ECEG661 Fall 2024: Homework 4
Che-Hung Huang, 00299-50990
huan1160@purdue.edu

1 Theory Question

The LoG of an image can be computed as the DoG since

0
aﬁﬁ(%yﬁ) = UVQﬁ(%Z/J% (1)
o
where
/ ! / / / / 1 7x2+y2
f(z,y,0) = f@ y)glx —2',y —y')da'dy’ and g(ashy):%m’2 202

2

12+
To see that equation (1) holds, we write h(z,y) = V2g(x,y) = 27“74 (2 - 2+y) ST , and so

oV ff(z,y,0) = 0/ f@y) h(x — 2’y —y') da'dy’.

Next, we also have

g (z,y,0 //f — 'y —y)da'dy

- // f&, y/) Wz — ',y —y)da'dy,

where the second equation follows from a direct computation. Thus we see that equation (1) holds.

Computing DoG is more efficient than directly computing LoG since the 2D convolution in LoG
is not separable, but the 2D convolution in DoG is separable, and thus DoG can be calculated using
two 1D convolutions.

2 Programming Tasks

2.1 Harris Corner Detector

To implement the Harris corner detector, we start with the Haar wavelet filters H, and H,, of size M.
Here we choose M to be the smallest even number greater than the scale . In NumPy, H, is
given by np.hstack([-np.ones((M, M // 2)), np.ones((M, M // 2))]1), and H, is the transpose
of H,. Next, we apply the Haar filters H, and H, to our image and denote the results by d, and d,,
respectively.

To determine whether a pixel is a corner, we consider a 50 x 5o neighborhood B of the pixel
and calculate the following matrix:

ZB d?ﬂ ZB dmdy

C = .
Yopdady Yop di

Next we threshold the value
det(C)

[Te(C)]?

to determine whether the pixel is considered as a corner. To detect a strong corner, we can threshold
the Harris corner response
R =det(C) — k- [Tr(C))?,

where k is an empirical constant. Finally, we classify a pixel as a corner if it is a local maximum of
the function R. In this way, we can rule out false positive cases and weak corners from the image.

If we have a pair of images that capture the different views of the same scene, we can match
the corresponding interest points using SSD (Sum of Square Differences) and NCC (Normalized Cross
Correlation):

Z Z(fl(z7]) - ml)(fg(Z,]) - m2)
VEX(fi(i5) = m)? Z (foiy) — ma)?

SSD =Y "> "|fli,§) - f2(i,§)]> and NCC =
(2]

where m; and mgy are the means of fi(i,7) and fa(i,j), respectively, and the summations are taken
over a window around corners being considered. For every corner in the first image, its corresponding
corner in the second image is the one that either minimizes the SSD or maximizes the NCC. Thus we
can use two for-loops to match all corners in the pair of images.

We apply the above procedures to the provided images:

Figure 4: Corners in image pair 1 (with o = 1.2)

Figure 6: Corners in image pair 1 (with o = 2)

Figure 10: Matching in image pair 1 (using SSD and o = 2)

Figure 11: Matching in image pair 1 (using NCC and o = 1)

Figure 14: Matching in image pair 2 (using NCC and o = 2)

Figure 18: Corners in image pair 2 (with o = 2)

P E A ———————

Figure 23: Matching in image pair 2 (using NCC and o = 1)

Figure 24: Matching in image pair 2 (using NCC and o = 1.2)

S

Figure 26: Matching in image pair 2 (using NCC and o = 2)

Observations: We observe that larger values of o correspond to larger features, and they provide
more robustness to noise. On the other hand, smaller values of ¢ allow us to detect more sophisti-
cated features, and the resulting number of interest points will be larger. We can see in the previous
images that SSD achieves better performance compared to NCC across different scales. Also, setting
o = 2 provides better result for both SSD and NNC compared to setting ¢ = 1. As we mentioned,
this is due to the property that larger scale values o are more robust to noise than smaller scale values.

2.2 SIFT

SIFT (Scale Invariant Feature Transform) consists of several steps: The first step is to find the local
extrema of the DoG D(z,y,0). This is done by comparing each pixel value D(z,y, o) with the 26
pixel values in its 3D neighborhood. Next, we can locate these extrema with sub-pixel accuracy: if we
let J(x) and H (o) be the gradient and Hessian of the function D(x,y,) at o = (0, v0,00), then

x = —H ()] (x0)

gives the precise location of the local extremum. After obtaining the locations of local extrema, we
apply a threshold to the magnitude |D(z,y,)| of DoG to rule out weak local extrema.

