/i — Hil?Z
Z; H_ISL’;

d; < %\/Hm@ — &2+ || — 23|32 > Re-projection error
if d; <6 then
add (x;,z}) to sample_inliers
len__sample__inliers < len__sample_inliers + 1
else
add (z;, z}) to sample_outliers
end if

end for o
len__sample_inliers

e+ 1-—
n__total

log (1 —p)
log (1 - (1)

add sample__inliers to inliers

add sample_ outliers to outliers

add len__sample_inliers to len__inliers
end while
largest__set < argmax(len_inliers)
best__inliers + inliers[largest__set]
best_ouliers < outliers[largest__set]
return best__inliers, best_outliers

def RANSAC(ptsl:np.ndarray, pts2:np.ndarray, sigma:float, p:float, n:int, e:float=None):

Function to apply the RANSAC algorithm to find inliers and outliers of matching set of
points ptsl and pts2.

Args:
ptsl (np.ndarray): Set of points on domain plane. Must be in regular coordinates.
pts2 (np.ndarray): Set of matching points on range plane. Must be in regular
coordinates.
sigma (float): Estimate of noise induced on the noisy matches.

p (float): Probability that atleast 1 trial will be free of outliers. ‘€0 <= p <= 1°¢¢
n (int): Number of correspondences used to find the LLS estimate of homography H. ‘4
< n < 10°¢¢
e (float, optional): Probability that chosen correspondence is an outlier. Defaults to
‘“None ‘¢ as it is adaptively calculated. €‘0 <= e <= 1°°¢
Returns:

(np.ndarray, np.ndarray): Tuple consisting of the inliers and outliers with the
maximum inlier support. Each row is a correspondence in the order (domain.x, domain.y,

range.x, range.y)

assert len(ptsl) == len(pts2)

n_total = len(ptsl)

88

90
91

92

if (p < 0) or (p > 1):
raise ValueError (£"Invalid value of p={p}. ‘p‘ must be within [0, 1].")

if (n < 4) or (n > 10):
raise ValueError (f"Invalid value of n={n}. ‘n‘ must be within (4, 10).")

if e is None:

e =1
else:
if (e < 0) or (e > 1):
raise ValueError(f"Invalid value of e={e}. ‘e‘ must be withim [0, 1].")

correspondences = np.hstack((ptsl, pts2))
delta = 3 * sigma

N = np.inf
sample_count = 0

M = np.floor((1 - e) * n_total).astype(np.int32)

ptsi_hc np.hstack ((ptsl, np.ones((n_total, 1))))
pts2_hc = np.hstack((pts2, np.ones((n_total, 1))))

outliers = []
inliers = []
len_inliers = []

while (N > sample_count):
sample_count += 1
sample_idx = np.random.permutation(np.arange(n_total)) [:n]

ptsl_selected
pts2_selected

ptsl_hc[sample_idx]
pts2_hc[sample_idx]

H = H_p_to_p(ptsl_selected, pts2_selected)

ptsl_estimate = np.linalg.inv(H) @ pts2_hc.T

ptsil_estimate /= ptsl_estimate[2] + eps

ptsl_estimate = ptsl_estimate.T

distl = np.sum(np.power(ptsl_estimate[:, :2] - ptsl, 2), 1)

pts2_estimate = H @ ptsl_hc.T

pts2_estimate /= pts2_estimate[2] + eps

pts2_estimate = pts2_estimate.T

dist2 = np.sum(np.power(pts2_estimate[:, :2] - pts2, 2), 1)

dists = np.sqrt(distl + dist2) / 2

inlier_idx = np.where(dists <= delta) [0]
outlier_idx = np.where(dists > delta) [0]

inlier = correspondences[inlier_idx, :]
outlier = correspondences [outlier_idx, :]

e = 1 - len(inlier)/n_total
N np.log(l-p) / (np.log(1-(1-e)**n))
M np.floor((1 - e) * n_total).astype(np.int32)

inliers.append(inlier)
outliers.append(outlier)
len_inliers.append(len(inlier))

largest_set_idx = np.argmax(len_inliers)
if len_inliers[largest_set_idx] < M:

warnings.warn(f"Largest inlier set size = {len_inliers[largest_set_idx]} < {M}.

constraints by changing params")

best_inliers = np.array(inliers[largest_set_idx])
best_outliers = np.array(outliers[largest_set_idx])

return (best_inliers, best_outliers)

Listing 2: Python implementation of the RANSAC algorithm.

Relax

1

14

15

2.2.3 Nonlinear Least-Squares Minimization (using LM)

Once we obtain a LLS estimate of the homography H, we must refine it using Nonlinear Least-Squares (NLLS)
to get a better estimate of H between two scenes. A common NLLS strategy used is Levenberg-Marquardt
(LM) algorithm. It combines the numerical stability of Gradient Descent (GD) and the speed of Gauss-Newton
(GN). The following pseudo-code is from here. The maximum number of iterations and other tolerance levels
(e1,€2,¢€3) are user inputs. The scaling factor 7 for the damping coefficient p is also an user input. The Jacobian
is calculated using finite differences.

Algorithm 3 LM (Vector prediction function f, measurement vector x, Initial guess po)

n_iter <0
V<2
P < Po
f1€—=Z;Jf
p <z — f(p)
g J;ep
stop < ||gll < &1
po4— T X maxi—1,. .. m(Aii)
while (not stop) and (n_iter < mazx_iter) do
n_iter < n_iter +1
Solve (A + pul)dp, =g
if [[dp|l2 < e2[[pll2 then
stop < True
else
Prew < P+ 0p
(llepll3 — [l — £(P)II3)
55 (u6p + 9)
if p > 0 then
A+ Jf Jf
ep — x — f(p)
g+ JfTep
stop <= (|lgllsc < e1) or (|lepll3 < e3)
4 px max (1/3,1— (2p—1)3)
V<2
else
W pv
V< 2v
end if
end if
end while
return p

p

def LM_optim(fun:callable, x0:np.ndarray, tau:float=1e-3, epsl:float=1le-15, eps2:float=1e-15,
eps3:float=1e-15, max_iter:int=100, args=(), kwargs={}):

Function to implement Levenberg-Marquardt optimization algorithm. Implementation follows
pseudocode in https://users.ics.forth.gr/~lourakis/levmar/levmar.pdf.
Jacobian is estimated using a 2-pt finite difference method.

Args:

fun (callable): Callable function which computes the residuals. Function signature and
usage: ‘‘fun(x, *args, #**kwargs) ‘‘. Minimization proceeds w.r.t first argument.

x0 (np.ndarray): Initial guess for the independent variables.

tau (float): Scaling factor for the damping parameter mu. ‘0 < tau <= 1¢¢. Defaults
to ‘‘1e-3°°.

epsl (float): Termination threshold for the inf-norm of the gradient. Termination
condition: ‘‘norm(grad, inf) <= epsl‘‘. Defaults to ‘‘le-15°¢°¢.

eps2 (float): Relative termination threshold for delta. Termination condition: ‘‘mnorm(
delta) <= eps2 * norm(x) ‘‘. Defaults to ‘‘le-15°¢°.

eps3 (float): Termination threshold for the square of the norm of residuals. ‘‘norm(
fun(x))**2 <= eps3‘‘. Defaults to ‘‘le-15°°¢.

max_iter (int): Maximum number of iterations.

https://users.ics.forth.gr/~lourakis/levmar/levmar.pdf

16
17

69

81
82
83

84

Returns:

solution (OptimizeSolution): The solution to the optimization problem.
OptimizeSolution ‘¢ has the following fields -

1. x (np.ndarray): Solution to the optimization problem.

2. errors (list): Values of the cost function (C) at every iteration. C = norm(fun(x,
*args, **kwargs), 2)°2

3. mu (float): Final value fo the damping parameter used in the algorithm.

4. jac (np.ndarray): Value of the Jacobian at the end of optimization.

5. hess (np.ndarray): Value of the Hessian at the end of optimization.

6. n_iter (int): Number of iteration taken to reach termination conditions.

¢«

pIpdnE (0 coccooooocoocoonooccocoonoos Starting LM optimization...
____________________________ \n")

m = len(x0)

errors = []

n_iter = 0

nu = 2

x = x0

residual = fun(x, *args, **kwargs)

jac = -approx_fprime(x, fun, 1e-8, *args) # ’-’ sign because taking jacobian of residual
vector.

hess = jac.T @ jac

grad jac.T @ residual

stop = (norm(grad, np.inf) <= epsl)
mu = tau * np.max(np.diag(hess))

while (not stop) and (n_iter < max_iter):
n_iter += 1
errors.append (norm(residual , 2)*%*2)

delta = solve(hess + mu*np.eye(m), grad)

if (norm(delta, 2) <= eps2*norm(x, 2)):

stop = True
else:
X_new = x + delta
rho = (norm(residual, 2)**2 - norm(fun(x_new, *args, *xkwargs), 2)**2) / (delta.T

@ (muxdelta + grad))

if rho > O:

X = X_new
residual = fun(x, *args, **kwargs)
jac = -approx_fprime(x, fun, 1le-8, *args)

hess = jac.T @ jac

grad = jac.T @ residual
stop = (norm(grad, np.inf) <= epsl) or (norm(residual, 2)**2 <= eps3)
mu *= max (1/3, 1-(2%rho - 1) *%3)
nu = 2
else:
mu *= nu
nu *= 2
else:
if stop:
print (f"Stopped on reaching termination conditions in {n_iter} iteration(s). \n")
print ("
___ ll)
else
print ("Stopped on reaching maximum iteration(s). \n")
print ("
___ ll)

class OptimizeSolution:
def __init__(self):
self.x = None

90

92
93
94
95
96
97

98

100
101
102

103

self .errors = None
self .mu = None
self.jac = None
self .hess = None
self.n_iter = None

def set_solution(self, x, errors, mu, jac, hess, n_iter):

self.x = x

self.errors = errors

self .mu = mu

self.jac = jac

self .hess = hess

self .n_iter = n_iter
solution = OptimizeSolution ()

solution.set_solution(x, errors, mu, jac, hess, n_iter)

return solution

Listing 3: Python implementation of Levenberg-Marquardt optimization algorithm.

2.2.4 Panoramic Stitching

To be able to place all projections on a single canvas to create a panorama, we must first decide a reference
image with respect to whom we will find the homography H. We will choose the middle image as the reference
that is placed at the center of the canvas. In case of odd number of images, the middle is well defined. But if
there were even number of images, we can just choose the middle be (% —1).

Now we must calculate the homography with respect to this reference image.

Let H;_,; represent the homography that takes domain plane 4 to range plane j. Therefore,

H; ,;=H !

i—J

In our case, i and j are the indices of the images. I will demonstrate this for the case of 5 images. The reference
index would be 3. We can find Hy_,o, Ho_,3, H3_,4, Hy_,5 using the automatic homography estimation pipeline
discussed previously. We must find H;_,3 for all i.

Hy 3= Hy 2 X Hy 43

Hy ;3= Hs .3

H3 ,3=1

Hy 3 =Hy,

Hs 3= Hs yy x Hyy3=H s x Hy!,

Once we have this we must find out the size of canvas which will help us to place the reference image in the
middle of the canvas. I found this by projecting the corners of the i** image using H;_,3 and

Height of canvas = max(height of projected image using the corners)

Width of canvas = Z(width of image)

Of course, there will be some overlap between the projected images. This will be taken care by trimming away
all the zeros along the borders after all images are placed on the canvas.
To place the reference image at the center of the canvas, we define

_ Width of canvas - Width of reference image

“ 2
Height of canvas - Height of reference image
y = 2
and
1 0 t,
Hiransiation = [0 1 ty
0 0 1

Now we must multiply every H;_.3 by this translation homography to obtain the final homography that needs
to be applied to the i*"* image.

The homography can be applied using two interpolation strategies - nearest neighbors and bi-linear interpolation.

Bi-linear interpolation gives us a better quality of image because it interpolates for a pixel at (z,y) using all

four of its nearest neighbors. The nearest neighbor interpolation just picks the pixel value at (|z], |y]) as the

value of the pixel at (z,y).

def generate_pano(image_filenames:list, matcher:str="SP_SG", optimizer:str="scipy_1lm", interp:
str="bilinear"):

Function to create a panorama given a set of images. The middle image is placed at the
center of the canvas and then homographies are found relative to the middle image.

Args:

image_filenames (list): List that contains the paths to all images to create a
panorama.

matcher (str): Select which feature detection and matching algorithm to use. If ¢
matcher ¢ is "sift", correspondence are found using Scale-Invariant Feature Transform (
SIFT) algorithm. If ‘‘matcher ‘‘ is "SP_SG", correspondence are found using SuperPoint+
SuperGlue deep learning pre-trained network. Defaults to "SP_SG". Check °°¢
superglue_wrapper.py‘‘ for more information to run the SuperPoint+SuperGlue pre-trained
network.

optimizer (str): Select if homography should be refined using the LM algorithm. If ¢
optimizer ‘¢ is ‘‘None‘‘, the homography is not refined. If ‘‘optimizer ‘¢ is "scipy_1lm",
the homography is refined using the in-built SciPy implementation of the LM algorithm. If
‘‘optimizer ‘¢ is "1Im", the homography is refined using my implementation of the LM
algorithm.

interp (str): Select which interpolation strategy to use when applying the homogrpahy.
If ‘‘interp‘‘ is "n_neighbors", uses nearest neighbors interpolation. If ¢‘interp‘‘ is "
bilinear", uses bi-linear interpolation. Defaults to "bilinear".
Returns:

canvas (np.ndarray): The canvas that contains the panorama.