The next step is to find the dominant local orientation for each local extremum of D(z,y, o).
This is done by: (1) computing the gradient magnitude m(z,y) and gradient orientation 0(x,y) of
the o-smoothed image ff(x,y,0) (2) weighting 6(x,y) with m(z,y) (3) finding the peak in the 36-bin
histogram of 6(x,y) in the range of 360°. After obtaining the local orientations, our last step is to
create a SIFT descriptor for each local extremum. First, we consider the values of 0(x,y) relative to
the dominant local orientation. Then we divide the 16 x 16 neighborhood of the local extremum
into 4 x 4 cells, thus obtaining 16 cells. For each cell we calculate an 8-bin histogram of 6(z,y)
(weighted with m(x,y)). Finally, combining the sixteen 8-bin histograms gives us a 128-element
descriptor for every local extremum.

We apply the OpenCV implementation of SIFT to the provided images. We observe that
SIFT achieves higher accuracy in matching interest points compared to Harris corner detector with
SSD/NNC. Thus matching interest points using descriptors is more effective than directly comparing
neighborhoods of the interest points. This is reasonable as descriptors capture more sophisticated
features associated to interest points using the gradient information.

Figure 27: Matching in image pair 1 using SIFT

Figure 28: Matching in image pair 2 using SIFT

2.3 SuperPoint and SuperGlue

We apply the deep learning based approach for interest point detection and matching; this approach
is based on SuperPoint and SuperGlue. Similar to SIFT, this approach achieves high accuracy in
interest points matching in different views. Furthermore, we observe that the deep learning based
approach detects more interest points and matches them with much higher accuracy. Thus this
approach provides an over-all better result compared to SIFT and the Harris corner detector.

Figure 29: Provided image pair

Figure 30: Matching in the provided image pairs

10

3 Custom Images

3.1 Harris Corner Detector

We re-run the previous processes on custom images:

Figure 31: Custom image pair 1

Figure 32: Custom image pair 2

11

Figure 36: Corners in image pair 1 (with o = 2)

12

a it
Figure 38: Matching in image pair 1 (using SSD and o = 1.2)

n

; f
Jlii! e R V"
Figure 39: Matching in image pair 1 (using SSD and ¢ = 1.6)

Figure 40: Matching in image pair 1 (using SSD and o = 2)

13

-

-‘v'f] .- ' _.M i m |
Figure 43: Matching in image pair 2 (using NCC and o = 1.6)

-

Figure 44: Matching in image pair 2 (using NCC and o = 2)

14

Figure 48: Corners in image pair 2 (with o = 2)

15

Figure 49: Matching in image pair 2 (using SSD and o = 1)

Figure 52: Matching in image pair 2 (using SSD and o = 2)

16

Figure 53: Matching in image pair 2 (using NCC and o = 1)

Figure 56: Matching in image pair 2 (using NCC and o = 2)

17

Observations: Similarly, in our custom images, we can observe that larger values of the scale o lead
to less corners detected, and moreover, the detected features tend to be larger. Also, SSD provides
slightly better result when matching corners in different views. Interestingly, since the view difference
in image pair 1 is smaller than the view difference in image pair 2, the matching algorithm performs
relatively better in image pair 1. Thus for large view difference, we may need more advanced algo-
rithms such as deep learning based methods.

3.2 SIFT

Figure 58: Matching in image pair 2 using SIF'T

3.3 SuperPoint and SuperGlue

We observe that in image pair 1, the deep learning based approach matches a large number of interest
points. I believe we can reduce the number of interest points detected by adjusting the hyperpara-
meters of the model. Also, we observe that this method achieves high accuracy in image pair 2, and
this result is substantially better than SIFT and Harris corner detector.

18

— -. | - i . |
Figure 59: Matching in custom image pair 1

Figure 60: Matching in custom image pair 2

4 Python Code

import cv2 as cv
import numpy as np

sigma = 1
source_image_paths = ["HW4_images/hovde_2.jpg", "HW4_images/hovde_3.jpg"]
img_name = "hovde"

def harris_corner_detection(img, sigma):

Calculate the smallest even number >= 4 * sigma
M = np.ceil(4 * sigma).astype(int)
M+=M7% 2

Haar wavelet filters
Hx = np.hstack([-np.ones((M, M // 2)), np.ones((M, M // 2))]1)
Hy = Hx.T

Process the input image and apply the Haar filters
img0 = cv.cvtColor(img, cv.COLOR_BGR2GRAY) / 255
dx = cv.filter2D(src=img0, ddepth=-1, kernel=Hx)

19

dy = cv.filter2D(src=img0, ddepth=-1, kernel=Hy)

Calculate the smallest odd number >= 5 * sigma
M = np.ceil(5 * sigma).astype(int)
M+=(1-MY% 2)