H all = []
n_images = len(image_filenames)

for i in range(0, n_images-1):

imgl = image_filenames[i]
img2 = image_filenames[i+1]
H = auto_estimate_homography(imgl, img2, matcher, optimizer).H

H_all.append (H)
ref_idx = ((n_images+1)//2) - 1
H_wrt_ref_all = [np.eye(3, dtype=np.float64)]*(len(H_all)+1)

H_wrt_ref = np.eye(3, dtype=np.float64)

for i in range(ref_idx+1, n_images):
H_wrt_ref = H_wrt_ref @ np.linalg.inv(H_all[i-1])
H_wrt_ref_all[i] = H_wrt_ref

H_wrt_ref = np.eye(3, dtype=np.float64)

for i in range(ref_idx-1, -1, -1):
H_wrt_ref = H_wrt_ref @ H_alll[i]
H_wrt_ref_all[i] = H_wrt_ref

image_all = [cv.imread(image_filenames[i]) for i in range(n_images)]

temp = [find_projected_corner_h(image_all[i], H_wrt_ref_all[i]) for i in range(n_images)]
canvas_h = np.max(temp)

canvas_w = np.sum([image_all[i].shape[1] for i in range(n_images)])

canvas = np.zeros((canvas_h, canvas_w, 3), dtype=np.uint8)

tx = (canvas_w-image_all[ref_idx].shapel[1]) // 2

ty (canvas_h-image_all[ref_idx].shape[0]) // 2

H_tr = np.array([1, O, tx, O, 1, ty, O, O, 1])
np.reshape (H_tr, (3, 3))

=]

ot

2]
]

10

58 for i in range(n_images):

59 H_wrt_ref_all[i] = H_tr @ H_wrt_ref_alll[il

60

61 for i in range(0, n_images):

62 canvas = apply_homography(image_all[i], canvas, H_wrt_ref_all[i], interp)
63

64 ## If want to view the panorama after every iteration
65

66 # cv.namedWindow ("canvas", cv.WINDOW_NORMAL)

67 # cv.resizeWindow ("canvas", 600, 600)

68 # cv.imshow("canvas", canvas)

69 # cv.waitKey (0)

70 # cv.destroyAllWindows ()

71

72 canvas = trim_zeros (canvas)

73 return canvas

Listing 4: Python implementation to create a panorama.

11

3 Programming Task - 1

3.1 Input Images

(a) 1.jpg (b) 2.jpg

(d) 4.jpe (e) 5.jprg

Figure 1: Input images to create a panorama.

Paramaters for RANSAC Value

6 for SIFT 30
§ for SP+SG 2
P 0.99
n 8
Parameters for LM Value
T 10-3
€1 1015
£9 1018
€3 10718
max__iter 100
¢ used in Jacobian 108

12

(c) 3.jrg

3.2 Correspondences - Inliers and Outliers

(c) Image 3 and 4. (d) Image 4 and 5.

Figure 2: Using SuperPoint+SuperGlue (SP+SG) feature detector and matcher.

P

(a) Image 1 and 2. (b) Image 2 and 3.

(c) Image 3 and 4. (d) Image 4 and 5.

Figure 3: Using SIFT feature detector and matcher.

13

3.3 Panoramic stitching

I will show the results using the SP4+SG feature matcher because it is more robust as it detects higher number
of inliers used to find the homography between the two scenes.

Figure 4: Stitching using no nonlinear least-squares optimization and bi-linear interpolation when applying H.

Figure 5: Stitching using no nonlinear least-squares optimization and nearest neighbors interpolation when
applying H.

14

Figure 6: Stitching using SciPy’s LM optimization and bi-linear interpolation when applying H.

Figure 7: Stitching using SciPy’s LM optimization and nearest neighbors interpolation when applying H.

15

Figure 8: Stitching using my implementation of LM optimization and bi-linear interpolation when applying H.

Figure 9: Stitching using my implementation of LM optimization and nearest neighbors interpolation when
applying H.

16

4 Programming Task - 2

4.1 Input Images

(a) 1.jpg (b) 2.jpg (c) 3.jpg

(d) 4.jpg (e) 5.3jpg

Figure 10: Input images to create a panorama.

Paramaters for RANSAC Value

¢ for SIFT 1
¢ for SP+SG 2
P 0.99
n 8
Parameters for LM Value
T 10-3
£1 10~15
E9 10-15
£3 10~15
max_ iter 100
¢ used in Jacobian 10-8

17

4.2 Correspondences - Inliers and Outliers

(a) Image 1 and 2. (b) Image 2 and 3.

(c) Image 3 and 4. (d) Image 4 and 5.

Figure 11: Correspondences found using SuperPoint+SuperGlue (SP+SG) feature detector and matcher.

(a) Image 1 and 2. (b) Image 2 and 3.

(c) Image 3 and 4. (d) Image 4 and 5.

Figure 12: Correspondences found using SIFT feature detector and matcher.

18

4.3 Panoramic Stitching

We see that SIFT performs well in detecting and matching the keypoints, so I will only show results using SIFT
as the matcher function.

Figure 13: Stitching using no nonlinear least-squares optimization and bi-linear interpolation when applying H.

Figure 14: Stitching using no nonlinear least-squares optimization and nearest neighbors interpolation when
applying H.

19

Figure 15: Stitching using SciPy’s LM optimization and bi-linear interpolation when applying H.

Figure 16: Stitching using SciPy’s LM optimization and nearest neighbors interpolation when applying H.

20

Figure 17: Stitching using my implementation of LM optimization and bi-linear interpolation when applying
H.

Figure 18: Stitching using my implementation of LM optimization and nearest neighbors interpolation when
applying H.

21

5 Extra Credit - LM algorithm implementation

I implemented the Levenberg-Marquardt algorithm and we can visualize the reduction in the cost function using

the following graphs -

Figure 19: LM iterations between the fountain images using the SP+SG matcher

Figure 20: LM iterations between the hill images using the SIFT matcher

Cost

Cost

Cost

Cost

o o000,
LITTI 1500 e,

1565 . -

°
1560 . 1490 -
1555 . °

. 8 1480 Sews,
8
1550 Sate,, %
L] L]
1545
° 1470
°
1540
° L

1535 ®eoseccioseccossences 1460 ®ecscssnscscsssesiesses

10 20 30 40 0 10 20 30 40

Iterations

(a) Between images 1 and 2

Iterations

(b) Between images 2 and 3

725
Lr— Sovecee,,
1340 .e" ".
720
hd L]
1335 -
° 715 0
1330 . f .
Soeey 710
.
1325
L] .
705
1320 -
L]
........0.........0..... 700 Sescssnsssssssssnssssse
0 10 30 40 o 10 20 30 40

Iterations

(c) Between images 3 and 4

Iterations

(d) Between images 4 and 5

126.06 1 .
126.04 148.90
soocey,

126.02 .

148.85
126.00 + ossceses,

= .
125.98 S °
. 148.80 L
125.96 °
Sevosveny

125.94 L A

148.75

.
125.92 3
.
o,
125.90 148.70 esnssssssscstsssess
0 10 20 30 40 0 10 20 30 40

Iterations

(a) Between images 1 and 2

Iterations

(b) Between images 2 and 3

. o
391.8
359.6
e
3916 .
0000000, °
)
359.4 "
3914 .
° .
g .
e g
359.2 cosscse, 8 3012 -
. Sevseiee,
.
359.0 . 391.0
.
.
390.8
358.8 °
000600620650000065000000 ©000000000000000000000000
3906
0 10 20 30 40 50 10 20 30 40 50

Iterations

(c) Between images 3 and 4

22

Iterations

(d) Between images 4 and 5

6 Source Code

6.1 main.py

import cv2 as cv
import os
import matplotlib.pyplot as plt

from homography_estimation import auto_estimate_homography, draw_inliers_outliers

from panorama import generate_pano

if __mname__ == ’__main__":
img_dir = "pics"
names = ["fountain", "building", "hill"]
out_dir = "outs"
optimizers = [None, "scipy_lm", "1m"]
interps = ["bilinear", "n_neighbors"]

matchers = ["SP_SG", "sift"]

for name in names[-1:]:
n_images = 5

images = [os.path.join(img_dir, name, f£"{i}.jpg") for i in range(1,

for optimizer in optimizers[:]:
for matcher in matchers:
for i in range(l, n_images):

imgl = images[i-1]
img2 images [i]
homography_sol = auto_estimate_homography(imgl, img2,

H = homography_sol.H

n_images+1)]

matcher, optimizer)

inliers = homography_sol.inliers
outliers = homography_sol.outliers
in_out_filename = os.path.join(out_dir, name, f"{namel}_{optimizerl}_{

matcher} _in_out_{i}_{i+1}.pdf")
draw_inliers_outliers(imgl, img2, inliers, outliers,

if optimizer == "1lm":
errors = homography_sol.optim_solution.errors
n_iter = homography_sol.optim_solution.n_iter
plt.scatter(range(l, n_iter+1), errors)
plt.grid O
plt.xlabel("Iterations")
plt.ylabel("Cost")

error_filename = os.path.join(out_dir, name, f"{namel}_{matcher}_error_
{i}_{i+1}.pdf")
plt.savefig(error_filename, bbox_inches="tight", dpi=300)
plt.close ()
for optimizer in optimizers:
for matcher in matchers:
for interp in interps:
pano_img = generate_pano (images, matcher=matcher, optimizer=optimizer,
interp=interp)
pano_filename = os.path.join(out_dir, name, f"{namel}_pano_{optimizer}_{

matcher}_{interpl}.pdf")
plt.imshow(cv.cvtColor (pano_img, cv.COLOR_BGR2RGB))
plt.axis(’off’)

in_out_filename)

plt.savefig(pano_filename, bbox_inches=’tight’, pad_inches=0, dpi=300)

plt.close ()

23

6.2 homography_estimation.py

1 import cv2 as cv

2 import numpy as np

3 import matplotlib.pyplot as plt

4+ from scipy.optimize import least_squares
5 import warnings

7 from superglue_wrapper import SuperGlue
o from LM_optim import LM_optim
11 eps = np.finfo(float) .eps

13 def draw_inliers_outliers(imgl:str, img2:str, inliers:np.ndarray, outliers:np.ndarray,

filename:str):
nnn

15 Function to draw the inliers and outliers after RANSAC.

17 Args:

18 imgl (str): Path to image 1.

19 img2 (str): Path to image 2.

20 inliers (np.ndarray): Set of inliers.
21 outliers (np.ndarray): Set of outliers.
22 filename (str): Filename to save the figure.
23 nun

24

25 imgl = cv.imread(imgl)

26 img2 = cv.imread(img2)

28 ms = 3

29 lw = 0.5

31 hli, wi = imgl.shapel[:2]

32 h2, w2 = img2.shape[:2]

33

34 result = np.zeros ((np.max([hl, h2]), wl + w2, 3), dtype=np.uint8)
35 result[:hl, :wl] = imgl

36 result[:h2, wl:] = img2

37 result = cv.cvtColor (result, cv.COLOR_BGR2RGB)

39 in_ptsl_x = inliers[:, 0]

40 in_ptsil_y = inliers[:, 1]

41 in_pts2_x = inliers[:, 2] + wil

42 in_pts2_y = inliers[:, 3]

43

44 out_ptsl_x = outliers[:, 0]

45 out_ptsl_y = outliers[:, 1]

46 out_pts2_x = outliers[:, 2] + wl

a7 out_pts2_y = outliers[:, 3]

a8

49 plt.imshow(result)

50 c_g = [0, 1, O]

51 c_r = [1, 0, 0]

52 plt.plot([in_ptsl_x, in_pts2_x], [in_ptsl_y, in_pts2_yl, color=c_g, linestyle=’--’,
linewidth=1lw, marker=".", ms=ms, markerfacecolor=c_g)

53 plt.plot([out_ptsi_x, out_pts2_x], [out_ptsl_y, out_pts2_yl, color=c_r, linestyle=’--’,
linewidth=1lw, marker=".", ms=ms, markerfacecolor=c_r)

54

55 plt.axis(’off’)

56 plt.savefig(filename, bbox_inches=’tight’, pad_inches=0, dpi=300)

57 plt.close ()

58

59 return

61 def _SP_SG_feature_match(imgl:str, img2:str):

64 Wrapper function to use SuperPoint+SuperGlue pre-trained network to detect and match
features.

66 Args:

67 imgl (str): Path to image 1.
68 img2 (str): Path to image 2.
69

70 Returns:

24

90

133
134
135
136
137

139
140

142
143

def

def

Returns in order
1. Matched keypoints of image 1

Matched keypoints of image 2

A1l keypoints of image 1

All keypoints of image 2

Desciptor vector

Desciptor vector

tuple:

o O W N

detector =
kpO,
kpl,

SuperGlue.create ()

descriptor0 = detector.detect_and_compute (imgil
descriptorl = detector.detect_and_compute (img2
mkptsO, mkptsl =

detector .match(imgl, img2)

return (mkptsO, mkptsl, kpO, kpl, descriptor0, desc

_SIFT_feature_match(imgl:str, img2:str):

Wrapper function to use
features.

Args:
imgl (str):
img2 (str):

Path to
Path to

image 1.
image 2.

Returns:
tuple: Returns in order

1. Matched keypoints of image 1
Matched keypoints of image 2
A1l keypoints of image 1
All keypoints of image 2
Desciptor vector
Desciptor vector

o O W N

cv.IMREAD_GRAYSCALE)
cv.IMREAD_GRAYSCALE)

imgl_gray =
img2_gray =

cv.imread (imgl,
cv.imread (img2,

sift =
kpO,
kpl,

cv.SIFT_create ()
descriptor0 = sift.detectAndCompute (imgl_gray,
descriptorl = sift.detectAndCompute (img2_gray,

bf = cv.BFMatcher (cv.NORM_L2, True)

matches = bf.match(descriptor0, descriptorl)
matches = sorted(matches, key=lambda x: x.distance)
mkptsO

mkptsi

np.array ([kpO[match.queryIdx].pt for match
np.array ([kpl [match.trainIdx].pt for match

return (mkptsO, mkptsl, kpO, kpl, descriptorO, desc

H_p_to_p(ptsl:np.ndarray, pts2:np.ndarray):

Function to estimate Linear Least Squares fit of th
H * ptsl.

Args:
ptsl (np.ndarray):
pts2 (np.ndarray):
coordinates.

Set
Set

of points on domain plan

Returns:

np.ndarray: Homography matrix such that pts2 =

assert len(ptsl) == len(pts2)

assert len(ptsl) >= 4

A =[]

25

of matching points on range plane.

associated to all keypoints of image 1
associated to all keypoints of image 2

)
)

riptor1l)

Scale-Invariant Feature Transform (SIFT) to detect and match

associated to all keypoints of image 1
associated to all keypoints of image 2

None)
None)

100])
1001)

in matches if match.distance <=
in matches if match.distance <=

riptorl)

e homography matrix H such that pts2 =

e. Must be in homogeneous coordinates.