Calculate matrix determinant and trace

Cl1l = cv.filter2D(src=dx ** 2, ddepth=-1, kernel=np.ones((M, M)))
C12 = cv.filter2D(src=dx * dy, ddepth=-1, kernel=np.ones((M, M)))
C22 = cv.filter2D(src=dy ** 2, ddepth=-1, kernel=np.ones((M, M)))
det_C = C11 * C22 - C12 *x*x 2

tr_C = Cl11 + C22

Calculate the Harris corner response

0.05 # empirical constant

det_C - k * tr_C *x 2

np.mean(R[R > 0]) # average of the positive entries of R
threshold = (R >= t)

¢ I N H
I

Find local maxima
local_max = np.zeros_like(R)
for m in range(M, R.shape[0]-M):
for n in range(M, R.shape[1]-M):
if R[m, n] == np.max(R[m-M:m+M+1, n-M:n+M+1]):
local_max[m, n] =1

Return the top 200 corners based on the values of Harris response
corners = threshold * local_max

out = [(x, y, Rly, x]) for y in range(corners.shape[0])
for x in range(corners.shape[1]) if cornersl[y, x]]
out = [(x, y) for x, y, _ in sorted(out, key=lambda t : t[2], reverse=True)]

img0 = img.copy()

for x, y in out[:200]:

cv.circle(img0, (%, y), radius=3, color=(0, 255, 0), thickness=-1)
return out[:200], imgO
def interest_pts_matching(imgl, img2, metric="SSD"):

cornersl, img0Ol = harris_corner_detection(imgl, sigma)

corners2, img02 = harris_corner_detection(img2, sigma)
cv.imshow("window", np.hstack([img01, img02]))

cv.imwrite (f"{img_namel}_s{sigma}.jpg", np.hstack([imgOl, img02]))
cv.waitKey (0)

Find the matched interest points and their SSD/NCC

20

matching = {}
M = np.ceil(10 * sigma).astype(int)
img01 = cv.cvtColor(imgl, cv.COLOR_BGR2GRAY) / 255
img02 = cv.cvtColor(img2, cv.COLOR_BGR2GRAY) / 255
for x1, y1 in cormersl:
if not (M <= y1 < imgl.shape[0] - M and M <= x1 < imgl.shapel[l] - M):
continue
windowl = imgO1[y1-M:y1+M+1, x1-M:x1+M+1]
ml = np.mean(windowl)
min_dist = np.inf
for x2, y2 in corners2:
if not (M <= y2 < img2.shape[0] - M and M <= x2 < img2.shape[1] - M):
continue
window2 = img02[y2-M:y2+M+1, x2-M:x2+M+1]
m2 = np.mean(window?2)

dist = np.sum((windowl - window2) ** 2) if metric == "SSD" else \
- np.sum((windowl - m1) * (window2 - m2)) / \
np.sqrt(np.sum((windowl - ml) ** 2) * np.sum((window2 - m2) ** 2))

if dist < min_dist:
min_dist = dist
matching[(y1l, x1)] = (y2, x2, dist)

Sort the matched interes point pairs according to their distance
matching = sorted(list(matching.items()), key=lambda x : x[-1]1[-1])

Plot the matching for the first 30 pairs

img0 = np.hstack([imgl, img2])

for t1, t2 in matching[:30]:

yl, x1, y2, x2 = t1[0], t1[1], t2[0], t2[1]

¢ = np.random.randint (0, 256, size=3)

cv.line(img0, (x1, y1), (x2+imgl.shapel[l], y2), (int(c[0]), int(c[1]), int(c[2])), 2)
cv.imshow("window", imgO)

cv.imwrite(£"{img_name}_s{sigma}_{metric}.jpg", imgO0)

cv.waitKey(0)

def SIFT(imgl, img2):
sift = cv.SIFT_create()

Calculate keypoints and descriptors
kpl, desl = sift.detectAndCompute(cv.cvtColor(imgl, cv.COLOR_BGR2GRAY), None)
kp2, des2 = sift.detectAndCompute(cv.cvtColor(img2, cv.COLOR_BGR2GRAY), None)

Match descriptors and sort the matched pairs according to distance

bf = cv.BFMatcher(cv.NORM_L2, crossCheck=True)
matches = sorted(bf.match(desl, des2), key=lambda x : x.distance)

21

Plot the first 30 matched pairs

img0 = cv.drawMatches(imgl, kpl, img2, kp2, matches[:30], None, flags=2)
cv.imshow("window", imgO)

cv.imwrite(£"{img_name}_sift.jpg", img0)

cv.waitKey(0)

imgl, img2 = cv.imread(source_image_paths[0]), cv.imread(source_image_paths[1])
cv.imshow("window", np.hstack([imgl, img2]))

cv.imwrite (f"{img_name}. jpg", np.hstack([imgl, img2]))

cv.waitKey(0)

interest_pts_matching(imgl, img2, metric="SSD")

interest_pts_matching(imgl, img2, metric="NCC")

SIFT(imgl, img2)

22