Must be in homogeneous

H * ptsi

144 for (x, y, w), (xp, yp, wp) in zip(ptsl, pts2):

145 A.append ([0, O, O, -wp*x, -wWwp*y, -Wp*w, yp*x, yp*y, yp*wl)
146 A.append ([wp*x, wp*y, wp*w, O, O, O, -xp*x, —-xXp*y, -xp*wl])
147

148 A = np.array(A)

149 _, _, vt = np.linalg.svd(A)

150

151 h = vt.T[:, -1]

152

153 H = np.reshape(h, (3, 3))

154

155 H /= H[2, 2] + eps

156

157 return H

158

150 def RANSAC(ptsl:np.ndarray, pts2:np.ndarray, sigma:float, p:float, n:int, e:float=None):

160

161 e

162 Function to apply the RANSAC algorithm to find inliers and outliers of matching set of
points ptsl and pts2.

163

164 Args:

165 ptsl (np.ndarray): Set of points on domain plane. Must be in regular coordinates.

166 pts2 (np.ndarray): Set of matching points on range plane. Must be in regular
coordinates.

167 sigma (float): Estimate of noise induced on the noisy matches.

168 p (float): Probability that atleast 1 trial will be free of outliers. ‘0 <= p <= 1°°¢

169 n (int): Number of correspondences used to find the LLS estimate of homography H. ‘4
< n < 10°¢

170 e (float, optional): Probability that chosen correspondence is an outlier. Defaults to

‘‘None ‘¢ as it is adaptively calculated. ‘0 <= e <= 1°¢¢

171

172 Returns:

173 (np.ndarray, np.ndarray): Tuple consisting of the inliers and outliers with the

maximum inlier support. Each row is a correspondence in the order (domain.x, domain.y,
range.x, range.y)
- W

175

176 assert len(ptsl) == len(pts2)

177

178 n_total = len(ptsl)

179

180 if (p < 0) or (p > 1):

181 raise ValueError (f"Invalid value of p={p}. ‘p‘ must be within [0, 1].")
182

183 if (n < 4) or (mn > 10):

184 raise ValueError (f"Invalid value of n={n}. ‘n‘ must be within (4, 10).")
185

186 if e is None:

187 e =1

188 else:

189 if (e < 0) or (e > 1):

190 raise ValueError (f"Invalid value of e={e}. ‘e‘ must be within [0, 1].")
191

192

193 correspondences = np.hstack((ptsl, pts2))

194

195 delta = 3 * sigma

196

197 N = np.inf

198 sample_count = 0

199

200

201 M = np.floor((1 - e) * n_total).astype(np.int32)

202

203

204 ptsl_hc = np.hstack((ptsl, np.ones((n_total, 1))))

205 pts2_hc = np.hstack((pts2, np.ones((n_total, 1))))

206

207 outliers = []

208 inliers = []

209 len_inliers = []

210

211 while (N > sample_count):

212 sample_count += 1

213 sample_idx = np.random.permutation(np.arange(n_total)) [:n]

26

[CE N
P

[CEN)
)

def

def

def

ptsl_selected = ptsl_hc[sample_idx]
pts2_selected = pts2_hc[sample_idx]

H = H_p_to_p(ptsl_selected, pts2_selected)

ptsi_estimate = np.linalg.inv(H) @ pts2_hc.T

ptsl_estimate /= ptsl_estimate[2] + eps

ptsl_estimate = ptsl_estimate.T

distl = np.sum(np.power(ptsl_estimate[:, :2] - ptsl, 2), 1)

pts2_estimate = H @ ptsl_hc.T

pts2_estimate /= pts2_estimate[2] + eps

pts2_estimate = pts2_estimate.T

dist2 = np.sum(np.power (pts2_estimatel[:, :2] - pts2, 2), 1)

dists = np.sqrt(distl + dist2) / 2

inlier_idx = np.where(dists <= delta) [0]
outlier_idx = np.where(dists > delta) [0]

inlier = correspondences[inlier_idx, :]
outlier = correspondences[outlier_idx, :]
e = 1 - len(inlier)/n_total

N = np.log(i-p) / (np.log(1-(1-e)**n))

=
|

np.floor((1 - e) * n_total).astype(np.int32)

inliers.append(inlier)
outliers.append(outlier)
len_inliers.append(len(inlier))

largest_set_idx = np.argmax(len_inliers)
if len_inliers[largest_set_idx] < M:

warnings.warn(f"Largest inlier set size = {len_inliers[largest_set_idx]} < {M}.

constraints by changing params")

best_inliers = np.array(inliers[largest_set_idx])
best_outliers = np.array(outliers[largest_set_idx])

return (best_inliers, best_outliers)

cost_fun(p, inliers):
nnn

Cost function to return the residuals used in the LM algorithm.
nnn

X =[]
F = []

for (x, y, xp, yp) in inliers:
X.append (xp)
X.append (yp)

F.append ((p[0]l*x + p[1l*y + p[2]) / (p[6l*x + p[7]l*y + p[81))
F.append ((p[3]*x + p[4]l*xy + p[5]) / (pl6l*x + p[7]lxy + p[8]))

X = np.array(X)
F = np.array(F)

return X - F
_scipy_lm_wrapper (cost_fun, H, inliers):

Wrapper function to execute SciPy’s LM algorithm.

return least_squares(cost_fun, H, method=’1lm’, args=[inliers])
_LM_optim_wrapper (cost_fun, H, inliers):

Wrapper function to execute my implementation of LM algorithm.

return LM_optim(cost_fun, H, args=[inliers])

27

Relax

289

290
291
292
293
294

295
296
297
298
299

300

301
302
303

305

306
307

309
310
311
312
313
314
315
316
317
318
319
320

321

323

339
340

342
343
344
345
346
347

def auto_estimate_homography(imgl:str, img2:str, matcher:str="SP_SG", optimizer:str="scipy_1lm"

)

nun

Function to automatically estimate the homography between two images using

feature detection and matching algorithms followed by the application of the

RAndom SAmpling Consensus (RANSAC) algorithm to remove false correspondences. If ¢
optimizer ‘¢ is not ‘‘None‘‘, the homography is refined using Levenberg-Marquardt(LM) non-
linear least squares optimization algorithm.

Args:

imgl (str): Path to image 1.

img2 (str): Path to image 2.

matcher (str): Select which feature detection and matching algorithm to use. If ©°¢
matcher ‘¢ is "sift", correspondence are found using Scale-Invariant Feature Transform (
SIFT) algorithm. If ‘‘matcher ‘‘ is "SP_SG", correspondence are found using SuperPoint+
SuperGlue deep learning pre-trained network. Defaults to "SP_SG". Check °°¢
superglue_wrapper.py‘‘ for more information to run the SuperPoint+SuperGlue pre-trained
network.

optimizer (str): Select if homography should be refined using the LM algorithm. If ¢
optimizer ‘¢ is None, the homography is not refined. If ‘‘optimizer ‘¢ is "scipy_1lm", the
homography is refined using the in-built SciPy implementation of the LM algorithm. If ©°¢
optimizer ‘¢ is "lm", the homography is refined using my implementation of the LM algorithm

Returns:

(Homography_sol): The solution of the automatic homography estimation.
Homography_sol ¢ has the following fields -

1. H (np.ndarray): Estimated homography.

2. solution: If ‘‘optimizer ‘¢ is not ¢‘None ‘‘, this is set as the solution field
retured from either SciPy LM optimization or my implementation of the LM optimization
algorithm. Else is ‘‘None ‘.

3. inliers (mnp.ndarray): Set of inliers with the best inlier support.
outlier (mnp.ndarray): Corresponding set of outliers.
kpl (np.ndarray): Keypoints of image 1.
kp2 (np.ndarray): Keypoints of image 2.
descl (np.ndarray): Descriptor vector of the keypoints of image 1.
desc2 (np.ndarray): Descriptor vector of the keypoints of image 2.

¢«

0 N o O

nun

val_matcher = {"sift": _SIFT_feature_match,
"SP_SG": _SP_SG_feature_match}

try:
matcher_fun = val_matcher [matcher]

except KeyError:
raise ValueError (f"Invalid matcher function. Choose from {list(val_matcher.keys())}")

default_matcher_params = {"sift": [1, 0.99, 8, Nonel,
"SpP_sG": [2, 0.99, 8, Nonel}

val_optimzer = [None, "scipy_1lm", "Im"]
if optimizer not in val_optimzer:

raise ValueError (f"Invalid optimizer method. Chose from {val_optimzer}")

(mkptsl, mkpts2, kpl, kp2, descl, desc2) = matcher_fun(imgl, img2)

r_params = default_matcher_params[matcher]
inliers, outliers = RANSAC(mkptsl, mkpts2, r_params[0], r_params[1], r_params[2], r_params
[31)

inliers_1_hc np.hstack((inliers[:, :2], np.ones((inliers.shapel[0], 1))))
inliers_2_hc = np.hstack((inliers[:, 2:], np.ones((inliers.shape[0], 1))))

H = H_p_to_p(inliers_1_hc, inliers_2_hc)

if optimizer is None:
print ("No optimization applied. \n")

else:

28

390
391

if optimizer ==

optim_fun =
else:

optim_fun =
H =

np.reshape (H, (1,

"scipy_1lm":
print ("Using scipy LM optimization.
_scipy_lm_wrapper

\n")

print ("Using implemented LM optimization. \n")
_LM_optim_wrapper
9)) [0]
optim_fun(cost_fun, H, inliers)

optimize_solution =
H =

H /= H[2, 2] + eps
class Homography_sol ():
def init__(self):

self .H = None

self.optim_solution =

None
None

self.inliers =
self.outliers =
self .kpl = None
self.kp2 = None
self .descl None
self .desc2 = None

def
self .H = H

self.optim_solution =
inliers
outliers

self.inliers =
self.outliers =
self .kpl = kpil
self .kp2 = kp2
self.descl = descl
self.desc2 = desc2

solution = Homography_sol ()

if optimizer is None:
solution._set_solution (H,

else:
solution._set_solution (H,

return solution

np.reshape (optimize_solution.x,

_set_solution(self, H,

(3, 3))

None

optim_solution,

optim_solution

None, inliers,

optimize_solution,

29

inliers,

outliers,

inliers,

outliers, kpl, kp2, descl, desc2):
kpl, kp2, descl, desc2)
outliers, kpl, kp2, descl, desc2

oW N R

o

18

62

6.3 LM_optim.py

import numpy as np
from scipy.optimize import approx_fprime

from numpy.linalg import norm, solve

def LM_optim(fun:callable, xO:np.ndarray, tau:float=1e-3, epsl:float=1e-15, eps2:float=1le-15,
eps3:float=1e-15, max_iter:int=100, args=(), kwargs={}):

nun

Function to implement Levenberg-Marquardt optimization algorithm. Implementation follows
pseudocode in https://users.ics.forth.gr/~lourakis/levmar/levmar.pdf.
Jacobian is estimated using a 2-pt finite difference method.

Args:

fun (callable): Callable function which computes the residuals. Function signature and
usage: ‘‘fun(x, *args, **kwargs) ‘‘. Minimization proceeds w.r.t first argument.

x0 (np.ndarray): Initial guess for the independent variables.

tau (float): Scaling factor for the damping parameter mu. ¢‘0 < tau <= 1¢¢. Defaults

to ‘‘le-3°‘°.

epsl (float): Termination threshold for the inf-norm of the gradient. Termination
condition: ‘‘norm(grad, inf) <= epsl‘‘. Defaults to ‘‘le-15°¢°¢.

eps2 (float): Relative termination threshold for delta. Termination condition: ‘‘norm(
delta) <= eps2 * norm(x) ‘‘. Defaults to ‘‘le-15°°.

eps3 (float): Termination threshold for the square of the norm of residuals. ¢ ‘norm(

fun(x))**2 <= eps3‘‘. Defaults to ‘‘le-15°¢°¢.
max_iter (int): Maximum number of iterations.

Returns:

solution (OptimizeSolution): The solution to the optimization problem.
OptimizeSolution ‘¢ has the following fields -

1. x (np.ndarray): Solution to the optimization problem.

2. errors (list): Values of the cost function (C) at every iteration. C = norm(fun(x,
*args, x*xkwargs), 2)°2

3. mu (float): Final value fo the damping parameter used in the algorithm.

4. jac (np.ndarray): Value of the Jacobian at the end of optimization.

5. hess (np.ndarray): Value of the Hessian at the end of optimization.

6. n_iter (int): Number of iteration taken to reach termination conditions.

¢«

nun

jpipam((0 coccooooococoooooocoooooooos Starting LM optimization...
m = len(x0)

errors = []

n_iter = 0

nu = 2

x = x0

residual = fun(x, *args, **kwargs)

jac = -approx_fprime(x, fun, 1e-8, *args) # ’-’ sign because taking jacobian of residual
vector.

hess = jac.T @ jac
grad jac.T @ residual

stop = (norm(grad, np.inf) <= epsl)
mu = tau * np.max(np.diag(hess))

while (not stop) and (n_iter < max_iter):
n_iter += 1
errors.append (norm(residual , 2)*x2)

delta = solve(hess + mu*np.eye(m), grad)

if (norm(delta, 2) <= eps2*norm(x, 2)):

stop = True
else:
X_new = x + delta
rho = (norm(residual, 2)**2 - norm(fun(x_new, *args, **xkwargs), 2)**2) / (delta.T

@ (mu*xdelta + grad))

30

86
87
88
89

90

if rho > O:

print (f"Stopped on reaching termination conditions in {n_iter} iteration(s).

X = xX_new
residual = fun(x, *args, **kwargs)
jac = -approx_fprime(x, fun, le-8,
hess = jac.T @ jac
grad = jac.T @ residual
stop = (norm(grad,
mu *= max (1/3, 1-(2*rho 1) **3)
nu = 2

else:
mu *= nu
nu *x= 2
else:
if stop:
print ("
else

print ("Stopped on reaching maximum iteration(s).

print ("

class OptimizeSolution:
def __init__(self):

self.x = None

self.errors = None

self .mu = None

self.jac = None

self .hess = None

self .n_iter = None

def set_solution(self, x, errors,

self.x = x

self .errors = errors

self .mu = mu

self.jac = jac

self .hess = hess

self .n_iter = n_iter
solution = OptimizeSolution ()
solution.set_solution(x, errors, mu,

return solution

mu,

jac,

jac,

hess,

31

*args)

np.inf) <= epsl) or (norm(residual,

\n")

hess, n_iter):

n_iter)

2) ¥*¥2 <= eps3)

\n")

oW N R

o

16

6.4 panorama.py

import cv2 as cv
import numpy as np

from homography_estimation import auto_estimate_homography
eps = np.finfo(float).eps

def generate_pano(image_filenames:list, matcher:str="SP_SG", optimizer:str="scipy_1lm", interp:
str="bilinear"):

Function to create a panorama given a set of images. The middle image is placed at the
center of the canvas and then homographies are found relative to the middle image.

Args:

image_filenames (list): List that contains the paths to all images to create a
panorama.

matcher (str): Select which feature detection and matching algorithm to use. If ¢
matcher ‘¢ is "sift", correspondence are found using Scale-Invariant Feature Transform (
SIFT) algorithm. If ‘‘matcher ‘¢ is "SP_SG", correspondence are found using SuperPoint+
SuperGlue deep learning pre-trained network. Defaults to "SP_SG". Check °°¢
superglue_wrapper.py ‘¢
network.

optimizer (str): Select if homography should be refined using the LM algorithm. If
optimizer ‘¢ is ‘‘None‘‘, the homography is not refined. If ¢‘optimizer ‘¢ is "scipy_1lm",
the homography is refined using the in-built SciPy implementation of the LM algorithm. If

for more information to run the SuperPoint+SuperGlue pre-trained

(3

‘‘optimizer ‘¢ is "1Im", the homography is refined using my implementation of the LM
algorithm.
interp (str): Select which interpolation strategy to use when applying the homogrpahy.
If ‘‘interp‘‘ is "n_neighbors", uses nearest neighbors interpolation. If ‘‘interp‘‘ is "
bilinear", uses bi-linear interpolation. Defaults to "bilinear".
Returns:

canvas (np.ndarray): The canvas that contains the panorama.
nnn

H_all = []
n_images = len(image_filenames)

for i in range(0, n_images-1):

imgl = image_filenames[i]
img2 = image_filenames[i+1]
H = auto_estimate_homography(imgl, img2, matcher, optimizer).H

H_all.append (H)
ref_idx = ((n_images+1)//2) - 1
H_wrt_ref_all = [np.eye(3, dtype=np.float64)]*(len(H_all)+1)

H_wrt_ref = np.eye(3, dtype=np.float64)

for i in range(ref_idx+1l, n_images):
H_wrt_ref = H_wrt_ref @ np.linalg.inv(H_all[i-1])
H_wrt_ref_all[i] = H_wrt_ref

H_wrt_ref = np.eye(3, dtype=np.float64)
for i in range(ref_idx-1, -1, -1):
H_wrt_ref = H_wrt_ref @ H_all[i]

H_wrt_ref_all[i] = H_wrt_ref
image_all = [cv.imread(image_filenames[i]) for i in range(n_images)]
temp = [find_projected_corner_h(image_all[i], H_wrt_ref_all[i]) for i in range(n_images)]
canvas_h = np.max(temp)
canvas_w = np.sum([image_all[i].shape[1] for i in range(n_images)])
canvas = np.zeros ((canvas_h, canvas_w, 3), dtype=np.uint8)
tx = (canvas_w-image_all[ref_idx].shapel[1]) // 2
ty = (canvas_h-image_all[ref_idx].shape[0]) // 2

32

69

87
88
89

90

def

def

def

def

H_tr = np.array([1, O, tx, O, 1, ty, O, O, 1])
H_tr = np.reshape(H_tr, (3, 3))

for i in range(n_images):
H_wrt_ref_all[i] = H_tr @ H_wrt_ref_alll[il]

for i in range(0, n_images):

canvas

If want to view the panorama after every iteration

= apply_homography(image_all[i], canvas, H_wrt_ref_alll[il],

cv.namedWindow ("canvas", cv.WINDOW_NORMAL)
cv.resizeWindow ("canvas", 600, 600)
cv.imshow("canvas", canvas)
cv.waitKey (0)
cv.destroyAllWindows ()
canvas = trim_zeros (canvas)

return canvas

_bounds_per_dimesion (arr:np.ndarray):

return map(lambda e: range(e.min(), e.max()+1), np.where(arr
trim_zeros (arr:np.ndarray) :

nnn

Function to trim zeros from multi-dimensional array.

Args:

arr (np.ndarray): array to trim zeros along edges.
Returns:

(nd.array): array with trimmed zeros along edges.
return arr[np.ix_(*_bounds_per_dimesion(arr))]
find_projected_corner_h(img, H):

h, w = img.shape[:2]

source_corners = np.array([(0, O, 1), (w - 1, 0, 1),
.T

dest_corners = H @ source_corners

dest_corners /= (dest_corners[2] + eps)

min_y = np.min(dest_corners[1, :])

max_y = np.max(dest_corners[1, :])

world_h = np.ceil(max_y - min_y).astype(np.int32)

return (world_h)

_n_neighbors (f:np.ndarray, source_coords:np.ndarray, dest_coords:np.ndarray,
ndarray) :

Function to project using nearest neighbors

Args:

f (np.ndarray): Image to be projected or source.

source_coords (np.ndarray): Source coordinates in HC.
Destination coordinates in HC.
Canvas where the image will be projected or destination.

dest_coord (mp.ndarray):
canvas (np.ndarray):

Returns:

(np.ndarray): canvas with the projected image.

source_X =
source_y =

source_coords [0] / (source_coords[2] + eps)
source_coords [1] / (source_coords[2] + eps)

dest_x = dest_coords [0]
dest_y = dest_coords [1]

h, w = f.shapel[:2]

valid_mask

33

interpolation.

(source_x >= 0) & (source_x < w) & (source_y >= 0) & (source_y < h)

135
136 source_x_valid = np.floor(source_x[valid_mask]).astype(np.int32)

137 source_y_valid = np.floor(source_y[valid_mask]).astype(np.int32)

138

139 dest_x_valid = dest_x[valid_mask].astype(np.int32)

140 dest_y_valid = dest_yl[valid_mask].astype(np.int32)

141

142 canvas [dest_y_valid, dest_x_valid] = f[source_y_valid, source_x_valid]

143

144 return canvas

145

146 def _bilinear (f:np.ndarray, source_coords:np.ndarray, dest_coords:np.ndarray, canvas:np.

ndarray) :
147
148 nnn
149 Function to project using bi-linear interpolation.
150
151 Args:
152 f (np.ndarray): Image to be projected or source.
153 source_coords (np.ndarray): Source coordinates in HC.
154 dest_coord (mp.ndarray): Destination coordinates in HC.
155 canvas (np.ndarray): Canvas where the image will be projected or destination.
156
157 Returns:
158 (np.ndarray): canvas with the projected image.
159 nnn
160
161 source_x = source_coords[0] / (source_coords[2] + eps)
162 source_y = source_coords[1] / (source_coords[2] + eps)
163
164 dest_x = dest_coords [0]
165 dest_y = dest_coords [1]
166
167 h, w = f.shapel[:2]
168 if f.ndim == 3:
169 c¢ = f.shapel[2]
170
171 valid_mask = (source_x >= 0) & (source_x < w-1) & (source_y >= 0) & (source_y < h-1)
172
173 source_x_valid = source_x[valid_mask]
174 source_y_valid = source_y[valid_mask]
175
176 x1, y1 = np.floor(source_x_valid).astype(np.int32), np.floor(source_y_valid).astype(np.
int32)
177 x_diff, y_diff = source_x_valid - x1, source_y_valid - y1
178 x2, y2 = x1 + 1, y1 + 1
179
180 dest_x_valid = dest_x[valid_mask].astype(np.int32)
181 dest_y_valid = dest_y[valid_mask].astype(np.int32)
182
183 if f.ndim == 2:
184 f11 = f[ly1, =x1]
185 £f12 = fly1, x2]
186 £f21 = f[y2, x1]
187 £22 = f[y2, x2]
188
189 canvas [dest_y_valid, dest_x_valid] = (f11 * (1 - x_diff) x (1 - y_diff) +
190 £f12 * (x_diff) * (1 - y_diff) +
191 £21 * (1 - x_diff) * (y_diff) +
192 £22 * (x_diff) * (y_diff))
193
194 else:
195 for i in range(c):
196 f11 = f[y1, x1, il
197 f12 = fly1, x2, il
198 £21 = f[y2, x1, il
199 £22 = fly2, x2, il
200
201 canvas [dest_y_valid, dest_x_valid, il = (f11 * (1 - x_diff) * (1 - y_diff) +
202 £f12 * (x_diff) * (1 - y_diff) +
203 £21 * (1 - x_diff) * (y_diff) +
204 £22 x (x_diff) * (y_diff))
205
206 return canvas

207
208 def apply_homography(img:np.ndarray, canvas:np.ndarray, H:np.ndarray, interp:str="bilinear"):

34

210
211
212
213
214

215

217

233
234

235

nun

Function to apply the homogrpahy H to img and place it on the canvas.

Args:
img (np.ndarray): Image to which the homography will be applied to.
canvas (np.ndarray): Canvas to place the projected image on.
H (np.ndarray): The homography to apply.
interp (str): Select which interpolation strategy to use when applying the homogrpahy.
If ‘‘interp‘‘ is "n_neighbors", uses nearest neighbors interpolation. If ‘‘interp‘‘ is "
bilinear", uses bi-linear interpolation. Defaults to "bilinear".

Returns:

(np.ndarray): Canvas after projecting the image.
nnn

val_interp = {"n_neighbors": _n_neighbors, "bilinear": _bilinear}

try:
interp_fun = val_interp[interp]
except KeyError:
raise ValueError (f"Invalid interpolation method. Choose from {list(val_interp.keys())}

||)

world_h, world_w = canvas.shapel[:2]
X = np.arange (0, world_w, 1)

y = np.arange(0, world_h, 1)

X, y = np.meshgrid(x, y)
dest_coords = np.vstack((x.ravel(), y.ravel()))

dest_coords = np.vstack((dest_coords, np.ones(dest_coords.shape[1])))
source_coords = np.linalg.inv(H) @ dest_coords
res = interp_fun(img, source_coords, dest_coords, canvas)

return res

35

6.5 superglue_wrapper.py

import torch
import numpy as np

from SuperGluePretrainedNetwork.models.matching import Matching
from SuperGluePretrainedNetwork.models.utils import read_image

class SuperGlue (object):
def init__(self):

super (SuperGlue, self).__init__()

self .matcher = None
self .device = None
self.config = None
self .resize = None
@classmethod

def create(cls,
force_gpu=False,
nms_radius=4,
keypoint_threshold=0.005,
max_keypoints=-1,
superglue_wts=’indoor’,
sinkhorn_iterations=20,
match_threshold=0.2,
resize=[640, 480]):

det = cls()

det.set_device_as_gpu(force_gpu=force_gpu)

det.set_config(nms_radius,
keypoint_threshold,
max_keypoints,
superglue_wts,
sinkhorn_iterations,
match_threshold)

det .matcher = Matching(det.config).eval().to(det.device)
det.resize = resize
return det

def set_device_as_gpu(self, force_gpu=True):
if torch.cuda.is_available() and force_gpu:

device = ’cuda’

elif torch.backends.mps.is_available() and torch.backends.mps.is_built():

device = ’mps’
else:

device = ’cpu’
self .device = device

def set_config(self, nms_radius,
keypoint_threshold,
max_keypoints,
superglue_wts,
sinkhorn_iterations,
match_threshold):
self.config = {

>superpoint’: {
nms_radius’: nms_radius,
’keypoint_threshold’: keypoint_threshold,
‘max_keypoints’: max_keypoints

})

>superglue’: {
’weights’: superglue_wts,
’sinkhorn_iterations’: sinkhorn_iterations,

match_threshold’: match_threshold,
}
Q@torch.no_grad ()

def detect_and_compute (self, img):
inp, scales = self.read_img(img)

36

89
90
91
92
93
94
95

96

data = self.matcher.superpoint ({’image’: inpl})
kp = datal[’keypoints’][0].to(’cpu’).numpy() * np.array(scales)
desc = datal[’descriptors’][0].to(’cpu’).numpy ()

return kp, desc

Q@torch.no_grad ()

def

def

match(self, imgl, img2):

inp0, scalesO = self.read_img(imgl)
inpl, scalesl = self.read_img(img2)

pred = self.matcher ({’image0’: inpO, ’imagel’: inpl})
pred = {k: v[0].to(’cpu’).numpy() for k, v in pred.items ()}
kptsO, kptsl = pred[’keypoints0’], pred[’keypointsl’]

matches, conf = pred[’matches0’], pred[’matching_scores0’]
valid = matches > -1
mkptsO = kptsO[valid]

mkptsl = kptsl[matches[valid]]

mkptsO = np.array(mkptsO) * np.array(scalesO)
mkptsl = np.array(mkptsl) * np.array(scalesl)

return mkptsO, mkptsl

read_img (self, img_path):
_, inp, scale = read_image(img_path, self.device, self.resize,
return inp, scale

37

0’

False)

	Theory Questions
	Question 1
	Question 2

	Panoramic Stitches or Image Mosaics
	Overall Pipeline
	Mathematical Background and Python Implementation
	Linear Least-Squares Minimization (using SVD)
	RANdom SAmpling Consensus (RANSAC)
	Nonlinear Least-Squares Minimization (using LM)
	Panoramic Stitching

	Programming Task - 1
	Input Images
	Correspondences - Inliers and Outliers
	Panoramic stitching

	Programming Task - 2
	Input Images
	Correspondences - Inliers and Outliers
	Panoramic Stitching

	Extra Credit - LM algorithm implementation
	Source Code
	main.py
	homography_estimation.py
	LM_optim.py
	panorama.py
	superglue_wrapper.py

